43 results on '"Jiangming M"'
Search Results
2. Symmetry Restoration Methods
- Author
-
Yao, Jiangming M., primary
- Published
- 2022
- Full Text
- View/download PDF
3. Soil diazotrophs sustain nitrogen fixation under high nitrogen enrichment via adjustment of community composition
- Author
-
Mianhai Zheng, Meichen Xu, Jing Zhang, Zhanfeng Liu, and Jiangming Mo
- Subjects
biological nitrogen fixation ,forest soil ,nitrogen addition ,nitrogen deposition ,nitrogen load ,diazotroph community ,Microbiology ,QR1-502 - Abstract
ABSTRACT Biological nitrogen (N) fixation, an important pathway of N, inputs from the atmosphere to Earth’s ecosystems, is well demonstrated to decline under N input. However, it remains unclear why N fixers sustain N fixation in many forests under high atmospheric N deposition. To address this knowledge gap, we analyzed the response of the diazotroph community to low N loads (short-term and low N addition; 3-year N addition at the rates of 25–50 kg N ha−1 year−1) vs high loads (chronic and high N addition; 9-year N addition at the rate of 150 kg N ha−1 year−1) in forest soils using high-throughput sequencing. Rates of N fixation decreased under low and high N loads (by 13%–27% and 10%–12%, respectively). Richness and alpha diversity (ACE and Chao1) of the soil diazotroph community decreased under low but not high N loads. Approximately 67.1%–74.4% of the nifH gene sequences at the OTU level overlapped between the control and low N loads, but only 52.0%–53.6% of those overlapped between the control and high N loads, indicating a larger shift of diazotroph community composition under high N loads. Low N loads increased soil NH4+ concentrations, which decreased diazotroph community richness, diversity, and N fixation rates, whereas the increased soil NH4+ concentrations under high N loads did not have negative impacts on the structure and function of the diazotroph community. These findings indicate that diazotrophs sustain N fixation under high N deposition via adjustment of their community composition in forest soils.IMPORTANCEThis study examined the changes in soil diazotroph community under different loads of simulated N deposition and analyzed its relationship with N fixation rates in in five forests using high-throughput sequencing. The magnitudes of N fixation rates reduced by low N loads were higher than those by high N loads. Low N loads decreased richness and diversity of diazotroph community, whereas diazotroph community structure remained stable under high N loads. Compared with low N loads, high N loads resulted in a less similarity and overlap of nifH gene sequences among the treatments and a larger adjustment of diazotroph community. Low N loads increased soil NH4+ concentrations, which decreased diazotroph community richness, diversity, and N fixation rates, whereas the increased soil NH4+ under high N loads did not have negative impacts on diazotroph community structure and N fixation. Based on these findings, it is urgently needed to incorporate the loads of N deposition and the composition of diazotroph community into terrestrial N-cycling models for accurate understanding of N inputs in forest ecosystems.
- Published
- 2024
- Full Text
- View/download PDF
4. Symmetry Restoration Methods
- Author
-
Jiangming M. Yao
- Published
- 2022
5. Effects of bamboo-tea mixed model on surface soil organic carbon storage and components
- Author
-
Yi CAO, Suya DING, Yunbin QIN, Xinnuo HE, and Jiangming MA
- Subjects
particulate organic carbon ,mineral-associated organic carbon ,soil orgnaic carbon density ,phyllostachys edulis forest ,bamboo-tea mixed forest ,Botany ,QK1-989 - Abstract
In order to explore the effects of planting tea trees under Phyllostachys edulis forest on soil organic carbon storage and carbon components, we took pure bamboo forest, bamboo-tea mixed forest and evergreen broad-leaved forest as the study objects, collected the surface soil (0-10 cm) of these three forest types, and measured soil organic carbon(SOC), carbon components, biotic and abiotic factors. The results were as follows: (1) The diversity of understory plants in bamboo-tea mixed forest was significantly lower than that in pure bamboo forest, but there was no significant differences in soil organic carbon density[(22.54 ± 2.09) t·hm-2]and carbon composition between bamboo-tea mixed forest and pure bamboo forest (P>0.05). Mineral-associated organic carbon (MOC) was (20.13 ± 1.83) g·kg-1, accounting for 92.66% of total organic carbon. The soil organic carbon density of evergreen broad-leaved forest was 41.15% and 41.00% higher than that of bamboo-tea mixed forest and pure bamboo forest (P>0.05). (2) Soil microbial biomass carbon (MBC) content, 16S rRNA gene abundance, cbbL gene abundance and microbial carbon use efficiency of these forest types were (0.58 - 3.08) g·kg-1, (2.18×1010 - 5.65×1010) copies·g-1, (0.37×108-1.10×108) copies·g-1, 0.03 - 0.28, respectively. But there were significant differences about these microbial indicators between three forest types (P>0.05). (3) SOC of the three forest types was significantly negatively correlated with soil pH, gravel content and aboveground litter biomass, and significantly positively correlated with soil clay content, silt content, total nitrogen, C∶N, total phosphorus and ammonium nitrogen (P
- Published
- 2023
- Full Text
- View/download PDF
6. Establishment of Pinus massoniana–Lactarius hatsudake Symbiosis
- Author
-
Zhineng Wei, Lin Liu, Yidan Lei, Sisi Xie, Jiangming Ma, Yibo Tan, Nianwu Tang, Zhangqi Yang, and Chenbing Ai
- Subjects
ectomycorrhiza ,Pinus massoniana ,Lactarius hatsudake ,symbiosis establishment ,Plant ecology ,QK900-989 - Abstract
Lactarius hatsudake is a common ectomycorrhizal edible mushroom in Pinus massoniana forests, and has important ecological and potential economic values. However, there are only a few reports on the establishment of Pinus massoniana–Lactarius hatsudake symbiosis. Here, we isolated a new strain of L. Lactarius hatsudake (GX01) from a local masson pine forest and established its ectomycorrhizal symbiosis with the P. massoniana. Potato dextrose agar (PDA) medium was optimal for the growth of L. hatsudake GX01. The saffron-to-brown ectomycorrhiza formed by L. hatsudake GX01 are usually bifurcated or coralloid shape, with a rod and a smooth surface, without emanating hyphae. The characteristic mantle and Hartig net structures of ectomycorrhizae were confirmed by microscope and scanning electron microscope (SEM). L. hatsudake GX01 can significantly promote the formation and development of lateral roots of P. massoniana seedlings during the early interaction. This study thus lays the foundation for subsequent study of the symbiotic molecular mechanism and application of P. massoniana–L. hatsudake symbiosis.
- Published
- 2024
- Full Text
- View/download PDF
7. Potential geographical distribution and its multi-factor analysis of Pinus massoniana in China based on the maxent model
- Author
-
Yunlin He, Jiangming Ma, and Guangsheng Chen
- Subjects
Pinus massoniana ,MaxEnt model ,Geographical detector ,Potential habitat ,Climate change ,China ,Ecology ,QH540-549.5 - Abstract
Pinus massoniana, an important timber, producing, and silvicultural species in southern China, exhibits high adaptability and wide distribution. This study utilizes the Maximum Entropy Model (MaxEnt), a species distribution model based on the theory of maximum entropy, to forecast the potential suitable distribution areas of P. massoniana in China under four climate change scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) for both present and future (2080) conditions. The research integrates and analyzes the effects of various environmental factors, including topography, soil, and population, on the distribution of P. massoniana. Additionally, a geographical detector is employed to assess the interaction between different environmental factors and their contribution to the variation in suitability zones.The findings indicate that the MaxEnt model accurately predicts the potential distribution areas of P. massoniana, with AUC values exceeding 0.94. Precipitation in the driest month (BIO14), population density (POP), and annual precipitation (BIO12) emerge as the main factors influencing the current distribution of P. massoniana. Notably, BIO14 has the greatest impact on the species' distribution (43%), followed by POP (32.7%). Furthermore, lower BIO14 values correspond to higher probabilities of pine distribution, while higher POP values correlate with increased pine distribution probabilities. The potential distribution of P. massoniana is primarily concentrated in southern China under current climatic conditions, encompassing a total suitable survival zone of 25.24 × 105 km2, accounting for 26.29% of China's total area. Among the regions, Guangxi exhibits the largest suitable area for survival, reaching 28.9 × 104 km2, implying that the environmental characteristics of Guangxi are conducive to P. massoniana's survival. Under future climate scenarios, the overall distribution pattern of the potential range of P. massoniana remains similar to the present one, with an increasing trend in area. Notably, the SSP3-7.0 emissions scenario shows the most significant increase in area, totaling 4.71 × 104 km2, suggesting that this particular scenario is more favorable for the distribution of P. massoniana. This study provides valuable scientific insights for the management, conservation, and rational site selection of P. massoniana.
- Published
- 2023
- Full Text
- View/download PDF
8. Soil Microbial Community in Relation to Soil Organic Carbon and Labile Soil Organic Carbon Fractions under Detritus Treatments in a Subtropical Karst Region during the Rainy and Dry Seasons
- Author
-
Peiwen Liu, Suya Ding, Ning Liu, Yanhua Mo, Yueming Liang, and Jiangming Ma
- Subjects
soil organic carbon ,microbial community ,karst ,detritus treatments ,Plant ecology ,QK900-989 - Abstract
Climate and detritus influence soil organic carbon (SOC) and labile SOC fractions by affecting soil microbial communities. However, it is not clear how, or to what extent, different detritus treatments affect soil microbial communities and SOC content in karst landscapes during different seasons. Plots in a karst landscape were treated with different detritus input regimes (control, no litter, no roots, no litter or roots, and double litter), and samples were collected during the dry and rainy seasons. We used Illumina sequencing of 16S rRNA to examine shifts in the diversity and composition of the associated soil microbial communities. Additionally, labile SOC fractions, including dissolved organic carbon (DOC) and microbial biomass carbon (MBC), along with soil physicochemical properties and C-degrading enzyme activities, were analyzed. The results revealed that the responses of soil properties and labile SOC fractions to detritus treatments were more pronounced during the rainy season than during the dry season, which mainly reflected that the levels of available potassium (AK), DOC, and MBC were significantly increased during the rainy season. Moreover, SOC and total nitrogen (TN) demonstrated significant changes with the double litter (DL) treatment during the rainy season. The responses of soil microbial communities to detritus treatments varied with the season, as reflected primarily in changes in the relative abundance of Ascomycota, unclassified_K_fungi, Proteobacteria, and Actinobacteriota. Climate, detritus treatments, and their interactions had significant effects on the species richness of soil bacterial communities, but did not influence fungal community diversity. Furthermore, structural equation modeling (SEM) revealed that the soil bacterial composition had the largest total effects on SOC, DOC, and MBC. In addition to directly influencing SOC, DOC, and MBC, soil properties (TN, AK, and pH) indirectly affected SOC, DOC, and MBC by altering C-degrading enzyme activity and the microbial community. We conclude that detritus treatments affect the soil microbial community and labile carbon fractions during both the rainy and dry seasons. Relationships among SOC, labile SOC fractions, enzyme activities, microbial communities, and function differed between seasons and among treatment types. This research advances our knowledge of how variation in detritus treatments affects biogeochemical cycling in karst soils during the rainy and dry seasons.
