1. [Killing effect of Huaier combined with DC-CIK on nude mice bearing colon cancer HT29 stem cells
- Author
-
Wen-Wen, Sun, Jin-Xia, Dou, Lin, Zhang, Li-Kui, Qiao, Na, Shen, and Wen-Yuan, Gao
- Subjects
Trametes ,Mice ,Mice, Inbred BALB C ,Cell Line, Tumor ,Colonic Neoplasms ,Neoplastic Stem Cells ,Animals ,Humans ,Mice, Nude ,Complex Mixtures ,Signal Transduction - Abstract
To compare the therapeutic effects of different treatment methods on the nude mice bearing colon cancer HT29 cells. BalB/C nude mice colon cancer stem cell models were established and randomly divided into the following four groups, with 8 nude mice in each group: blank control group, DC-CIK group, Huaier group, and Huaier combined with DC-CIK group (combined treatment group). The mice in DC-CIK group and combined treatment group received 1×10⁶ DC-CIK cells treatment by tail vein injectionafter the tumor stem cells were inoculated for 4 days,2 times a week for three weeks. The mice in Huaier group and combined treatment group received intragastric administration at the dose of 20 g/60 kg body weight, 0.2 mL/time, once a day for a total of three weeks. The mice in control group received equal volume of normal saline. Tumor size and body weight of nude mice were measured every 2 days during treatment for three weeks in each group. After the treatment, the nude mice were sacrificed to measure the tumor weight and the tumor inhibition rate was calculated. The RT-PCR method was used to detect the expression levels of the key genes in the signal pathway. After the end of the treatment, the quality of the tumor in the Huaier group, DC-CIK group and combined treatment group was significantly lower than that in the control group; the quality in combined treatment group was significantly lower than that in Huaier group and DC-CIK group.Among them, the tumor inhibition rate reached 46.77% in the combined treatment group. In respect of changes in expression levels of key genes in the signaling pathway, the mRNA expression levels of key genes PI3KR1 and Akt in PI3K/Akt pathway, key genes Wnt1 and CTTNB1 in Wnt/
- Published
- 2017