Jacques-Philippe Colletier, Matthias Heyden, Francois Xavier Gallat, Joachim Wuttke, Michael Härtlein, Douglas J. Tobias, Giorgio Schirò, Kathleen Wood, Martine Moulin, Martin Weik, Frank Gabel, Alessandro Paciaroni, Andrea Orecchini, Yann Fichou, Institut de biologie structurale (IBS - UMR 5075 ), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Institut Laue-Langevin (ILL), ILL, Australian Nuclear Science and Technology Organisation (ANSTO), Australian Nuclear Science and Technology Organisation, Unité de recherche Géosciences Marines (Ifremer) (GM), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Dipartimento di Fisica e Geologia [Perugia], Università degli Studi di Perugia (UNIPG), Department of Chemistry [Irvine], University of California [Irvine] (UCI), University of California-University of California, ANR-11-BSV5-0027,Bieau,Combining experimental and computational methods to study the impact of biomolecular hydration water on protein dynamics: application to intrinsically disordered proteins and solvent-free protein-polymer hybrids(2011), European Project: HPRI-2001-50065, Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Università degli Studi di Perugia = University of Perugia (UNIPG), University of California [Irvine] (UC Irvine), and University of California (UC)-University of California (UC)
Hydration water is the natural matrix of biological macromolecules and is essential for their activity in cells. The coupling between water and protein dynamics has been intensively studied, yet it remains controversial. Here we combine protein perdeuteration, neutron scattering and molecular dynamics simulations to explore the nature of hydration water motions at temperatures between 200 and 300 K, across the so-called protein dynamical transition, in the intrinsically disordered human protein tau and the globular maltose binding protein. Quasi-elastic broadening is fitted with a model of translating, rotating and immobile water molecules. In both experiment and simulation, the translational component markedly increases at the protein dynamical transition (around 240 K), regardless of whether the protein is intrinsically disordered or folded. Thus, we generalize the notion that the translational diffusion of water molecules on a protein surface promotes the large-amplitude motions of proteins that are required for their biological activity., Hydration water plasticizes protein structures and is essential for their biological functions, such as enzymatic catalysis. Here, the authors use neutron scattering and molecular dynamics simulations to study hydration water at the dynamical transition of folded and disordered proteins.