- Published
- 2023
- Full Text
- View/download PDF
9. Comparative study on plant growth-promoting bacterial inoculation by irrigation and spraying for promoting Bidens pilosa L. phytoremediation of cadmium-contaminated soil
- Author
-
Shuting Tang, Yue Xu, Kaiyue Zeng, Xin Liang, Xinwei Shi, Kehui Liu, Jiangming Ma, Fangming Yu, and Yi Li
- Subjects
Bidens pilosa L. ,Enterobacter sp. FM-1 ,Cadmium ,Soil enzymes ,Organic acids, field study ,Environmental pollution ,TD172-193.5 ,Environmental sciences ,GE1-350 - Abstract
A field study was conducted to compare FM-1 inoculation by irrigation and spraying for promoting Bidens pilosa L. phytoremediation of cadmium (Cd)-contaminated soil. Cascading relationships between bacterial inoculation by irrigation and spraying and soil properties, plant growth-promoting traits, plant biomass and Cd concentrations in Bidens pilosa L. were explored based on the partial least squares path model (PLS-PM). The results indicated that inoculation with FM-1 not only improved the rhizosphere soil environment of B. pilosa L. but also increased the Cd extracted from the soil. Moreover, Fe and P in leaves play vital roles in promoting plant growth when FM-1 is inoculated by irrigation, while Fe in leaves and stems plays a vital role in promoting plant growth when FM-1 is inoculated by spraying. In addition, FM-1 inoculation decreased the soil pH by affecting soil dehydrogenase and oxalic acid in cases with irrigation and Fe in roots in cases with spraying. Thus, the soil bioavailable Cd content increased and promoted Cd uptake by Bidens pilosa L. To address Cd-induced oxidative stress, Fe in leaves helped to convert GSH into PCs, which played a vital role in ROS scavenging when FM-1 was inoculated by irrigation. The soil urease content effectively increased the POD and APX activities in the leaves of Bidens pilosa L., which helped alleviate Cd-induced oxidative stress when FM-1 was inoculated by spraying. This study compares and illustrates the potential mechanism by which FM-1 inoculation can improve the phytoremediation of Cd-contaminated soil by Bidens pilosa L., suggesting that FM-1 inoculation by irrigation and spraying is useful in the phytoremediation of Cd-contaminated sites.
- Published
- 2023
- Full Text
- View/download PDF
10. Moso bamboo (Phyllostachys edulis (Carrière) J. Houzeau) invasion affects soil microbial communities in adjacent planted forests in the Lijiang River basin, China
- Author
-
Hongping Sun, Wenyu Hu, Yuxin Dai, Lin Ai, Min Wu, Jing Hu, Zhen Zuo, Mengyao Li, Hao Yang, and Jiangming Ma
- Subjects
moso bamboo invasion ,karst soil ,microbial community ,Lijiang River basin ,planted forests ,Microbiology ,QR1-502 - Abstract
IntroductionMoso bamboo (Phyllostachys edulis (Carrière) J. Houz.), the most widely distributed economic bamboo species in southern China, can easily invade adjacent communities due to its clonal reproduction. However, there is little information on the effects of its establishment and expansion to adjacent forest soil communities, particularly in planted forests.MethodsWe investigated the relationships between soil properties and the microbial community during bamboo invasion under different slope directions (shady or sunny slope) and positions (bottom, middle, or top slope), in three typical stand types (bottom: pure moso bamboo, middle: mixed stands of moso bamboo and Masson pine (Pinus massoniana Lamb.), and top: pure Masson pine) in the Lijiang River Basin. This study aimed to explore the effects of key environmental factors on soil microbial composition, diversity, and abundance.Results and DiscussionThe results showed that the abundance of Acidobacteria bacterium and Acidobacteria bacterium 13_2_20CM_58_27, and Verrucomicrobia bacterium decreased as the slope increased (p
- Published
- 2023
- Full Text
- View/download PDF
11. Distinct Responses of Abundant and Rare Soil Bacteria to Nitrogen Addition in Tropical Forest Soils
- Author
-
Jinhong He, Xiangping Tan, Yanxia Nie, Lei Ma, Juxiu Liu, Xiankai Lu, Jiangming Mo, Julie Leloup, Naoise Nunan, Qing Ye, and Weijun Shen
- Subjects
abundant and rare taxa ,bacterial community ,community assembly ,nitrogen addition ,tropical forest ,Microbiology ,QR1-502 - Abstract
ABSTRACT Soil microbial responses to anthropogenic nitrogen (N) enrichment at the overall community level has been extensively studied. However, the responses of community dynamics and assembly processes of the abundant versus rare bacterial taxa to N enrichment have rarely been assessed. Here, we present a study in which the effects of short- (2 years) and long-term (13 years) N additions to two nearby tropical forest sites on abundant and rare soil bacterial community composition and assembly were documented. The N addition, particularly in the long-term experiment, significantly decreased the bacterial α-diversity and shifted the community composition toward copiotrophic and N-sensitive species. The α-diversity and community composition of the rare taxa were more affected, and they were more closely clustered phylogenetically under N addition compared to the abundant taxa, suggesting the community assembly of the rare taxa was more governed by deterministic processes (e.g., environmental filtering). In contrast, the abundant taxa exhibited higher community abundance, broader environmental thresholds, and stronger phylogenetic signals under environmental changes than the rare taxa. Overall, these findings illustrate that the abundant and rare bacterial taxa respond distinctly to N addition in tropical forests, with higher sensitivity of the rare taxa, but potentially broader environmental acclimation of the abundant taxa. IMPORTANCE Atmospheric nitrogen (N) deposition is a worldwide environmental problem and threatens biodiversity and ecosystem functioning. Understanding the responses of community dynamics and assembly processes of abundant and rare soil bacterial taxa to anthropogenic N enrichment is vital for the management of N-polluted forest soils. Our sequence-based data revealed distinct responses in bacterial diversity, community composition, environmental acclimation, and assembly processes between abundant and rare taxa under N-addition soils in tropical forests. These findings provide new insight into the formation and maintenance of bacterial diversity and offer a way to better predict bacterial responses to the ongoing atmospheric N deposition in tropical forests.
- Published
- 2023
- Full Text
- View/download PDF
12. Nitrogen deposition in low-phosphorus tropical forests benefits soil C sequestration but not stabilization
- Author
-
Hui Li, Yao Chen, Zhe Lu, Faming Wang, Hans Lambers, Jingfan Zhang, Guoming Qin, Jinge Zhou, Jingtao Wu, Lulu Zhang, Poonam Thapa, Xiankai Lu, and Jiangming Mo
- Subjects
Tropical forest ,Soil C fractions ,N deposition ,Soil enzymes ,Decomposition ,Ecology ,QH540-549.5 - Abstract
The stability of soil organic carbon (SOC) plays a vital role in C sequestration, and largely depends on the availability of soil nitrogen (N) and phosphorus (P). Understanding how different fractions of SOC respond to N and P availability and the underlying microbial mechanism is crucial for mitigating climate changes. Here, we assessed how soil N and P availability modifies different SOC fractions and the soil microbial communities in a tropical forest. We measured soil chemical properties, SOC fractions, microbial PLFA abundance, fungal rDNA and its predicted gene abundance, and extracellular enzyme activities within a field N and P addition experiment. P addition decreased the concentration of recalcitrant SOC and greatly increased the soil oxidative extracellular enzyme activities, while N addition increased active SOC, mainly light fractions, and decreased soil phenol oxidase activity. P addition also induced the greatest abundance of oxidoreductases. Additionally, the transferases, lyases, hydrolases, isomerases, and ligases were also expressed at higher levels after P addition. The results indicate that enhanced soil microbial activities after P addition accelerated recalcitrant SOC decomposition by higher oxidative enzyme activities. Given the increasing N deposition, tropical forests that characterized by a low P have a great potential to sequester more SOC which will mitigate climate change. However, the increase in SOC might be vulnerable to disturbance, because most of the increased C is the active SOC.
- Published
- 2023
- Full Text
- View/download PDF
13. Does ESG performance promote total factor productivity? Evidence from China
- Author
-
Jiangming Ma, Di Gao, and Jing Sun
- Subjects
ESG performance ,total factor productivity ,financial constraints ,R&D investment ,corporate sustainable development ,Evolution ,QH359-425 ,Ecology ,QH540-549.5 - Abstract
Currently, environmental, social, and corporate governance (ESG) has become an all-pervasive term in the industrial sector, owing to its significant impact on corporate decision-making. While most of the studies provide evidence that the ESG significantly improves a firm's performance and value in the long run, few studies quantitatively analyzed the linkage between ESG and total factor productivity (TFP). Using the data of Chinese-listed companies during 2010–2020, we found that there is a positive relationship between ESG performance and TFP. ESG also improves the corporate TFP by reducing the financial constraints and improving the innovation input. Our extended analysis revealed that this beneficial effect tends to be stronger for SOEs (state-owned enterprises) and industries with high pollution levels. This study also brought to light some implications for Chinese firms in relation to their ESG practices and sustainable development.
- Published
- 2022
- Full Text
- View/download PDF
14. Changes in vegetation types affect soil microbial communities in tropical islands of southern China
- Author
-
Senhao Wang, Taiki Mori, Shun Zou, Haifeng Zheng, Petr Heděnec, Yijing Zhu, Weiren Wang, Andi Li, Nan Liu, Shuguang Jian, Zhanfeng Liu, Xiangping Tan, Jiangming Mo, and Wei Zhang
- Subjects
Coral islands ,Plant communities ,Soil microbial groups ,PLFA ,Stress indicator ,Ecology ,QH540-549.5 - Abstract
Soil microbial communities are the key drivers of nutrient cycling in ecosystems. However, the functional response of soil microbial community composition to contrasting vegetation types in tropical coral islands is still unclear. Tropical coral islands provide a unique, extreme habitat characterized by higher soil pH and P, but lower N and soil water contents. To determine the responses of soil microbial communities to changes in vegetation types, soil microbial biomass and community composition were investigated by determination of phospholipid fatty acids (PLFAs) under three vegetation types (including tree, shrub, and herb-vine) on Dong Island and Yongxing Island of southern China. Redundancy analysis (RDA) has been used to determine the driving factors (soil properties) for shaping soil microbial community composition. The results showed that the total biomass of PLFAs, as well as the specific microbial taxa [such as bacteria, Gram-positive bacteria (G+), Gram-negative bacteria (G-), fungi, arbuscular mycorrhizal fungi (AMF), and actinomycetes] increased in the soils from herb-vine via shrub to tree. Furthermore, along the above vegetation types gradient, the ratios of Gram-positive to Gram-negative bacteria (G+:G-), total saturated to total monounsaturated fatty acids (sat:mono), and fungi to bacteria (F:B) ratio decreased, indicating a shift in soil microbial community towards lower stress and copiotrophic dominance. Our findings indicate that soil microbial groups have a sensitive response to shifting plant communities in tropical coral islands, and soil water content, the ratios of soil organic matter and N content to P content, and soil pH might be the critical drivers of microbial community composition and structure in the study region.
