1. The Wolfspar experience with low-frequency seismic source field data: Motivation, processing, and implications
- Author
-
Andrew Brenders, Joe Dellinger, Imtiaz Ahmed, Esteban Díaz, Mariana Gherasim, Hu Jin, Madhav Vyas, and John Naranjo
- Subjects
Geophysics ,Geology - Abstract
The promise of fully automatic full-waveform inversion (FWI) — a (seismic) data-driven velocity model building process — has proven elusive in complex geologic settings, with impactful examples using field data unavailable until recently. In 2015, success with FWI at the Atlantis Field in the U.S. Gulf of Mexico demonstrated that semiautomatic velocity model building is possible, but it also raised the question of what more might be possible if seismic data tailor-made for FWI were available (e.g., with increased source-receiver offsets and bespoke low-frequency seismic sources). Motivated by the initial value case for FWI in settings such as the Gulf of Mexico, beginning in 2007 and continuing into 2021 BP designed, built, and field tested Wolfspar, an ultralow-frequency seismic source designed to produce seismic data tailor-made for FWI. A 3D field trial of Wolfspar was conducted over the Mad Dog Field in the Gulf of Mexico in 2017–2018. Low-frequency source (LFS) data were shot on a sparse grid (280 m inline, 2 to 4 km crossline) and recorded into ocean-bottom nodes simultaneously with air gun sources shooting on a conventional dense grid (50 m inline, 50 m crossline). Using the LFS data with FWI to improve the velocity model for imaging produced only incremental uplift in the subsalt image of the reservoir, albeit with image improvements at depths greater than 25,000 ft (approximately 7620 m). To better understand this, reprocessing and further analyses were conducted. We found that (1) the LFS achieved its design signal-to-noise ratio (S/N) goals over its frequency range; (2) the wave-extrapolation and imaging operators built into FWI and migration are very effective at suppressing low-frequency noise, so that densely sampled air gun data with a low S/N can still produce useable model updates with low frequencies; and (3) data density becomes less important at wider offsets. These results may have significant implications for future acquisition designs with low-frequency seismic sources going forward.
- Published
- 2022