13 results on '"John G. Marshall"'
Search Results
2. The plasma peptides of ovarian cancer
- Author
-
Jaimie Dufresne, Pete Bowden, Thanusi Thavarajah, Angelique Florentinus-Mefailoski, Zhuo Zhen Chen, Monika Tucholska, Tenzin Norzin, Margaret Truc Ho, Morla Phan, Nargiz Mohamed, Amir Ravandi, Eric Stanton, Arthur S. Slutsky, Claudia C. dos Santos, Alexander Romaschin, John C. Marshall, Christina Addison, Shawn Malone, Daren Heyland, Philip Scheltens, Joep Killestein, Charlotte E. Teunissen, Eleftherios P. Diamandis, K. W. Michael Siu, and John G. Marshall
- Subjects
Human EDTA plasma ,Organic extraction ,Nano chromatography ,Electrospray ionization tandem mass spectrometry ,LC–ESI–MS/MS ,Linear quadrupole ion trap ,Medicine - Abstract
Abstract Background It may be possible to discover new diagnostic or therapeutic peptides or proteins from blood plasma by using liquid chromatography and tandem mass spectrometry to identify, quantify and compare the peptides cleaved ex vivo from different clinical populations. The endogenous tryptic peptides of ovarian cancer plasma were compared to breast cancer and female cancer normal controls, other diseases with their matched or normal controls, plus ice cold plasma to control for pre-analytical variation. Methods The endogenous tryptic peptides or tryptic phospho peptides (i.e. without exogenous digestion) were analyzed from 200 μl of EDTA plasma. The plasma peptides were extracted by a step gradient of organic/water with differential centrifugation, dried, and collected over C18 for analytical HPLC nano electrospray ionization and tandem mass spectrometry (LC–ESI–MS/MS) with a linear quadrupole ion trap. The endogenous peptides of ovarian cancer were compared to multiple disease and normal samples from different institutions alongside ice cold controls. Peptides were randomly and independently sampled by LC–ESI–MS/MS. Precursor ions from peptides > E4 counts were identified by the SEQUEST and X!TANDEM algorithms, filtered in SQL Server, before testing of frequency counts by Chi Square (χ2), for analysis with the STRING algorithm, and comparison of precursor intensity by ANOVA in the R statistical system with the Tukey-Kramer Honestly Significant Difference (HSD) test. Results Peptides and/or phosphopeptides of common plasma proteins such as HPR, HP, HPX, and SERPINA1 showed increased observation frequency and/or precursor intensity in ovarian cancer. Many cellular proteins showed large changes in frequency by Chi Square (χ2 > 60, p
- Published
- 2018
- Full Text
- View/download PDF
3. The plasma peptidome
- Author
-
Jaimie Dufresne, Pete Bowden, Thanusi Thavarajah, Angelique Florentinus-Mefailoski, Zhuo Zhen Chen, Monika Tucholska, Tenzin Norzin, Margaret Truc Ho, Morla Phan, Nargiz Mohamed, Amir Ravandi, Eric Stanton, Arthur S. Slutsky, Claudia C. dos Santos, Alexander Romaschin, John C. Marshall, Christina Addison, Shawn Malone, Daren Heyland, Philip Scheltens, Joep Killestein, Charlotte Teunissen, Eleftherios P. Diamandis, K. W. M. Siu, and John G. Marshall
- Subjects
Endogenous tryptic peptides phospho peptides ,Human EDTA plasma ,Organic extraction ,Nano chromatography ,Electrospray ionization tandem mass spectrometry ,LC–ESI–MS/MS ,Medicine - Abstract