- Published
- 2022
- Full Text
- View/download PDF
15. Importance of Considering Enzyme Degradation for Interpreting the Response of Soil Enzyme Activity to Nutrient Addition: Insights from a Field and Laboratory Study
- Author
-
Taiki Mori, Senhao Wang, Cheng Peng, Cong Wang, Jiangming Mo, Mianhai Zheng, and Wei Zhang
- Subjects
enzyme degradation ,nitrogen ,phosphorus ,protease ,forest soil ,tropics ,Plant ecology ,QK900-989 - Abstract
Soil enzyme activity can be affected by both production and degradation processes, as enzymes can be degraded by proteases. However, the impact of nutrient addition on enzyme activity is often solely attributed to changes in enzyme production without fully considering degradation. In this study, we demonstrate that the activities of β-1,4-glucosidase (BG), β-D-cellobiohydrolase (CBH), β-1,4-xylosidase (BX), and β-1,4-N-acetyl-glucosaminidase (NAG) in two tropical plantations exhibited comparable levels between nitrogen (N)- and phosphorus (P)-fertilized soils and the unfertilized control under field conditions. However, it was observed that the reduction in enzymatic activity was significantly higher in the fertilized soils during short-term laboratory incubation in the acacia plantation. Additionally, the eucalyptus plantation exhibited a similar tendency, although statistical significance was not achieved due to the high variance of the data. The results show that the interruption of the natural, continuous supply of organic matter or non-soil microbial-derived enzymes, which typically occurs under field conditions, leads to a more significant reduction in soil enzyme activities in fertilized soils compared to unfertilized control. This may be attributed to the higher abundance of protease in fertilized soils, resulting in faster enzyme degradation. Interestingly, P fertilization alone did not have a similar effect, indicating that N fertilization is likely the main cause of the larger decreases in enzyme activity during incubation in fertilized soils compared to unfertilized control soils, despite our study site being poor in P and rich in N. These findings highlight the importance of considering enzyme degradation when investigating material dynamics in forest ecosystems, including the impact of nutrient addition on enzyme activity, as enzyme production alone may not fully explain changes in soil enzyme activity.
- Published
- 2023
- Full Text
- View/download PDF
16. Variation in Extracellular Polymeric Substances from Enterobacter sp. and Their Pb2+ Adsorption Behaviors
- Author
-
Yi Li, Meifen Xin, Dongyu Xie, Shirui Fan, Jiangming Ma, Kehui Liu, and Fangming Yu
- Subjects
Chemistry ,QD1-999 - Published
- 2021
- Full Text
- View/download PDF
17. Spatio-Temporal Evolution and Prediction of Carbon Storage in Guilin Based on FLUS and InVEST Models
- Author
-
Yunlin He, Jiangming Ma, Changshun Zhang, and Hao Yang
- Subjects
carbon storage ,SDGs ,land use change ,FLUS-InVEST model ,spatial autocorrelation analysis ,Guilin ,Science - Abstract
In the context of sustainable development and dual-carbon construction, to quantify the carbon storage and its spatial-temporal distribution characteristics of Guilin City and predict the carbon storage of Guilin City in 2035 under different future scenarios, this study set four future scenarios based on SDGs and the sustainable development plan of Guilin City: natural development, economic priority, ecological priority, and sustainable development. At the same time, FLUS and InVEST models and GeoDa 1.20and ArcGIS software were used to establish a coupling model of land use change and ecosystem carbon storage to simulate and predict the distribution and change of ecosystem carbon storage based on land use change in the future. The results showed that: (1) From 2005 to 2020, forest land was the main type of land use in Guilin, and cropland and impervious continued to expand. In 2035, the forest land under four different future scenarios will be an important transformation type; (2) From 2005 to 2020, the carbon storage in the northwest of Guilin was relatively high, and the carbon loss area was larger than the carbon increase area. The carbon storage in the ecological priority scenario in 2035 is the highest, reaching 874.76 × 106 t. The aboveground carbon storage (ACG) is the main carbon pool in Guilin. Most of the regions with high carbon storage are located in the northwest and northeast of Guilin. No matter what scenario, the carbon storage in the main urban area is maintained at a low level; (3) In 2035, the distribution of carbon storage in Guilin has a strong spatial positive correlation, with more hot spots than cold spots. The high-value areas of carbon storage are concentrated in the northwest and east, whereas the low-value areas are concentrated in the urban area of Guilin.
- Published
- 2023
- Full Text
- View/download PDF
18. The Trade-Offs and Synergies of Ecosystem Services in Pinus massoniana Lamb. Plantations in Guangxi, China
- Author
-
Rongjian Mo, Yongqi Wang, Yanhua Mo, Lu Li, and Jiangming Ma
- Subjects
Pinus massoniana plantations ,forest ecosystem services ,trade-off synergy ,service cold–hot spot analysis ,Plant ecology ,QK900-989 - Abstract
A scientific understanding of the synergistic and trade-off relationships among ecosystem services (ESs) is essential for maintaining the structure, function, and health of plantation forest ecosystems. This understanding facilitates effective ecosystem management practices, and helps identify the types, intensities, and spatial and temporal distribution characteristics of interactions among ESs, which is critical for regional development planning, ecological supplementation, and the maximization of economic benefits. In this study, we used correlation analysis, bivariate spatial autocorrelation, and hot spot analysis to comprehensively analyze the synergistic and trade-off relationships between ESs in Pinus massoniana (PM) plantations in Guangxi Paiyang Forest Farm from 2009 to 2018, across both time and space. The study showed that the ESs in PM plantations in Guangxi Paiyang Forest Farm maintained significant positive correlation (synergy), with a mutually reinforcing relationship among services. Notably, the regulating services shifted from weak synergy to weak trade-off relationships over time. From the bivariate spatial autocorrelation analysis, it is clear that the overall trade-off synergistic relationship among the four ESs is basically consistent with the correlation analysis results. From the distribution of multiple ES hot spots, we determined that the number of small groups that can provide three to four service hot spots in Guangxi Paiyangshan Forest Farm is greater. The spatial distribution of cold–hot spots of various ESs varied, and the distribution of cold–hot spots of supply services and regulation services of carbon sequestration and oxygen release was similar.
- Published
- 2023
- Full Text
- View/download PDF
19. Evaluation of Global Land Use–Land Cover Data Products in Guangxi, China
- Author
-
Xuan Hao, Yubao Qiu, Guoqiang Jia, Massimo Menenti, Jiangming Ma, and Zhengxin Jiang
- Subjects
land use–land cover ,data inter-comparison ,spatial consistency analysis ,fusion ,forest and cropland ,Science - Abstract
Land use–land cover (LULC) is an important feature for ecological environment research, land resource management and evaluation. Although global high-resolution LULC data sets are booming, their regional performances were still evaluated in limited regions. To demonstrate the local applicability of global LULC data products, six emerging LULC data products were evaluated and compared in Guangxi, China. The six products used are European Space Agency GlobCover (ESAGC), ESRI Land Use–Land Cover (ESRI–LULC), Finer Resolution Observation and Monitoring of Global Land Cover (FROM–GLC), the China Land Cover Dataset (CLCD), the Global Land Cover product with Fine Classification System at 30 m (GLC_FCS30) and GlobeLand30 (GLC30). Reference data were obtained from the local government statistical yearbook and high-resolution remote sensing images on Google Earth. The results showed that CLCD, ESRI–LULC and GLC30 were found to agree well with the forest reference data, with the highest correlation coefficient of 0.999. For the cropland areas, GLC30, CLCD and ESAGC agreed well with the reference data, and the highest correlation coefficient was 0.957. Combined with the comparison with the high-resolution images obtained by Google Earth, we finally concluded that ESAGC, CLCD and GLC30 can best represent the LULCs in Guangxi. Furthermore, the spatial consistency analysis showed that three or more products identified the same LULC type as high as 96.98% of the area. We suggest that majority voting might be applied to global LULC products to provide fused products with better performances on a regional or local scale to avoid the error caused by a single data product.
- Published
- 2023
- Full Text
- View/download PDF
20. Ecosystem Service Evaluation and Multi-Objective Management of Pinus massoniana Lamb. Plantations in Guangxi, China
- Author
-
Rongjian Mo, Yongqi Wang, Shulong Dong, Jiangming Ma, and Yanhua Mo
- Subjects
Pinus massoniana plantations ,forest ecosystem services ,ecosystem service cluster ,multi-objective management strategy ,Plant ecology ,QK900-989 - Abstract
Research on forest ecosystem service (ES) assessments is currently a topic of much interest in forest ecology combined with geography. Forests are the mainstay of terrestrial ecosystems and provide a wide range of welfare supports for humans. Pinus massoniana (PM) Lamb. is a major silvicultural timber species in southern China and plays an important role in meeting domestic timber demand as well as providing ESs. The assessment of the ESs of PM plantation forests is beneficial for their sustainable management. In this study, we used the woody biomass method, the InVEST water content model and the USLE, a generalized soil loss equation model to assess the values of four Ess, including wood supply, carbon sequestration and oxygen release, water conservation, and soil conservation, in PM plantations in the Guangxi Paiyangshan Forest Farm, which is a national PM seed base. A spectral clustering method was used to identify the ecosystem service clusters (i.e., partitions) in the case study area, and certain strategies were provided for different partitions to form a management strategy for the sustainable management of PM plantation forest ecosystems. This study showed that the value of each ES per hectare in the northern tropical pine plantation, ranked from the largest to the smallest, was water conservation; carbon sequestration and oxygen release; wood supply; and soil conservation, with the values of the wood supply in addition to carbon sequestration and oxygen release per hectare increasing with the age of the plantation. Based on the different service characteristics within the service clusters, the northern tropical PM plantation area was divided into wood supply, ecological nourishment and ecological restoration areas, which can focus more on wood supply and ecological nourishment.
- Published
- 2023
- Full Text
- View/download PDF
21. Adaptation of Soil Fungal Community Structure and Assembly to Long- Versus Short-Term Nitrogen Addition in a Tropical Forest
- Author
-
Jinhong He, Shuo Jiao, Xiangping Tan, Hui Wei, Xiaomin Ma, Yanxia Nie, Juxiu Liu, Xiankai Lu, Jiangming Mo, and Weijun Shen
- Subjects
nitrogen addition ,fungal community ,stochastic processes ,deterministic processes ,tropical forest ,Microbiology ,QR1-502 - Abstract
Soil fungi play critical roles in ecosystem processes and are sensitive to global changes. Elevated atmospheric nitrogen (N) deposition has been well documented to impact on fungal diversity and community composition, but how the fungal community assembly responds to the duration effects of experimental N addition remains poorly understood. Here, we aimed to investigate the soil fungal community variations and assembly processes under short- (2 years) versus long-term (13 years) exogenous N addition (∼100 kg N ha–1 yr–1) in a N-rich tropical forest of China. We observed that short-term N addition significantly increased fungal taxonomic and phylogenetic α-diversity and shifted fungal community composition with significant increases in the relative abundance of Ascomycota and decreases in that of Basidiomycota. Short-term N addition also significantly increased the relative abundance of saprotrophic fungi and decreased that of ectomycorrhizal fungi. However, unremarkable effects on these indices were found under long-term N addition. The variations of fungal α-diversity, community composition, and the relative abundance of major phyla, genera, and functional guilds were mainly correlated with soil pH and NO3––N concentration, and these correlations were much stronger under short-term than long-term N addition. The results of null, neutral community models and the normalized stochasticity ratio (NST) index consistently revealed that stochastic processes played predominant roles in the assembly of soil fungal community in the tropical forest, and the relative contribution of stochastic processes was significantly increased by short-term N addition. These findings highlighted that the responses of fungal community to N addition were duration-dependent, i.e., fungal community structure and assembly would be sensitive to short-term N addition but become adaptive to long-term N enrichment.
