1. Study on the influence of ultrasound on the kinetic behaviour of hydrogen bubbles produced by proton exchange membrane electrolysis with water
- Author
-
Hongqian Su, Jindong Sun, Caizhu Wang, and Haofeng Wang
- Subjects
Ultrasound effect ,PEM ,Hydrogen bubble evolution process ,Kinetic analysis ,Imaging characterisation ,Chemistry ,QD1-999 ,Acoustics. Sound ,QC221-246 - Abstract
Ultrasonic technology has a significant degassing effect and can increase the efficiency of hydrogen production in the proton exchange membrane electrolysis of water. However, further research is needed to understand its influence mechanism on hydrogen bubbles. In this work, a kinetic analysis is performed to investigate the principle of hydrogen production and the kinetic behaviour of hydrogen bubble evolution by applying the ultrasonic amplification technique under static and flow dynamics in the proton exchange membrane electrolysis cell. The evolution of hydrogen bubbles in the static and in the flow dynamic of the aqueous electrolyte solution under ultrasound was characterised by imaging. The results show that the aqueous electrolyte solution in the flow state reduces the size of hydrogen bubbles and increases the detachment speed compared to the static state, which promotes the process of hydrogen bubble evolution, and that the thermal effect of ultrasound on the temperature of the aqueous electrolyte solution in the flow state is very small compared to the static state and can be ignored. Ultrasound has different effects on the different stages of hydrogen bubble evolution. In the nucleation stage, the ultrasonic cavitation effect increases the highly reactive radicals such as •OH, H•, etc., and the mechanical vibration effect of ultrasound increases the nucleation sites, which are denser and more evenly distributed. In the growth phase, the ultrasonic cavitation effect and the mechanical vibration effect promote the breaking of hydrogen bonds of water molecules and improve mass transport, which promotes the growth of hydrogen bubbles, and the fluctuating energy of positive and negative ultrasound promotes the growth of hydrogen bubbles with the vibration speed. In the detachment phase, the radius of the hydrogen bubbles is influenced by the ultrasound. The radius of the hydrogen bubbles changes with the positive and negative ultrasonic pressure, the radius of the hydrogen bubbles at negative ultrasonic pressure increases, the positive ultrasonic pressure decreases, the changing effect of the radius of the hydrogen bubbles favours the detachment of the hydrogen bubbles. In the polymerisation phase, the ultrasound leads to increased polymerisation of the fine bubble streams. Ultrasound contributes to the hydrogen production effect of proton exchange membrane water electrolysis in actual operation.
- Published
- 2024
- Full Text
- View/download PDF