1. CDI Exerts Anti-Tumor Effects by Blocking the FoxM1-DNA Interaction
- Author
-
Woo Dae Jang, Mi Young Lee, Jihye Mun, Gyutae Lim, and Kwang-Seok Oh
- Subjects
CDI ,FoxM1 ,FoxM1-DNA interaction ,anti-tumor activity ,RNA-Seq ,molecular modeling ,Biology (General) ,QH301-705.5 - Abstract
The Forkhead box protein M1 (FoxM1) is an appealing target for anti-cancer therapeutics as this cell proliferation-associated transcription factor is overexpressed in most human cancers. FoxM1 is involved in tumor invasion, angiogenesis, and metastasis. To discover novel inhibitors that disrupt the FoxM1-DNA interaction, we identified CDI, a small molecule that inhibits the FoxM1–DNA interaction. CDI was identified through an assay based on the time-resolved fluorescence energy transfer response of a labeled consensus oligonucleotide that was bound to a recombinant FoxM1-dsDNA binding domain (FoxM1-DBD) protein and exhibited potent inhibitory activity against FoxM1-DNA interaction. CDI suppressed cell proliferation and induced apoptosis in MDA-MB-231 cells obtained from a breast cancer patient. Furthermore, it decreased not only the mRNA and protein expression of FoxM1 but also that of downstream targets such as CDC25b. Additionally, global transcript profiling of MDA-MB-231 cells by RNA-Seq showed that CDI decreases the expression of FoxM1-regulated genes. The docking and MD simulation results indicated that CDI likely binds to the DNA interaction site of FoxM1-DBD and inhibits the function of FoxM1-DBD. These results of CDI being a possible effective inhibitor of FoxM1-DNA interaction will encourage its usage in pharmaceutical applications.
- Published
- 2022
- Full Text
- View/download PDF