- Published
- 2021
- Full Text
- View/download PDF
22. Effects of Excess Nitrogen (N) on Fine Root Growth in Tropical Forests of Contrasting N Status
- Author
-
Feifei Zhu, Frank S. Gilliam, Jan Mulder, Muneoki Yoh, Jiangming Mo, and Xiankai Lu
- Subjects
nitrogen deposition ,fine root vitality ,fine root chemistry ,soil acidification ,tropical forest ,Plant ecology ,QK900-989 - Abstract
Elevated nitrogen (N) deposition may further acidify soils in tropical forests. Yet, we have limited evidence on this prediction and it remained unclear how this would affect fine root growth therein. Here, we report responses of fine root biomass, vitality, and chemistry, as well as related soil parameters to eight years of N additions in three tropical forests different in initial soil N status, with one primary forest being N-saturated, and another two younger forests (one secondary forest and one planted forest) less N-rich. Results showed that in the primary forest, fine root biomass decreased and fine root necromass increased following N addition, resulting in lower live fine root proportion (fine root vitality). Declining fine root vitality was associated with fine root Fe accumulation and soil acidification indicated by regression analysis. These alterations of fine root growth and chemistry co-occurred with soil pH decline, soil exchangeable Fe3+ mobilization, exchangeable Ca2+, and Mg2+ depletion after N treatments in the primary forest. In contrast, N addition only elevated fine root K, Al, and Fe content in the secondary forest. In the planted forest, moderate but significant decreases in soil pH, soil exchangeable K+, and Mg2+ were found after N treatment, with fine root biomass negatively correlated with soil exchangeable Al3+ and Al3+/(Ca2+ + Mg2+) ratio. Our results suggested that long-term N fertilization may negatively affect fine root growth, via severed soil acidification, Fe mobilization, and base cation depletion in highly acidified, N-saturated primary tropical forests. Initial forest N status, influenced by different land-use history, mediates N deposition effects on fine root growth.
- Published
- 2022
- Full Text
- View/download PDF
23. Variation, distribution, and diversity of canonical ammonia-oxidizing microorganisms and complete-nitrifying bacteria in highly contaminated ecological restoration regions in the Siding mine area
- Author
-
Yi Li, Ying Liang, Haichun Zhang, Yuan Liu, Jing Zhu, Jie Xu, Zhenming Zhou, Jiangming Ma, Kehui Liu, and Fangming Yu
- Subjects
AOA ,AOB ,Comammox ,Mine area ,Soil organic matter ,Environmental pollution ,TD172-193.5 ,Environmental sciences ,GE1-350 - Abstract
Canonical ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB) and complete-nitrifying bacteria (comammox) exist in a variety of ecosystems. However, little is known about AOA, AOB and comammox or their contributions to nitrification in the soils of heavily degraded and acidic mine regions. In the present study, the activity, richness, diversity and distribution patterns of AOA, AOB and comammox in the Siding mine area were investigated. Nemerow's multifactor pollution index (PN) values indicated that the soil in all three areas in the Siding mine area was highly contaminated by Cd, Pb, Zn, Mn and Cu. The AOA, AOB and comammox amoA gene copy numbers exhibited significant positive correlations with Pb and Zn levels and PN values, which indicated that the populations of AOA, AOB and comammox underwent adaptation and reproduction in response to pollution from multiple metals in the Siding mine area. Among them, the abundance of AOA was the highest, and AOA may survive better than AOB and comammox under such severely pollution-stressed and ammonia-limited conditions. The phyla Thaumarchaeota and Crenarchaeota may play vital roles in the soil ammonia oxidation process. Unlike AOA, AOB may use soil available phosphorus to help them compete for NH3 and other limiting nutrients with AOA and heterotrophs. Moreover, soil organic matter was the main factor influencing the species diversity of AOB, the β-diversity of AOB and comammox, and the community composition of AOA, AOB and comammox. Our research will help to explain the role and importance of AOA, AOB and comammox in the different ecological restoration regions in the Siding mine area.
- Published
- 2021
- Full Text
- View/download PDF
24. Integrated Transcriptome Profiling Revealed That Elevated Long Non-Coding RNA-AC007278.2 Expression Repressed CCR7 Transcription in Systemic Lupus Erythematosus
- Author
-
Yi You, Xingwang Zhao, Yaguang Wu, Jiangming Mao, Lan Ge, Junkai Guo, Chenglei Zhao, Dong Chen, and Zhiqiang Song
- Subjects
SLE ,PBMCs ,RNA-seq ,lncRNAs ,CCR7 ,Tfh cell differentiation ,Immunologic diseases. Allergy ,RC581-607 - Abstract
PurposeSystemic lupus erythematosus (SLE) is a serious autoimmune disease. Its molecular pathogenesis, especially the long non-coding RNA (lncRNA) function, remains unclear. We want to investigate the lncRNA dysregulation profile and their molecular mechanisms in SLE.MethodsIn this study, we analyzed the transcriptome profiles (RNA-seq) of peripheral blood mononuclear cells (PBMCs) from SLE patients and two published transcriptome datasets to explore lncRNA profiles. The differentially expressed lncRNAs were confirmed by quantitative real-time PCR in another set of female patients. We constructed the lncRNA-mRNA regulatory networks by performing weighted gene co-expression network analysis (WGCNA). Dysregulated lncRNA AC007278.2 was repressed by short hairpin RNA (shRNA) in Jurkat cells. Dual-luciferase reporter gene assay was performed to investigate the regulatory mechanism of AC007278.2 on target gene CCR7.ResultsWe observed dominant up-regulation of transcripts, including mRNAs and lncRNAs, in SLE patients. By WGCNA method, we identified three modules that were highly related to SLE. We then focused on one lncRNA, AC007278.2, with a T-helper 1 lineage-specific expression pattern. We observed consistently higher AC007278.2 expression in SLE patients. Co-expression network revealed that AC007278.2 participated in the innate immune response and inflammatory bowel disease pathways. By knocking down AC007278.2 expression, we found that AC007278.2 could regulate the expression of inflammatory and cytokine stimulus response-related genes, including CCR7, AZU1, and TNIP3. AC007278.2 inhibits the functional CCR7 promoter to repress its transcription, thereby regulating autoimmunity and follicular T-helper cell differentiation.ConclusionIn summary, our study indicated the important regulatory role of lncRNAs in SLE. AC007278.2 may be treated as a novel biomarker for SLE diagnosis and treatment.
- Published
- 2021
- Full Text
- View/download PDF
25. Contrasting Forest Loss and Gain Patterns in Subtropical China Detected Using an Integrated LandTrendr and Machine-Learning Method
- Author
-
Jianing Shen, Guangsheng Chen, Jianwen Hua, Sha Huang, and Jiangming Ma
- Subjects
forest gain ,forest loss ,LandTrendr ,Random Forest (RF) ,forest policies ,subtropical China ,Science - Abstract
China has implemented a series of forestry law, policies, regulations, and afforestation projects since the 1970s. However, their impacts on the spatial and temporal patterns of forests have not been fully assessed yet. The lack of an accurate, high-resolution, and long-term forest disturbance and recovery dataset has impeded this assessment. Here we improved the forest loss and gain detections by integrating the LandTrendr change detection algorithm with the Random Forest (RF) machine-learning method and applied it to assess forest loss and gain patterns in the Zhejiang, Jiangxi, and Guangxi Provinces of the subtropical vegetation in China. The accuracy evaluation indicated that our approach can adequately detect the spatial and temporal distribution patterns in forest gain and loss, with an overall accuracy of 93% and the Kappa coefficient of 0.89. The forest loss area was 8.30 × 104 km2 in the Zhejiang, Jiangxi, and Guangxi Provinces during 1986–2019, accounting for 43.52% of total forest area in 1986, while the forest gain area was 20.25 × 104 km2, accounting for 106.19% of total forest area in 1986. Although the interannual variation patterns were similar among three provinces, the forest loss and gain area and the magnitude of change trends were significantly different. Guangxi has the largest forest loss and gain area and increasing trends, followed by Jiangxi, and the least in Zhejiang. The variations in annual forest loss and gain area can be mostly explained by the timelines of major forestry policies and regulations. Our study would provide an applicable method and data for assessing the impacts of forest disturbance events and forestry policies and regulations on the spatial and temporal patterns of forest loss and gain in China, and further contributing to regional and national forest carbon and greenhouse gases budget estimations.
- Published
- 2022
- Full Text
- View/download PDF
26. Does the risk of major customer need to be balanced? The role of customer concentration in corporate governance
- Author
-
Di Gao, Jiangming Ma, and Yiru Wang
- Subjects
Medicine ,Science - Abstract
In the operation and management of the company, major customers may affect a supplier firm’s level of governance. The goal of our study is investigating whether a major customer acts as an important role in corporate governance in emerging markets and exposing the mechanism that how major customers affect corporate decision-making. There is a growing body of literature involving studies about the effect of customer concentration on firm performance of western countries. Few studies have recognized to what degree does customer concentration satisfy the sustainable development of supplier firm. Using a sample of Chinese listed firms, we found a nonlinear relationship between customer concentration and risk-taking, corporate policies and firm performance. Evidence shows that the effect of customer concentration in China resembles an inverted U-shaped curve and major customers are crucial in financial and investment policies. Our results help to provide a broader perspective on the role of major customers, giving a deep explanation about the role of customer concentration in corporate governance.
- Published
- 2021
27. A New Method of Matrix Decomposition to Get the Determinants and Inverses of r-Circulant Matrices with Fibonacci and Lucas Numbers
- Author
-
Jiangming Ma, Tao Qiu, and Chengyuan He
- Subjects
Mathematics ,QA1-939 - Abstract
We use a new method of matrix decomposition for r-circulant matrix to get the determinants of An=CircrF1,F2,…,Fn and Bn=CircrL1,L2,…,Ln, where Fn is the Fibonacci numbers and Ln is the Lucas numbers. Based on these determinants and the nonsingular conditions, inverse matrices are derived. The expressions of the determinants and inverse matrices are represented by Fibonacci and Lucas Numbers. In this study, the formulas of determinants and inverse matrices are much simpler and concise for programming and reduce the computational time.