Abstract Background It may be possible to discover new diagnostic or therapeutic peptides or proteins from blood plasma using LC–ESI–MS/MS to identify, quantify and compare the statistical distributions of peptides cleaved ex vivo from plasma samples from different clinical populations. Methods A systematic method for the organic fractionation of plasma peptides was applied to identify and quantify the endogenous tryptic peptides from human plasma from multiple institutions by C18 HPLC followed nano electrospray ionization and tandem mass spectrometry (LC–ESI–MS/MS) with a linear quadrupole ion trap. The endogenous tryptic peptides, or tryptic phospho peptides (i.e. without exogenous digestion), were extracted in a mixture of organic solvent and water, dried and collected by preparative C18. The tryptic peptides from 6 institutions with 12 different disease and normal EDTA plasma populations, alongside ice cold controls for pre-analytical variation, were characterized by mass spectrometry. Each patient plasma was precipitated in 90% acetonitrile and the endogenous tryptic peptides extracted by a stepwise gradient of increasing water and then formic acid resulting in 10 sub-fractions. The fractionated peptides were manually collected over preparative C18 and injected for 1508 LC–ESI–MS/MS experiments analyzed in SQL Server R. Results Peptides that were cleaved in human plasma by a tryptic activity ex vivo provided convenient and sensitive access to most human proteins in plasma that show differences in the frequency or intensity of proteins observed across populations that may have clinical significance. Combination of step wise organic extraction of 200 μL of plasma with nano electrospray resulted in the confident identification and quantification ~ 14,000 gene symbols by X!TANDEM that is the largest number of blood proteins identified to date and shows that you can monitor the ex vivo proteolysis of most human proteins, including interleukins, from blood. A total of 15,968,550 MS/MS spectra ≥ E4 intensity counts were correlated by the SEQUEST and X!TANDEM algorithms to a federated library of 157,478 protein sequences that were filtered for best charge state (2+ or 3+) and peptide sequence in SQL Server resulting in 1,916,672 distinct best-fit peptide correlations for analysis with the R statistical system. SEQUEST identified some 140,054 protein accessions, or some ~ 26,000 gene symbols, proteins or loci, with at least 5 independent correlations. The X!TANDEM algorithm made at least 5 best fit correlations to more than 14,000 protein gene symbols with p-values and FDR corrected q-values of ~ 0.001 or less. Log10 peptide intensity values showed a Gaussian distribution from E8 to E4 arbitrary counts by quantile plot, and significant variation in average precursor intensity across the disease and controls treatments by ANOVA with means compared by the Tukey–Kramer test. STRING analysis of the top 2000 gene symbols showed a tight association of cellular proteins that were apparently present in the plasma as protein complexes with related cellular components, molecular functions and biological processes. Conclusions The random and independent sampling of pre-fractionated blood peptides by LC-ESI-MS/MS with SQL Server-R analysis revealed the largest plasma proteome to date and was a practical method to quantify and compare the frequency or log10 intensity of individual proteins cleaved ex vivo across populations of plasma samples from multiple clinical locations to discover treatment-specific variation using classical statistics suitable for clinical science. It was possible to identify and quantify nearly all human proteins from EDTA plasma and compare the results of thousands of LC–ESI–MS/MS experiments from multiple clinical populations using standard database methods in SQL Server and classical statistical strategies in the R data analysis system.
