1. Endothelial lincRNA-p21 alleviates cerebral ischemia/reperfusion injury by maintaining blood-brain barrier integrity.
- Author
-
Zhao YH, Liang Y, Wang KJ, Jin SN, Yu XM, Zhang Q, Wei JY, Liu H, Fang WG, Zhao WD, Li Y, and Chen YH
- Subjects
- Animals, Humans, Mice, Autophagy, Cadherins metabolism, MicroRNAs metabolism, Occludin metabolism, Cells, Cultured, Mice, Inbred C57BL, Male, Blood-Brain Barrier, Endothelial Cells cytology, Endothelial Cells metabolism, Hypoxia-Ischemia, Brain metabolism, RNA, Long Noncoding metabolism
- Abstract
Blood-brain barrier (BBB) disruption is increasingly recognized as an early contributor to the pathophysiology of cerebral ischemia/reperfusion (I/R) injury, and is also a key event in triggering secondary damage to the central nervous system. Recently, long non-coding RNA (lncRNA) have been found to be associated with ischemic stroke. However, the roles of lncRNA in BBB homeostasis remain largely unknown. Here, we report that long intergenic non-coding RNA-p21 (lincRNA-p21) was the most significantly down-regulated lncRNA in human brain microvascular endothelial cells (HBMECs) after oxygen and glucose deprivation/reoxygenation (OGD/R) treatment among candidate lncRNA, which were both sensitive to hypoxia and involved in atherosclerosis. Exogenous brain-endothelium-specific overexpression of lincRNA-p21 could alleviate BBB disruption, diminish infarction volume and attenuate motor function deficits in middle cerebral artery occlusion/reperfusion (MCAO/R) mice. Further results showed that lincRNA-p21 was critical to maintain BBB integrity by inhibiting the degradation of junction proteins under MCAO/R and OGD/R conditions. Specifically, lincRNA-p21 could inhibit autophagy-dependent degradation of occludin by activating PI3K/AKT/mTOR signaling pathway. Besides, lincRNA-p21 could inhibit VE-cadherin degradation by binding with miR-101-3p. Together, we identify that lincRNA-p21 is critical for BBB integrity maintenance, and endothelial lincRNA-p21 overexpression could alleviate cerebral I/R injury in mice, pointing to a potential strategy to treat cerebral I/R injury., Competing Interests: Declaration of conflicting interestsThe author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
- Published
- 2024
- Full Text
- View/download PDF