- Published
- 2021
- Full Text
- View/download PDF
28. Optimal Liquidation Behaviour Analysis for Stochastic Linear and Nonlinear Systems of Self-Exciting Model with Decay
- Author
-
Jiangming Ma and Xiankang Luo
- Subjects
Electronic computers. Computer science ,QA75.5-76.95 - Abstract
When the market environment changes, we extend the self-exciting price impact model and further analysis of investors’ liquidation behaviour. It is assumed that the model is accompanied by an exponential decay factor when the temporary impact and its coefficient are linear and nonlinear. Using the optimal control method, we obtain that the optimal liquidation behaviours satisfy the second-order nonlinear ODEs with variable coefficients in the case of linear and nonlinear temporary impact. Next, we solve the ODEs and get the form of the investors’ optimal liquidation behaviour in four cases. Furthermore, we prove the decreasing properties of the optimal liquidation behaviour under the linear temporary impact. Through numerical simulation, we further explain the influence of the changed parameters ρ, a, b, x, and α on the investors’ liquidation strategy Xt in twelve scenarios. Some interesting properties have been found.
- Published
- 2021
- Full Text
- View/download PDF
29. Alkaline Phosphomonoesterase-Harboring Microorganisms Mediate Soil Phosphorus Transformation With Stand Age in Chinese Pinus massoniana Plantations
- Author
-
Yueming Liang, Mingjin Li, Fujing Pan, Jiangming Ma, Zhangqi Yang, Tianwang Ling, Jiashuang Qin, Shaohao Lu, Fengyue Zhong, and Zunrong Song
- Subjects
alkaline phosphomonoesterase ,phoD-harboring microorganisms ,P fractions ,Pinus massoniana plantations ,P-use strategies ,Microbiology ,QR1-502 - Abstract
phoD-harboring microorganisms facilitate mineralization of organic phosphorus (P), while their role in the regulation of soil P turnover under P-limited conditions in Pinus massoniana plantations is poorly understood. The aim of the present study was to investigate the effects of stand age and season on soil P fractions and phoD-harboring microorganism communities in a chronosequence of Chinese P. massoniana plantations including 3, 19, and 58 years. The soil P fractions (i.e., CaCl2-P, citrate-P, enzyme-P, and HCl-P) varied seasonally, with the higher values observed in the rainy season. The concentrations of the fractions were higher in old plantation (OP) soils and lower in young planation (YP) soils in both seasons. The OTU abundances were negatively correlated with total available P concentration, while were positively correlated with alkaline phosphomonoesterase (ALP) activity at 0–10 cm soil depth. The results indicate that phoD-harboring microorganisms have great potential to mineralize organic P under P-poor conditions and highlights those microorganisms are indicators of P bioavailability in P. massoniana plantations.
- Published
- 2020
- Full Text
- View/download PDF
30. Effects of 14-year continuous nitrogen addition on soil arylsulfatase and phosphodiesterase activities in a mature tropical forest
- Author
-
Taiki Mori, Kaijun Zhou, Cong Wang, Senhao Wang, Yingping Wang, Mianhai Zheng, Xiankai Lu, Wei Zhang, and Jiangming Mo
- Subjects
Arylsulfatase ,Phosphomonoestarase ,Phosphodiesterase ,Nitrogen addition ,Tropical forest ,Ecology ,QH540-549.5 - Abstract
We investigated the impacts of 14-year continuous N addition on activities of arylsulfatase (AS) and phosphodiesterase (PDE), which catalyze soil organic sulfur (S) and phosphorus (P), respectively. The response of AS to N addition was compared with that of C- and N-acquiring enzymes, i.e., β-1,4-glucosidase (BG), β-D-cellobiohydrolase (CBH), β-1,4-Xylosidase (BX), β-1,4-N-acetyl-glucosaminnidase (NAG), and leucine amino peptidase (LAP). We also compared the impact of N addition on PDE activity with that on phosphomonoesterase (PME) activity. The results showed that N addition clearly decreased soil AS activity, whereas activities of C- and N-acquiring enzymes did not exhibit similar changes. The inconsistent response of AS activity with the enzymes was attributed to soil acidification induced by long-term N addition, which shifts the pH condition to a more optimal condition for AS activity and accelerates the accumulation of S in soils. The ratio of PME to PDE were significantly elevated by N addition, implying that the microbial and plant resource allocation to PME relative to PDE increased after N addition at our study site. The shift in resource allocation may have occurred because (i) the types of phosphatases secreted by biota shifted toward phosphatases that require one-step reaction to obtain P (such as PME) in the more-severely P-depleted condition, or (ii) soil acidification provided a more optimal condition for PDE than PME, which resulted in lower PDE production appearing as lower enzyme activity at the same pH condition in the laboratory. Overall, our results indicated different responses of exoenzyme activities to external N input. This highlights the importance of atmospheric N deposition on microbial activity and collateral C and nutrient dynamics in tropical natural forests.
- Published
- 2020
- Full Text
- View/download PDF
31. Do long-term high nitrogen inputs change the composition of soil dissolved organic matter in a primary tropical forest?
- Author
-
Guoxiang Niu, Gege Yin, Xiaohan Mo, Qinggong Mao, Jiangming Mo, Junjian Wang, and Xiankai Lu
- Subjects
soil carbon sequestration ,nitrogen addition ,water-extractable organic matter ,FT-ICR MS ,tropical forest ,dissolved organic carbon ,Environmental technology. Sanitary engineering ,TD1-1066 ,Environmental sciences ,GE1-350 ,Science ,Physics ,QC1-999 - Abstract
Dissolved organic matter (DOM) plays a key role in forest carbon biogeochemistry by linking soil organic carbon (SOC) sequestration and water fluxes, which is further shaped by elevated atmospheric nitrogen (N) deposition. Although enhanced SOC sequestration was evidenced in tropical forests due to rising N deposition, it remains unclear how long-term N inputs affect soil DOM composition, which regulates SOC sequestration capability due to its mobility and biological instability. Here, the quantity, optical properties, and molecular-level characteristics of soil DOM based on a simulative N deposition experiment with four N addition levels (0, 5, 10, and 15 g m ^−2 yr ^−1 ) were studied in a primary tropical forest in south China. Results showed that 18 year N additions significantly altered soil DOM composition, with an increasing trend in soil dissolved organic carbon content. Medium- (10 g m ^−2 yr ^−1 ) and high-N addition (15 g m ^−2 yr ^−1 ) markedly elevated DOM average molecular weight by 12% and aromaticity, with specific ultraviolet absorbance at 254 nm increasing by 17%, modified aromatic index by 35%, and condensed aromatics by 67%. Medium- and high-N addition also increased recalcitrant DOM components but decreased other DOM components, with increasing percentages of lignin-like, tannin-like, and carboxylic-rich alicyclic molecule-like compounds, and decreasing percentage of more bioavailable contributions with H/C ratio >1.5. Importantly, significant correlations of the SOC content of the heavy fraction with optical properties and with recalcitrant DOM components were observed. These findings suggest that long-term N additions may alter soil DOM composition in a way to benefit soil OC storage in the primary tropical forests. It merits focusing on the mechanisms to association of soil DOM dynamics with SOC sequestration.
- Published
- 2022
- Full Text
- View/download PDF
32. Generalized Higher Order Preinvex Functions and Equilibrium-like Problems
- Author
-
Jiangming Ma, Muhammad Aslam Noor, and Khalida Inayat Noor
- Subjects
directional derivatives ,k-convex functions ,k-convex sets ,variational inequalities ,Mathematics ,QA1-939 - Abstract
Equilibrium problems and variational inequalities are connected to the symmetry concepts, which play important roles in many fields of sciences. Some new preinvex functions, which are called generalized preinvex functions, with the bifunction ζ(.,.) and an arbitrary function k, are introduced and studied. Under the normed spaces, new parallelograms laws are taken as an application of the generalized preinvex functions. The equilibrium-like problems are represented as the minimum values of generalized preinvex functions under the kζ-invex sets. Some new inertial methods are proposed and researched to solve the higher order directional equilibrium-like problem, Convergence criteria of the our methods is discussed, along with some unresolved issues.
- Published
- 2021
- Full Text
- View/download PDF
33. Long-Term Nitrogen Addition Decreases Soil Carbon Mineralization in an N-Rich Primary Tropical Forest
- Author
-
Xiankai Lu, Qinggong Mao, Zhuohang Wang, Taiki Mori, Jiangming Mo, Fanglong Su, and Zongqing Pang
- Subjects
nitrogen deposition ,soil carbon mineralization ,carbon sequestration ,soil heterotrophic respiration ,microbial activity ,tropical forests ,Plant ecology ,QK900-989 - Abstract
Anthropogenic elevated nitrogen (N) deposition has an accelerated terrestrial N cycle, shaping soil carbon dynamics and storage through altering soil organic carbon mineralization processes. However, it remains unclear how long-term high N deposition affects soil carbon mineralization in tropical forests. To address this question, we established a long-term N deposition experiment in an N-rich lowland tropical forest of Southern China with N additions such as NH4NO3 of 0 (Control), 50 (Low-N), 100 (Medium-N) and 150 (High-N) kg N ha−1 yr−1, and laboratory incubation experiment, used to explore the response of soil carbon mineralization to the N additions therein. The results showed that 15 years of N additions significantly decreased soil carbon mineralization rates. During the incubation period from the 14th day to 56th day, the average decreases in soil CO2 emission rates were 18%, 33% and 47% in the low-N, medium-N and high-N treatments, respectively, compared with the Control. These negative effects were primarily aroused by the reduced soil microbial biomass and modified microbial functions (e.g., a decrease in bacteria relative abundance), which could be attributed to N-addition-induced soil acidification and potential phosphorus limitation in this forest. We further found that N additions greatly increased soil-dissolved organic carbon (DOC), and there were significantly negative relationships between microbial biomass and soil DOC, indicating that microbial consumption on soil-soluble carbon pool may decrease. These results suggests that long-term N deposition can increase soil carbon stability and benefit carbon sequestration through decreased carbon mineralization in N-rich tropical forests. This study can help us understand how microbes control soil carbon cycling and carbon sink in the tropics under both elevated N deposition and carbon dioxide in the future.
