1. Iterated Crank–Nicolson Method for Peridynamic Models
- Author
-
Jinjie Liu, Samuel Appiah-Adjei, and Moysey Brio
- Subjects
peridynamics ,nonlocal wave equation ,iterated Crank–Nicolson method ,Störmer-Verlet method ,superconvergence ,Thermodynamics ,QC310.15-319 ,Biochemistry ,QD415-436 - Abstract
In this paper, we explore the iterated Crank–Nicolson (ICN) algorithm for the one-dimensional peridynamic model. The peridynamic equation of motion is an integro-differential equation that governs structural deformations such as fractures. The ICN method was originally developed for hyperbolic advection equations. In peridynamics, we apply the ICN algorithm for temporal discretization and the midpoint quadrature method for spatial integration. Several numerical tests are carried out to evaluate the performance of the ICN method. In general, the ICN method demonstrates second-order accuracy, consistent with the Störmer–Verlet (SV) method. When the weight is 1/3, the ICN method behaves as a third-order Runge–Kutta method and maintains strong stability-preserving (SSP) properties for linear problems. Regarding energy conservation, the ICN algorithm maintains at least second-order accuracy, making it superior to the SV method, which converges linearly. Furthermore, selecting a weight of 0.25 results in fourth-order superconvergent energy variation for the ICN method. In this case, the ICN method exhibits energy variation similar to that of the fourth-order Runge–Kutta method but operates approximately 20% faster. Higher-order convergence for energy can also be achieved by increasing the number of iterations in the ICN method.
- Published
- 2024
- Full Text
- View/download PDF