1. Automated Hypofractionated IMRT treatment planning for early-stage breast Cancer
- Author
-
Ting-Chun Lin, Chih-Yuan Lin, Kai-Chiun Li, Jin-Huei Ji, Ji-An Liang, An-Cheng Shiau, Liang-Chih Liu, and Ti-Hao Wang
- Subjects
Automation ,Treatment planning ,Autoplanning ,Hypofractionation ,IMRT ,Early-stage ,Medical physics. Medical radiology. Nuclear medicine ,R895-920 ,Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 - Abstract
Abstract Background Hypofractionated whole-breast irradiation is a standard adjuvant therapy for early-stage breast cancer. This study evaluates the plan quality and efficacy of an in-house-developed automated radiotherapy treatment planning algorithm for hypofractionated whole-breast radiotherapy. Methods A cohort of 99 node-negative left-sided breast cancer patients completed hypofractionated whole-breast irradiation with six-field IMRT for 42.56 Gy in 16 daily fractions from year 2016 to 2018 at a tertiary center were re-planned with an in-house-developed algorithm. The automated plan-generating C#-based program is developed in a Varian ESAPI research mode. The dose-volume histogram (DVH) and other dosimetric parameters of the automated and manual plans were directly compared. Results The average time for generating an autoplan was 5 to 6 min, while the manual planning time ranged from 1 to 1.5 h. There was only a small difference in both the gantry angles and the collimator angles between the autoplans and the manual plans (ranging from 2.2 to 5.3 degrees). Autoplans and manual plans performed similarly well in hotspot volume and PTV coverage, with the autoplans performing slightly better in the ipsilateral-lung-sparing dose parameters but were inferior in contralateral-breast-sparing. The autoplan dosimetric quality did not vary with different breast sizes, but for manual plans, there was worse ipsilateral-lung-sparing (V4Gy) in larger or medium-sized breasts than in smaller breasts. Autoplans were generally superior than manual plans in CI (1.24 ± 0.06 vs. 1.30 ± 0.09, p
- Published
- 2020
- Full Text
- View/download PDF