- Published
- 2021
- Full Text
- View/download PDF
34. Effect of Long-Term Nitrogen and Phosphorus Additions on Understory Plant Nutrients in a Primary Tropical Forest
- Author
-
Qinggong Mao, Hao Chen, Cong Wang, Zongqing Pang, Jiangming Mo, and Xiankai Lu
- Subjects
nitrogen deposition ,phosphorus ,nutrient use strategy ,understory plants ,tropical forests ,Gnetum montanum ,Plant ecology ,QK900-989 - Abstract
Humid tropical forests are commonly characterized as N-rich but P-deficient. Increased N deposition may drive N saturation and aggravate P limitation in tropical forests. Thus, P addition is proposed to mitigate the negative effects of N deposition by stimulating N cycling. However, little is known regarding the effect of altered N and P supply on the nutrient status of understory plants in tropical forests, which is critical for predicting the consequences of disturbed nutrient cycles. We assessed the responses of N concentration, P concentration, and N:P ratios of seven understory species to N and P addition in an 8-year fertilization experiment in a primary forest in south China. The results showed that N addition had no effect on plant N concentration, P concentration, and N:P ratios for most species. In contrast, P addition significantly increased P concentration, and decreased N:P ratios but had no effect on plant N concentration. The magnitude of P concentration responses to P addition largely depended on the types of organs and species. The increased P was more concentrated in the fine roots and branches than in the leaves. The gymnospermous liana Gnetum montanum Markgr. had particularly lower foliar N: P (~9.8) and was much more responsive to P addition than the other species studied. These results indicate that most plants are saturated in N but have great potential to restore P in primary tropical forests. N deposition does not necessarily aggravate plant P deficiency, and P addition does not increase the retention of deposited N by increasing the N concentration. In the long term, P inputs may alter the community composition in tropical forests owing to species-specific responses.
- Published
- 2021
- Full Text
- View/download PDF
35. Data of ecoenzyme activities in throughfall and rainfall samples taken at five subtropical forests in southern China
- Author
-
Taiki Mori, Senhao Wang, Wei Zhang, and Jiangming Mo
- Subjects
Computer applications to medicine. Medical informatics ,R858-859.7 ,Science (General) ,Q1-390 - Abstract
The data presented in this article are referred to the research article “A potential source of soil ecoenzymes: From the phylllosphere to soil via throughfall” (Mori et al., 2019). The data included the activities of β-1,4-glucosidase (BG, EC 3.2.1.21), β-d-cellobiosidase (CBH, EC 3.2.1.91), β-1,4-N-acetyl-glucosaminidase (NAG, EC 3.2.1.52), leucine amino peptidase (LAP, EC 3.4.11.1), polyphenol oxidase (PPO, EC 1.10.3.2), and phosphomonoesterase (PME, EC 3.1.3.2). The informatin of study sites and sampling method are shown in Fig. 1 and 2.
- Published
- 2019
- Full Text
- View/download PDF
36. Long-term nitrogen deposition does not exacerbate soil acidification in tropical broadleaf plantations
- Author
-
Juan Huang, Wei Zhang, Yuelin Li, Senhao Wang, Jinhua Mao, Jiangming Mo, and Mianhai Zheng
- Subjects
soil acidity ,nitrogen deposition ,long-term nitrogen addition ,nitrogen loss ,tropical plantation ecosystems ,Environmental technology. Sanitary engineering ,TD1-1066 ,Environmental sciences ,GE1-350 ,Science ,Physics ,QC1-999 - Abstract
Nitrogen (N) deposition induces soil acidification in natural forests; however, whether it increases soil acidity in tropical plantations with simple tree structures compared with natural forests remains unclear. This study aimed to investigate the effects of N deposition on the soil acidity of tropical broadleaf plantations dominated by Acacia auriculiformis and Eucalyptus urophylla in South China, which has been enduring N deposition for over 30 years, and investigate the reasons for the changes in soil acidity. Long-term N addition did not affect soil acidity in the two plantations, with no significant changes in soil pH values, and exchangeable non-acidic and acidic cation concentrations. Long-term N deposition did not significantly affect the plant and total soil N concentrations, but significantly increased the soil nitrous oxide emission rates and total dissolved N concentrations in the soil solutions. Our findings indicate that most of the added N was lost via leaching and emissions, such that long-term N addition did not exacerbate soil acidification in broadleaf plantations, thereby providing novel insight into the effects of atmospheric N deposition on forest ecosystems. Overall, our study indicates that long-term N deposition does not always lead to soil acidification in tropical forests, as previously expected.
- Published
- 2021
- Full Text
- View/download PDF
37. Species Differences in Nitrogen Acquisition in Humid Subtropical Forest Inferred From 15N Natural Abundance and Its Response to Tracer Addition
- Author
-
Geshere Abdisa Gurmesa, Xiankai Lu, Per Gundersen, Qinggong Mao, Yunting Fang, and Jiangming Mo
- Subjects
n deposition ,15n natural abundance ,subtropical forest ,tree species ,china ,Plant ecology ,QK900-989 - Abstract
Differences in nitrogen (N) acquisition patterns between plant species are often reflected in the natural 15N isotope ratios (δ15N) of the plant tissues, however, such differences are poorly understood for co-occurring plants in tropical and subtropical forests. To evaluate species variation in N acquisition traits, we measured leaf N concentration (%N) and δ15N in tree and understory plant species under ambient N deposition (control) and after a decade of N addition at 50 kg N ha−1 yr−1 (N-plots) in an old-growth subtropical forest in southern China. We also measured changes in leaf δ15N after one-year of 15N addition in both the control and N-plots. The results show consistent significant species variation in leaf %N in both control and N-plots, but decadal N addition did not significantly affect leaf %N. Leaf δ15N values were also significantly different among the plant species both in tree and understory layers, and both in control and N-plots, suggesting differences in N acquisition strategies such as variation in N sources and dominant forms of N uptake and dependence on mycorrhizal associations among the co-occurring plant species. Significant differences between the plant species (in both control and N-plots) in changes in leaf δ15N after 15N addition were observed only in the understory plants, indicating difference in access (or use) of deposited N among the plants. Decadal N addition had species-dependent effects on leaf δ15N, suggesting the N acquisition patterns of these plant species are differently affected by N deposition. These results suggest that co-occurring plants in N-rich and subtropical forests vary in their N acquisition traits; these differences need to be accounted for when evaluating the impact of N deposition on N cycling in these ecosystems.
- Published
- 2019
- Full Text
- View/download PDF
38. Effects of litter manipulation on litter decomposition in a successional gradients of tropical forests in southern China.
- Author
-
Hao Chen, Geshere A Gurmesa, Lei Liu, Tao Zhang, Shenglei Fu, Zhanfeng Liu, Shaofeng Dong, Chuan Ma, and Jiangming Mo
- Subjects
Medicine ,Science - Abstract
Global changes such as increasing CO2, rising temperature, and land-use change are likely to drive shifts in litter inputs to forest floors, but the effects of such changes on litter decomposition remain largely unknown. We initiated a litter manipulation experiment to test the response of litter decomposition to litter removal/addition in three successional forests in southern China, namely masson pine forest (MPF), mixed coniferous and broadleaved forest (MF) and monsoon evergreen broadleaved forest (MEBF). Results showed that litter removal decreased litter decomposition rates by 27%, 10% and 8% and litter addition increased litter decomposition rates by 55%, 36% and 14% in MEBF, MF and MPF, respectively. The magnitudes of changes in litter decomposition were more significant in MEBF forest and less significant in MF, but not significant in MPF. Our results suggest that change in litter quantity can affect litter decomposition, and this impact may become stronger with forest succession in tropical forest ecosystem.
- Published
- 2014
- Full Text
- View/download PDF
39. Effects of experimental nitrogen and phosphorus addition on litter decomposition in an old-growth tropical forest.
- Author
-
Hao Chen, Shaofeng Dong, Lei Liu, Chuan Ma, Tao Zhang, Xiaomin Zhu, and Jiangming Mo
- Subjects
Medicine ,Science - Abstract
The responses of litter decomposition to nitrogen (N) and phosphorus (P) additions were examined in an old-growth tropical forest in southern China to test the following hypotheses: (1) N addition would decrease litter decomposition; (2) P addition would increase litter decomposition, and (3) P addition would mitigate the inhibitive effect of N addition. Two kinds of leaf litter, Schima superba Chardn. & Champ. (S.S.) and Castanopsis chinensis Hance (C.C.), were studied using the litterbag technique. Four treatments were conducted at the following levels: control, N-addition (150 kg N ha(-1) yr(-1)), P-addition (150 kg P ha(-1) yr(-1)) and NP-addition (150 kg N ha(-1) yr(-1) plus 150 kg P ha(-1) yr(-1)). While N addition significantly decreased the decomposition of both litters, P addition significantly inhibited decomposition of C.C., but did not affect the decomposition of S.S. The negative effect of N addition on litter decomposition might be related to the high N-saturation in this old-growth tropical forest; however, the negative effect of P addition might be due to the suppression of "microbial P mining". Significant interaction between N and P addition was found on litter decomposition, which was reflected by the less negative effect in NP-addition plots than those in N-addition plots. Our results suggest that P addition may also have negative effect on litter decomposition and that P addition would mitigate the negative effect of N deposition on litter decomposition in tropical forests.
- Published
- 2013
- Full Text
- View/download PDF
40. Interactive effects of nitrogen and phosphorus on soil microbial communities in a tropical forest.
- Author
-
Lei Liu, Tao Zhang, Frank S Gilliam, Per Gundersen, Wei Zhang, Hao Chen, and Jiangming Mo
- Subjects
Medicine ,Science - Abstract
Elevated nitrogen (N) deposition in humid tropical regions may exacerbate phosphorus (P) deficiency in forests on highly weathered soils. However, it is not clear how P availability affects soil microbes and soil carbon (C), or how P processes interact with N deposition in tropical forests. We examined the effects of N and P additions on soil microbes and soil C pools in a N-saturated old-growth tropical forest in southern China to test the hypotheses that (1) N and P addition will have opposing effects on soil microbial biomass and activity, (2) N and P addition will alter the composition of the microbial community, (3) the addition of N and P will have interactive effects on soil microbes and (4) addition-mediated changes in microbial communities would feed back on soil C pools. Phospholipid fatty acid (PLFA) analysis was used to quantify the soil microbial community following four treatments: Control, N addition (15 g N m(-2) yr(-1)), P addition (15 g P m(-2) yr(-1)), and N&P addition (15 g N m(-2) yr(-1) plus 15 g P m(-2) yr(-1)). These were applied from 2007 to 2011. Whereas additions of P increased soil microbial biomass, additions of N reduced soil microbial biomass. These effects, however, were transient, disappearing over longer periods. Moreover, N additions significantly increased relative abundance of fungal PLFAs and P additions significantly increased relative abundance of arbuscular mycorrhizal (AM) fungi PLFAs. Nitrogen addition had a negative effect on light fraction C, but no effect on heavy fraction C and total soil C. In contrast, P addition significantly decreased both light fraction C and total soil C. However, there were no interactions between N addition and P addition on soil microbes. Our results suggest that these nutrients are not co-limiting, and that P rather than N is limiting in this tropical forest.
- Published
- 2013
- Full Text
- View/download PDF
41. Nutrient limitation in three lowland tropical forests in southern China receiving high nitrogen deposition: insights from fine root responses to nutrient additions.
