1. 3D Printing and Surface Engineering of Ti6Al4V Scaffolds for Enhanced Osseointegration in an In Vitro Study
- Author
-
Changyu Ma, Natan Roberto de Barros, Tianqi Zheng, Alejandro Gomez, Marshall Doyle, Jianhao Zhu, Himansu Sekhar Nanda, Xiaochun Li, Ali Khademhosseini, and Bingbing Li
- Subjects
metal additive manufacturing ,titanium scaffolds ,MG-63 cell ,dopamine ,osseointegration ,Technology - Abstract
Ti6Al4V superalloy is recognized as a good candidate for bone implants owing to its biocompatibility, corrosion resistance, and high strength-to-weight ratio. While dense metal implants are associated with stress shielding issues due to the difference in densities, stiffness, and modulus of elasticity compared to bone tissues, the surface of the implant/scaffold should mimic the properties of the bone of interest to assure a good integration with a strong interface. In this study, we investigated the additive manufacturing of porous Ti6Al4V scaffolds and coating modification for enhanced osteoconduction using osteoblast cells. The results showed the successful fabrication of porous Ti6Al4V scaffolds with adequate strength. Additionally, the surface treatment with NaOH and Dopamine Hydrochloride (DOPA) promoted the formation of Dopamine Hydrochloride (DOPA) coating with an optimized coating process, providing an environment that supports higher cell viability and growth compared to the uncoated Ti6Al4V scaffolds, as demonstrated by the higher proliferation ratios observed from day 1 to day 29. These findings bring valuable insights into the surface modification of 3D-printed scaffolds for improved osteoconduction through the coating process in solutions.
- Published
- 2024
- Full Text
- View/download PDF