1. A Novel Method of Marginalisation using Low Discrepancy Sequences for Integrated Nested Laplace Approximations
- Author
-
Brown, Paul T., Joshi, Chaitanya, Joe, Stephen, and Rue, Haavard
- Subjects
Statistics - Computation - Abstract
Recently, it has been shown that approximations to marginal posterior distributions obtained using a low discrepancy sequence (LDS) can outperform standard grid-based methods with respect to both accuracy and computational efficiency. This recent method, which we will refer to as LDS-StM, can also produce good approximations to multimodal posteriors. However, implementation of LDS-StM into integrated nested Laplace approximations (INLA), a methodology in which grid-based methods are used, is challenging. Motivated by this problem, we propose modifications to LDS-StM that improves the approximations and make it compatible with INLA, without sacrificing computational speed. We also present two examples to demonstrate that LDS-StM with modifications can outperform INLA's own grid approximation with respect to speed and accuracy. We also demonstrate the flexibility of the new approach for the approximation of multimodal marginals.
- Published
- 2019