1. Resensitizing multidrug-resistant Gram-negative bacteria to carbapenems and colistin using disulfiram
- Author
-
Chen Chen, Jinju Cai, Jingru Shi, Zhiqiang Wang, and Yuan Liu
- Subjects
Biology (General) ,QH301-705.5 - Abstract
Abstract The increasing incidence of bacterial infections caused by multidrug-resistant (MDR) Gram-negative bacteria has deepened the need for new effective treatments. Antibiotic adjuvant strategy is a more effective and economical approach to expand the lifespan of currently used antibiotics. Herein, we uncover that alcohol-abuse drug disulfiram (DSF) and derivatives thereof are potent antibiotic adjuvants, which dramatically potentiate the antibacterial activity of carbapenems and colistin against New Delhi metallo-β-lactamase (NDM)- and mobilized colistin resistance (MCR)-expressing Gram-negative pathogens, respectively. Mechanistic studies indicate that DSF improves meropenem efficacy by specifically inhibiting NDM activity. Moreover, the robust potentiation of DSF to colistin is due to its ability to exacerbate the membrane-damaging effects of colistin and disrupt bacterial metabolism. Notably, the passage and conjugation assays reveal that DSF minimizes the evolution and spread of meropenem and colistin resistance in clinical pathogens. Finally, their synergistic efficacy in animal models was evaluated and DSF-colistin/meropenem combination could effectively treat MDR bacterial infections in vivo. Taken together, our works demonstrate that DSF and its derivatives are versatile and potent colistin and carbapenems adjuvants, opening a new horizon for the treatment of difficult-to-treat infections.
- Published
- 2023
- Full Text
- View/download PDF