- Published
- 2018
- Full Text
- View/download PDF
4. Mitochondria and cytochrome components released into the plasma of severe COVID-19 and ICU acute respiratory distress syndrome patients
- Author
-
Zhuo Zhen Chen, Lloyd Johnson, Uriel Trahtemberg, Andrew Baker, Saaimatul Huq, Jaimie Dufresne, Peter Bowden, Ming Miao, Ja-An Ho, Cheng-Chih Hsu, Claudia C. dos Santos, and John G. Marshall
- Subjects
Clinical Biochemistry ,Molecular Medicine ,General Medicine ,Molecular Biology - Abstract
Introduction Proteomic analysis of human plasma by LC–ESI–MS/MS has discovered a limited number of new cellular protein biomarkers that may be confirmed by independent biochemical methods. Analysis of COVID-19 plasma has indicated the re-purposing of known biomarkers that might be used as prognostic markers of COVID-19 infection. However, multiple molecular approaches have previously indicated that the SARS-COV2 infection cycle is linked to the biology of mitochondria and that the response to infections may involve the action of heme containing oxidative enzymes. Methods Human plasma from COVID-19 and ICU-ARDS was analyzed by classical analytical biochemistry techniques and classical frequency-based statistical approaches to look for prognostic markers of severe COVID-19 lung damage. Plasma proteins from COVID-19 and ICU-ARDS were identified and enumerated versus the controls of normal human plasma (NHP) by LC–ESI–MS/MS. The observation frequency of proteins detected in COVID-19 and ICU-ARDS patients were compared to normal human plasma, alongside random and noise MS/MS spectra controls, using the Chi Square (χ2) distribution. Results PCR showed the presence of MT-ND1 DNA in the plasma of COVID-19, ICU-ARDS, as well as normal human plasma. Mitochondrial proteins such as MRPL, L2HGDH, ATP, CYB, CYTB, CYP, NDUF and others, were increased in COVID-19 and ICU-ARDS plasma. The apparent activity of the cytochrome components were tested alongside NHP by dot blotting on PVDF against a purified cytochrome c standard preparation for H2O2 dependent reaction with luminol as measured by enhanced chemiluminescence (ECL) that showed increased activity in COVID-19 and ICU-ARDS patients. Discussion The results from PCR, LC–ESI–MS/MS of tryptic peptides, and cytochrome ECL assays confirmed that mitochondrial components were present in the plasma, in agreement with the established central role of the mitochondria in SARS-COV-2 biology. The cytochrome activity assay showed that there was the equivalent of at least nanogram amounts of cytochrome(s) in the plasma sample that should be clearly detectable by LC–ESI–MS/MS. The release of the luminol oxidase activity from cells into plasma forms the basis of a simple and rapid test for the severity of cell damage and lung injury in COVID-19 infection and ICU-ARDS. Graphical Abstract
- Published
- 2023
- Full Text
- View/download PDF
5. LEDGF is a new growth factor in fetal serum
- Author
-
Zhuo Zhen Chen, Peter Bowden, Jaimie Dufresne, Ming Miao, and John G. Marshall
- Subjects
Mammals ,Epidermal Growth Factor ,Tandem Mass Spectrometry ,Biophysics ,Insulins ,Animals ,Intercellular Signaling Peptides and Proteins ,Cell Biology ,Molecular Biology ,Biochemistry ,Transcription Factors - Abstract
Fetal serum supports the immortal growth of mammalian cell lines in culture while adult serum leads to the terminal differentiation and death of cells in culture. Many of the proteins in fetal serum that support the indefinite division and growth of cancerous cell lines remain obscure. The peptides and proteins of fetal versus adult serum were analyzed by liquid chromatography, nano electrospray ionization and tandem mass spectrometry (LC-ESI-MS/MS). Three batches of fetal serum contained the Alpha Fetoprotein marker while adult serum batches did not. Insulin (INS), and insulin-like growth factor (ILGF), fibroblast growth factor (FGF), epidermal growth factor (EGF) and platelet derived growth factor (PDGF) were increased in fetal serum. New fetal growth factors including MEGF, HDGFRP and PSIP1 and soluble growth receptors such as TNFR, EGFR, NTRK2 and THRA were discovered. Addition of insulin or the homeotic transcription factor PSIP1, also referred to as Lens Epithelium Derived Growth Factor (LEDGF), partially restored the rounded phenotype of rapidly dividing cells but was not as effective as fetal serum. Thus, a new growth factor in fetal serum, LEDGF/PSIP1, was directly observed by tandem mass spectrometry and confirmed by add back experiments to cell culture media alongside insulin.