- Author
-
Feifei Zhu, Muneoki Yoh, Frank S Gilliam, Xiankai Lu, and Jiangming Mo
- Subjects
Medicine ,Science - Abstract
Elevated nitrogen (N) deposition to tropical forests may accelerate ecosystem phosphorus (P) limitation. This study examined responses of fine root biomass, nutrient concentrations, and acid phosphatase activity (APA) of bulk soil to five years of N and P additions in one old-growth and two younger lowland tropical forests in southern China. The old-growth forest had higher N capital than the two younger forests from long-term N accumulation. From February 2007 to July 2012, four experimental treatments were established at the following levels: Control, N-addition (150 kg N ha(-1) yr(-1)), P-addition (150 kg P ha(-1) yr(-1)) and N+P-addition (150 kg N ha(-1) yr(-1) plus 150 kg P ha(-1) yr(-1)). We hypothesized that fine root growth in the N-rich old-growth forest would be limited by P availability, and in the two younger forests would primarily respond to N additions due to large plant N demand. Results showed that five years of N addition significantly decreased live fine root biomass only in the old-growth forest (by 31%), but significantly elevated dead fine root biomass in all the three forests (by 64% to 101%), causing decreased live fine root proportion in the old-growth and the pine forests. P addition significantly increased live fine root biomass in all three forests (by 20% to 76%). The combined N and P treatment significantly increased live fine root biomass in the two younger forests but not in the old-growth forest. These results suggest that fine root growth in all three study forests appeared to be P-limited. This was further confirmed by current status of fine root N:P ratios, APA in bulk soil, and their responses to N and P treatments. Moreover, N addition significantly increased APA only in the old-growth forest, consistent with the conclusion that the old-growth forest was more P-limited than the younger forests.
- Published
- 2013
- Full Text
- View/download PDF
42. Early stage litter decomposition across biomes
- Author
-
Umberto Morra di Cella, Sean P. Charles, Matteo Gualmini, Naoko Tokuchi, Michael Mirtl, Marta Lobão Lopes, Takeshi Ise, Inmaculada García Quirós, Geovana Carreño-Rocabado, Arne Verstraeten, Joan-Albert Sanchez-Cabeza, Thomas Zechmeister, Jill Thompson, Norbert Hölzel, Maroof Hamid, Rodrigo Lemes Martins, Taiki Mori, José Marcelo Domingues Torezan, Dana Polyanskaya, Peter Haase, Björn Berg, Angela Stanisci, Issaka Senou, Inger Kappel Schmidt, Markus Wagner, Adriano Caliman, Laurel M. Brigham, Alejandro Valdecantos, Céline Meredieu, Kalifa Coulibaly, Margarida Santos-Reis, Georg Wohlfahrt, Regin Rønn, Marcello Tomaselli, Martin Weih, Bernd Ahrends, Kaie Kriiska, Anja Schmidt, Luciana S. Carneiro, Ana I. Lillebø, Alessandro Petraglia, Algirdas Augustaitis, Ana I. Sousa, Sonja Wipf, Chi-Ling Chen, Hassan Bismarck Nacro, Sue J. Milton, Ivan Mihal, Ika Djukic, Florence Maunoury-Danger, Peter Fleischer, Tatsuro Nakaji, Cendrine Mony, Sara Puijalon, Rafael D. Guariento, Rosa Isela Meneses, Mihai Pușcaș, Pablo Luis Peri, Flurin Sutter, Kate Lajtha, Peter B. Reich, Lindsey E. Rustad, María Guadalupe Almazán Torres, Laura Williams, George L. Vourlitis, Evanilde Benedito, Arely N. Palabral-Aguilera, Luis Villar, Stefanie Hoeber, Juan J. Jiménez, Esperança Gacia, Alba Gutiérrez-Girón, Kazuhiko Hoshizaki, Takanori Sato, Eric Lucot, Osvaldo Borges Pinto, Artur Stefanski, Andrew R. Smith, Takuo Hishi, Rosario G. Gavilán, Till Kleinebecker, Julia Seeber, Gina Arena, Marcelo Sternberg, Mo Jiangming, Tsutom Hiura, Satoshi N. Suzuki, Jeyanny Vijayanathan, Christine Delire, Francisco Cuesta, Bill Parker, Mark Frenzel, Franz Zehetner, Vincent Maire, Edward Crawford, Heinke Jäger, Nicolas Lecomte, Tanaka Kenta, Yuji Kominami, Joseph C. Morina, Paige E. Weber, Pavel Dan Turtureanu, Marc Lebouvier, Pascal Vittoz, Jónína Sigríður Þorláksdóttir, Anne Probst, David Fuentes Delgado, Laura Yahdjian, Johan Neirynck, Isaac Ahanamungu Makelele, Bernard Bosman, Fábio Padilha Bolzan, Yury Rozhkov, Ute Hamer, Henning Meesenburg, Vinicius F. Farjalla, Steffen Seitz, Marie-Noëlle Pons, Jess K. Zimmerman, Hans Verbeeck, Thomas Scholten, Elena Preda, Thomas Spiegelberger, Romain Georges, Stefan Löfgren, Ferdinand Kristöfel, Pierre Marmonier, Juha M. Alatalo, Katalin Szlavecz, Ana Carolina Ruiz Fernández, Johannes M. H. Knops, Rita Adrian, Vanessa Mendes Rêgo, Jean-Christophe Lata, Rafaella Canessa, Kathrin Käppeler, Andrea Fischer, Michael Bierbaumer, Jiří Doležal, Hideaki Shibata, Marcus Schaub, Zsolt Toth, Diyaa Radeideh, Matthew A. Vadeboncoeur, Robert Kanka, William H. McDowell, Birgit Sattler, Jean-Luc Probst, Mioko Ataka, Katarína Gerhátová, Jawad Shoqeir, Stefan Stoll, Michael Danger, Sébastien Gogo, Katja Tielbörger, Laryssa Helena Ribeiro Pazianoto, Bo Yang, Franco L. Souza, John Loehr, Francisco de Almeida Lobo, Michael J. Liddell, Sylvie Dousset, Dirk Wundram, Ralf Kiese, Yalin Hu, Miglena Zhiyanski, José-Luis Benito-Alonso, Katie A. Jennings, Tsutomu Enoki, Helena Cristina Serrano, Quentin Ponette, Helge Bruelheide, Simon Drollinger, Vincent Bretagnolle, Ivika Ostonen, Lambiénou Yé, Javier Roales, Philippe Choler, Madison Morley, Charles A. Nock, Grizelle González, Tudor-Mihai Ursu, Maaike Y. Bader, Cristina Branquinho, Hugo López Rosas, Nina V. Filippova, Erzsébet Hornung, Anzar A. Khuroo, Lourdes Morillas, Harald Auge, Andreas Bohner, Florian Kitz, Stephan Glatzel, Aurora Gaxiola, Marijn Bauters, Stefan Trogisch, Guylaine Canut, Oscar Romero, Hélène Verheyden, Yulia Zaika, Veronika Piscová, Michael Scherer-Lorenzen, Valentin H. Klaus, Elena Tropina, Michele Di Musciano, Marie-Andrée Giroux, Florian Hofhansl, Wenjun Zhou, Corinna Rebmann, Thomas J. Mozdzer, Zsolt Kotroczó, Evy Ampoorter, Michal Růžek, Jana Borovská, Jianwu Tang, Petr Petřík, Juan Dario Quinde, Simone Mereu, Esther Lévesque, Olga Ferlian, Veronika Fontana, Joël Merlet, Stacey M. Trevathan-Tackett, André-Jean Francez, Wentao Luo, Héctor Alejandro Bahamonde, Roberto Cazzolla Gatti, Brigitta Erschbamer, Christopher Andrews, Marie-Anne de Graaff, Martin Schädler, Luciano Di Martino, Verena Busch, Elli Groner, Victoria Carbonell, Michinari Matsushita, Maria Glushkova, Sarah Freda, Alain Paquette, Annie Ouin, Robert Weigel, Monique Carnol, Bohdan Juráni, Ian D. Yesilonis, Jean-Paul Theurillat, Hugo L. Rojas Villalobos, Alberto Humber, Martha Apple, Nico Eisenhauer, Claus Beier, Hermann F. Jungkunst, Hiroko Kurokawa, Nadia Barsoum, Thierry Camboulive, Klaus Steenberg Larsen, Frank Berninger, Laura Dienstbach, Yasuhiro Utsumi, Inara Melece, Felipe Varela, Sally Wittlinger, Christian Rixen, Valter Di Cecco, Anderson da Rocha Gripp, Marina Mazón, E. Carol Adair, Hanna Lee, István Fekete, Liesbeth van den Brink, José-Gilberto Cardoso-Mohedano, Ken Green, Heike Feldhaar, Jonathan von Oppen, Michele Carbognani, Lu Xiankai, Christophe Piscart, Fernando T. Maestre, Karibu Fukuzawa, Chiao-Ping Wang, Bart Muys, Lipeng Zhang, Harald Pauli, Inge van Halder, Carmen Eugenia Rodríguez Ortíz, Eduardo Ordóñez-Regil, Priscilla Muriel, Heather D. Alexander, Sebastian Kepfer-Rojas, Victoria Ochoa, Casper T. Christiansen, Mohammed Alsafran, Thaisa Sala Michelan, Christel Baum, Amélie Saillard, Hervé Jactel, Markus Didion, Evgeny A. Davydov, Sabyasachi Dasgupta, Anna Avila, Andrijana Andrić, Kris Verheyen, Jörg Löffler, Gisele Daiane Pinha, Anikó Seres, Jutta Stadler, Milan Barna, Andrey V. Malyshev, Rebecca E. Hewitt, Joh R. Henschel, Peter I. Macreadie, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Norwegian Institute for Water Research (NIVA), Swedish University of Agricultural Sciences (SLU), Dept Forest & Water Management, Lab Forestry, Universiteit Gent = Ghent University [Belgium] (UGENT), Centre for Forest Research (CFR), Université du Québec à Montréal = University of Québec in Montréal (UQAM), Laboratoire d'Ecologie Alpine (LECA ), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria = National Institute for Agricultural and Food Research and Technology (INIA), Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS), Institute for Climate and Atmospheric Science [Leeds] (ICAS), School of Earth and Environment [Leeds] (SEE), University of Leeds-University of Leeds, Laboratoire Ecologie Fonctionnelle et Environnement (ECOLAB), Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, Dynamiques Forestières dans l'Espace Rural (DYNAFOR), Institut National de la Recherche Agronomique (INRA)-École nationale supérieure agronomique de Toulouse [ENSAT]-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, European Forest Institute = Institut Européen de la Forêt = Euroopan metsäinstituutti (EFI), Institute of Information Engineering [Beijing] (IIE), Chinese Academy of Sciences [Beijing] (CAS), Biodiversité, Gènes & Communautés (BioGeCo), Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB), University of Rostock, WSL Institute for Snow and Avalanche Research SLF, Institut des Sciences de l'Evolution de Montpellier (UMR ISEM), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Institut de recherche pour le développement [IRD] : UR226-Centre National de la Recherche Scientifique (CNRS), Department Computational Hydrosystems [UFZ Leipzig], Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ), Laboratoire Chrono-environnement - CNRS - UBFC (UMR 6249) (LCE), Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Département de chimie-biologie & Centre d’études nordiques [CANADA], Université du Québec à Trois-Rivières (UQTR), Area de Biodiversidad y Conservaciín, Universidad Rey Juan Carlos [Madrid] (URJC), Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Helsingin yliopisto = Helsingfors universitet = University of Helsinki, Institute of Soil Research, Universität für Bodenkultur Wien = University of Natural Resources and Life [Vienne, Autriche] (BOKU), Institute of Ecology, University of Innsbruck, Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Computational & Applied Vegetation Ecology (CAVElab), Department Community Ecology [UFZ Leipzig], University of Vienna [Vienna], Institut du Développement rural (IDR), Université Polytechnique Nazi Boni Bobo-Dioulasso (UNB), Unité de recherche Comportement et Ecologie de la Faune Sauvage (CEFS), Institut National de la Recherche Agronomique (INRA), Institute of Biology/Geobotany and Botanical