- Published
- 2022
6. Plasma Peptidome
- Author
-
John G. Marshall, K. W. Michael Siu, Eleftherios P. Diamandis, Charlotte E. Teunissen, Joep Killestein, Philip Scheltens, Daren Heyland, Shawn Malone, Christina Addison, John C. Marshall, Alexander Romaschin, Claudia C. dos Santos, Arthur S. Slutsky, Eric Stanton, Amir Ravandi, Nargiz Mohamed, Morla Phan, Margaret Truc Ho, Tenzin Norzin, Monika Tucholska, Zhuo Zhen Chen, Angelique Florentinus-Mefailoski, Thanusi Thavarajah, Pete Bowden, and Jaimie Dufresne
- Abstract
Background It may be possible to discover new diagnostic or therapeutic peptides or proteins from blood plasma using LC–ESI–MS/MS to identify, quantify and compare the statistical distributions of peptides cleaved ex vivo from plasma samples from different clinical populations. Methods A systematic method for the organic fractionation of plasma peptides was applied to identify and quantify the endogenous tryptic peptides from human plasma from multiple institutions by C18 HPLC followed nano electrospray ionization and tandem mass spectrometry (LC–ESI–MS/MS) with a linear quadrupole ion trap. The endogenous tryptic peptides, or tryptic phospho peptides (i.e. without exogenous digestion), were extracted in a mixture of organic solvent and water, dried and collected by preparative C18. The tryptic peptides from 6 institutions with 12 different disease and normal EDTA plasma populations, alongside ice cold controls for pre-analytical variation, were characterized by mass spectrometry. Each patient plasma was precipitated in 90% acetonitrile and the endogenous tryptic peptides extracted by a stepwise gradient of increasing water and then formic acid resulting in 10 sub-fractions. The fractionated peptides were manually collected over preparative C18 and injected for 1508 LC–ESI–MS/MS experiments analyzed in SQL Server R. Results Peptides that were cleaved in human plasma by a tryptic activity ex vivo provided convenient and sensitive access to most human proteins in plasma that show differences in the frequency or intensity of proteins observed across populations that may have clinical significance. Combination of step wise organic extraction of 200 μL of plasma with nano electrospray resulted in the confident identification and quantification ~ 14,000 gene symbols by X!TANDEM that is the largest number of blood proteins identified to date and shows that you can monitor the ex vivo proteolysis of most human proteins, including interleukins, from blood. A total of 15,968,550 MS/MS spectra ≥ E4 intensity counts were correlated by the SEQUEST and X!TANDEM algorithms to a federated library of 157,478 protein sequences that were filtered for best charge state (2+ or 3+) and peptide sequence in SQL Server resulting in 1,916,672 distinct best-fit peptide correlations for analysis with the R statistical system. SEQUEST identified some 140,054 protein accessions, or some ~ 26,000 gene symbols, proteins or loci, with at least 5 independent correlations. The X!TANDEM algorithm made at least 5 best fit correlations to more than 14,000 protein gene symbols with p-values and FDR corrected q-values of ~ 0.001 or less. Log10 peptide intensity values showed a Gaussian distribution from E8 to E4 arbitrary counts by quantile plot, and significant variation in average precursor intensity across the disease and controls treatments by ANOVA with means compared by the Tukey–Kramer test. STRING analysis of the top 2000 gene symbols showed a tight association of cellular proteins that were apparently present in the plasma as protein complexes with related cellular components, molecular functions and biological processes. Conclusions The random and independent sampling of pre-fractionated blood peptides by LC-ESI-MS/MS with SQL Server-R analysis revealed the largest plasma proteome to date and was a practical method to quantify and compare the frequency or log10 intensity of individual proteins cleaved ex vivo across populations of plasma samples from multiple clinical locations to discover treatment-specific variation using classical statistics suitable for clinical science. It was possible to identify and quantify nearly all human proteins from EDTA plasma and compare the results of thousands of LC–ESI–MS/MS experiments from multiple clinical populations using standard database methods in SQL Server and classical statistical strategies in the R data analysis system.
- Published
- 2021
- Full Text
- View/download PDF
7. Re-evaluation of the 18 non-human protein standards used to create the empirical statistical model for decoy library searching
- Author
-
Thanusi Thavarajah, Monika Tucholska, Pei-Hong Zhu, Peter Bowden, and John G. Marshall
- Subjects
Tandem Mass Spectrometry ,Biophysics ,Animals ,Humans ,Proteins ,Cell Biology ,Reference Standards ,Databases, Protein ,Molecular Biology ,Biochemistry - Abstract
The Empirical Statistical Model (ESM) for decoy library searching fused the expected amino acid sequence of 18 non-human protein standards to a human decoy library. The ESM assumed a priori the standards were pure such that only the 18 nominal proteins were true positive, all other proteins were false positive, there was no overlap in the peptides of non-human proteins versus human proteins, and that the score distribution of individual peptides would resolve true positive from false positive results or noise. The results of random and independent sampling by LC-ESI-MS/MS indicated that the fundamental assumptions of the ESM were not in good agreement with the actual purity of the commercial test standards and so the method showed a 99.7% false negative rate. The ESM for decoy library searching apparently showed poor agreement with SDS-PAGE using silver staining, goodness of fit of MS/MS spectra by X!TANDEM, FDR correction by Benjamini and Hochberg, or comparison to the observation frequency of null random MS/MS spectra, that all confirmed the standards contain hundreds of proteins with a low FDR of primary structural identification. The protein observation frequency increased with abundance and the log
- Published
- 2019
8. Shropshire, 1: The Records; 2: Editorial Apparatus.J. Alan B. Somerset
- Author
-
John G Marshall
- Subjects
Cultural Studies ,Philosophy ,History ,Literature and Literary Theory ,Visual Arts and Performing Arts ,Religious studies ,Media studies ,Art history - Published
- 1997
- Full Text
- View/download PDF
9. Clinical proteomics
- Author
-
Ákos Végvári, Tadashi Kondo, and John G. Marshall
- Subjects
Editorial ,Article Subject ,Molecular Biology ,Biochemistry - Published
- 2012
10. Mass spectrometry of peptides and proteins from human blood
- Author
-
Peihong, Zhu, Peter, Bowden, Du, Zhang, and John G, Marshall
- Subjects
Endopeptidases ,Proteolysis ,Humans ,Blood Proteins ,Reference Standards ,Databases, Protein ,Protein Processing, Post-Translational ,Sensitivity and Specificity ,Mass Spectrometry ,Specimen Handling - Abstract
It is difficult to convey the accelerating rate and growing importance of mass spectrometry applications to human blood proteins and peptides. Mass spectrometry can rapidly detect and identify the ionizable peptides from the proteins in a simple mixture and reveal many of their post-translational modifications. However, blood is a complex mixture that may contain many proteins first expressed in cells and tissues. The complete analysis of blood proteins is a daunting task that will rely on a wide range of disciplines from physics, chemistry, biochemistry, genetics, electromagnetic instrumentation, mathematics and computation. Therefore the comprehensive discovery and analysis of blood proteins will rank among the great technical challenges and require the cumulative sum of many of mankind's scientific achievements together. A variety of methods have been used to fractionate, analyze and identify proteins from blood, each yielding a small piece of the whole and throwing the great size of the task into sharp relief. The approaches attempted to date clearly indicate that enumerating the proteins and peptides of blood can be accomplished. There is no doubt that the mass spectrometry of blood will be crucial to the discovery and analysis of proteins, enzyme activities, and post-translational processes that underlay the mechanisms of disease. At present both discovery and quantification of proteins from blood are commonly reaching sensitivities of ∼1 ng/mL.
- Published
- 2008
11. The characterization and purification of a human transcription factor modulating the glutathione peroxidase gene in response to oxygen tension
- Author
-
Frank, Merante, Svetlana M, Altamentova, Donald A G, Mickle, Richard D, Weisel, Bradley J, Thatcher, Brian M, Martin, John G, Marshall, Laura C, Tumiati, Douglas B, Cowan, and Ren-Ke, Li
- Subjects
Glutathione Peroxidase ,NFATC Transcription Factors ,Blotting, Western ,DNA Helicases ,Nuclear Proteins ,Antigens, Nuclear ,Electrophoretic Mobility Shift Assay ,DNA ,Chromatography, Ion Exchange ,Response Elements ,Antibodies ,Chromatography, Affinity ,Gene Expression Regulation, Enzymologic ,DNA-Binding Proteins ,Oxygen ,Humans ,Ku Autoantigen ,Protein Binding ,Transcription Factors - Abstract
An oxygen responsive transcription factor regulating human glutathione peroxidase gene (GPx) through two oxygen responsive elements (ORE I and ORE2) has been purified and characterized by sequence-specific DNA affinity chromatography. The DNA binding activity, termed Oxygen Responsive Element Binding Protein (OREBP), was partially represented by a 77 kD polypeptide (p70) possessing a blocked N-terminus. The p70 subunit co-eluted with an 86 kD subunit (p80) from affinity columns. N-terminal sequencing analysis of the 86 kD component revealed that this protein represented the larger member of the Ku antigen complex. The identity of the purified 77 kD subunit was determined by Western blot analysis using an antibody directed against the p70 protein. In addition to binding the GPx-ORE, the OREBP was itself regulated by oxygen tension. It was found that the abundance of the ORE binding activity was decreased in cells maintained at low oxygen tension (40 mm Hg). Anti-Ku-antibodies specifically supershifted the OREBP-ORE DNA complex. These observations further add to the numerous nuclear roles of the Ku-transcription factor.
- Published
- 2002
12. Clinical uses of the scanning laser ophthalmoscope
- Author
-
Louise Culham, Fred Fitzke, and John G. Marshall
- Subjects
Ophthalmology ,Sensory Systems ,Optometry - Published
- 1995
- Full Text
- View/download PDF
13. AMP-Activated Protein Kinase Regulates the Cell Surface Proteome and Integrin Membrane Traffic.
- Author
-
Eden Ross, Rehman Ata, Thanusi Thavarajah, Sergei Medvedev, Peter Bowden, John G Marshall, and Costin N Antonescu
- Subjects
Medicine ,Science - Abstract
The cell surface proteome controls numerous cellular functions including cell migration and adhesion, intercellular communication and nutrient uptake. Cell surface proteins are controlled by acute changes in protein abundance at the plasma membrane through regulation of endocytosis and recycling (endomembrane traffic). Many cellular signals regulate endomembrane traffic, including metabolic signaling; however, the extent to which the cell surface proteome is controlled by acute regulation of endomembrane traffic under various conditions remains incompletely understood. AMP-activated protein kinase (AMPK) is a key metabolic sensor that is activated upon reduced cellular energy availability. AMPK activation alters the endomembrane traffic of a few specific proteins, as part of an adaptive response to increase energy intake and reduce energy expenditure. How increased AMPK activity during energy stress may globally regulate the cell surface proteome is not well understood. To study how AMPK may regulate the cell surface proteome, we used cell-impermeable biotinylation to selectively purify cell surface proteins under various conditions. Using ESI-MS/MS, we found that acute (90 min) treatment with the AMPK activator A-769662 elicits broad control of the cell surface abundance of diverse proteins. In particular, A-769662 treatment depleted from the cell surface proteins with functions in cell migration and adhesion. To complement our mass spectrometry results, we used other methods to show that A-769662 treatment results in impaired cell migration. Further, A-769662 treatment reduced the cell surface abundance of β1-integrin, a key cell migration protein, and AMPK gene silencing prevented this effect. While the control of the cell surface abundance of various proteins by A-769662 treatment was broad, it was also selective, as this treatment did not change the cell surface abundance of the transferrin receptor. Hence, the cell surface proteome is subject to acute regulation by treatment with A-769662, at least some of which is mediated by the metabolic sensor AMPK.
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.