Garden, Martin-Luther-Universität Halle Wittenberg (MLU), Tohoku University [Sendai], Institute of Ecology and Earth Sciences [Tartu], University of Tartu, Institut d'écologie et des sciences de l'environnement de Paris (iEES), Institut National de la Recherche Agronomique (INRA)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Centre alpien de Phytogéographie (CAP), Fondation Jean-Marcel Aubert, Inst Trop Ecosyst Studies, University of Puerto Rico (UPR), Universidad de Valladolid [Valladolid] (UVa), Mountain Agriculture Research Unit, Centre international de recherche-développement sur l'élevage en zone sub-humide (CIRDES), Centre Universitaire Polytechnique de Dédougou (CUP-D), Université Joseph Ki-Zerbo [Ouagadougou] (UJZK), USDA Forest Service, Instituto Pirenaico de Ecologia = Pyrenean Institute of Ecology (IPE), Station Biologique de Paimpont CNRS UMR 6653 (OSUR), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES), Institute of Pharmacology and Toxicology [Zurich], Universität Zürich [Zürich] = University of Zurich (UZH), Centre for Ecology - Evolution and Environmental Changes (cE3c) - Faculdade de Ciências, Universidade de Lisboa = University of Lisbon (ULISBOA), Canada Research in Northern Biodiversity, Université du Québec à Rimouski (UQAR), Laboratoire Réactions et Génie des Procédés (LRGP), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Zone Atelier du Bassin de la Moselle [LTSER France] (ZAM), Department of Crop Production Ecology, University of Freiburg, Forest Research Institute- BAS, Bulgarian Academy of Sciences (BAS), Lab Plant & Microbial Ecol, Inst Bot B22, Université de Liège, Laboratoire Dynamique de la Biodiversité (LADYBIO), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Leipzig University, Westfälische Wilhelms-Universität Münster = University of Münster (WWU), Universitat Politècnica de Catalunya [Barcelona] (UPC), Université de Lausanne = University of Lausanne (UNIL), Department of Limnology and Conservation, Senckenberg Research Institutes and Natural History Museums, Department of Forest Resources, University of Minnesota [Twin Cities] (UMN), University of Minnesota System-University of Minnesota System, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Centre National de la Recherche Scientifique (CNRS), Université Catholique de Louvain = Catholic University of Louvain (UCL), Institut für Meteorologie und Klimaforschung - Atmosphärische Umweltforschung (IMK-IFU), Karlsruher Institut für Technologie (KIT), Institut des Sciences de la Terre d'Orléans - UMR7327 (ISTO), Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Biogéosystèmes Continentaux - UMR7327, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Department of Science for Nature and Natural Resources, Università degli Studi di Sassari = University of Sassari [Sassari] (UNISS), Biogéosciences [UMR 6282] (BGS), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), Ecole Polytechnique Fédérale de Lausanne (EPFL), Tomakomai Research Station, Field Science Center for Northern Biosphere, Hokkaido University [Sapporo, Japan], Bangor University, Technische Universität Dresden = Dresden University of Technology (TU Dresden), Centre d'Études Biologiques de Chizé - UMR 7372 (CEBC), La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), LTSER «Zone Atelier Plaine & Val de Sevre» [France], Institut National de la Recherche Agronomique (INRA)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS), Condensed Matter Theory Laboratory RIKEN (RIKEN), RIKEN - Institute of Physical and Chemical Research [Japon] (RIKEN), 730938, Biological Interactions Doctoral Programme, Secretaría de Educación Superior, Ciencia, Tecnología e Innovación, 2/0101/18, Scientific Grant Agency VEGA, 2190, Fundación Charles Darwin, UID/AMB/50017, Centro de Estudos Ambientais e Marinhos, Universidade de Aveiro, ILTER Initiative Grant, ClimMani Short-Term Scientific Missions Grant, ES1308-231015-068365, Austrian Environment Agency, SFRH/BPD/107823/2015, Portuguese Foundation, DEB-1557009, NSF, UID/BIA/00329/2013, Fundação para a Ciência e Tecnologia, Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)-Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), University of Helsinki, Universität für Bodenkultur Wien [Vienne, Autriche] (BOKU), Groupe d'étude de l'atmosphère météorologique (CNRM-GAME), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Recherche Agronomique (INRA), Centre alpien de Phytogéographie, Fondation J.-M. Aubert, Centre international de recherche-développement sur l'élevage en zone Subhumide (CIRDES), Centre international de recherche-développement sur l'élevage en zone Subhumide, Instituto Pirenaico de Ecologia (IPE), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), University of Lisbon, Université de Leipzig, Westfälische Wilhelms-Universität Münster (WWU), Université de Lausanne (UNIL), University of Sassari, Biogéosciences [UMR 6282] [Dijon] (BGS), Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS), Université de La Rochelle (ULR)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut National de la Recherche Agronomique (INRA)-Université de La Rochelle (ULR)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-Université de La Rochelle (ULR)-Centre National de la Recherche Scientifique (CNRS), Universiteit Gent = Ghent University (UGENT), Université de Rennes (UR)-Institut Ecologie et Environnement (INEE), Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Ecologie Fonctionnelle et Environnement (LEFE), Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Institut National de la Recherche Agronomique (INRA)-École nationale supérieure agronomique de Toulouse (ENSAT), Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École Pratique des Hautes Études (EPHE), Laboratoire Chrono-environnement (UMR 6249) (LCE), Leopold Franzens Universität Innsbruck - University of Innsbruck, Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Instituto Pirenaico de Ecologìa = Pyrenean Institute of Ecology [Zaragoza] (IPE - CSIC), Université de Rennes (UR), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Institut National de la Recherche Agronomique - INRA (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Météo France (FRANCE), UCL - SST/ELI/ELIE - Environmental Sciences, Swiss Federal Institute for Forest, Snow and Avalanche Research WSL, Swedish University of Agricultural Sciences - Department of Forest Soils, Ghent University [Belgium] (UGENT), Université du Québec à Montréal (UQAM), Laboratoire d'Ecologie Alpine (LECA), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Université Joseph Fourier - Grenoble 1 (UJF)-Université Grenoble Alpes (UGA), Spanish National Institute for Agriculture and Food Research and Technology (INIA), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)-Centre National de la Recherche Scientifique (CNRS), Science Politique Relations Internationales Territoire (SPIRIT), Université Montesquieu - Bordeaux 4-Institut d'Études Politiques [IEP] - Bordeaux-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure Agronomique de Toulouse-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Bordeaux (UB)-Institut National de la Recherche Agronomique (INRA), University of Rostock [Germany], Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École pratique des hautes études (EPHE)-Université de Montpellier (UM)-Institut de recherche pour le développement [IRD] : UR226-Centre National de la Recherche Scientifique (CNRS), Helmholtz Centre for Environmental Research (UFZ), Universiteit Gent [Ghent], Laboratoire de Comportement et d'Ecologie de la Faune Sauvage, INRA, 31326 Castanet-Tolosan cedex, France, Institut d'écologie et des sciences de l'environnement de Paris (IEES), Universidad de Puerto Rico, Centre Universitaire Polytechnique de Dédougou, Université de Ouagadougou, Instituto Pirenaico de Ecología, IPE-CSIC, University of Zürich [Zürich] (UZH), LTSER Zone Atelier du Bassin de la Moselle, Helmholtz Zentrum für Umweltforschung (UFZ), Institute of Terrestrial Ecosystems, University of Minnesota [Twin Cities], Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE), Université Catholique de Louvain (UCL), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Centre National de la Recherche Scientifique (CNRS)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Hokkaido University, Technische Universität Dresden (TUD), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-Université de La Rochelle (ULR), LTSER Zone Atelier Plaine & Val de Sèvre, Djukic I., Kepfer-Rojas S., Schmidt I.K., Larsen K.S., Beier C., Berg B., Verheyen K., Caliman A., Paquette A., Gutierrez-Giron A., Humber A., Valdecantos A., Petraglia A., Alexander H., Augustaitis A., Saillard A., Fernandez A.C.R., Sousa A.I., Lillebo A.I., da Rocha Gripp A., Francez A.-J., Fischer A., Bohner A., Malyshev A., Andric A., Smith A., Stanisci A., Seres A., Schmidt A., Avila A., Probst A., Ouin A., Khuroo A.A., Verstraeten A., Palabral-Aguilera A.N., Stefanski A., Gaxiola A., Muys B., Bosman B., Ahrends B., Parker B., Sattler B., Yang B., Jurani B., Erschbamer B., Ortiz C.E.R., Christiansen C.T., Carol Adair E., Meredieu C., Mony C., Nock C.A., Chen C.-L., Wang C.-P., Baum C., Rixen C., Delire C., Piscart C., Andrews C., Rebmann C., Branquinho C., Polyanskaya D., Delgado D.F., Wundram D., Radeideh D., Ordonez-Regil E., Crawford E., Preda E., Tropina E., Groner E., Lucot E., Hornung E., Gacia E., Levesque E., Benedito E., Davydov E.A., Ampoorter E., Bolzan F.P., Varela F., Kristofel F., Maestre F.T., Maunoury-Danger F., Hofhansl F., Kitz F., Sutter F., Cuesta F., de Almeida Lobo F., de Souza F.L., Berninger F., Zehetner F., Wohlfahrt G., Vourlitis G., Carreno-Rocabado G., Arena G., Pinha G.D., Gonzalez G., Canut G., Lee H., Verbeeck H., Auge H., Pauli H., Nacro H.B., Bahamonde H.A., Feldhaar H., Jager H., Serrano H.C., Verheyden H., Bruelheide H., Meesenburg H., Jungkunst H., Jactel H., Shibata H., Kurokawa H., Rosas H.L., Rojas Villalobos H.L., Yesilonis I., Melece I., Van Halder I., Quiros I.G., Makelele I., Senou I., Fekete I., Mihal I., Ostonen I., Borovska J., Roales J., Shoqeir J., Lata J.-C., Theurillat J.-P., Probst J.-L., Zimmerman J., Vijayanathan J., Tang J., Thompson J., Dolezal J., Sanchez-Cabeza J.-A., Merlet J., Henschel J., Neirynck J., Knops J., Loehr J., von Oppen J., Thorlaksdottir J.S., Loffler J., Cardoso-Mohedano J.-G., Benito-Alonso J.-L., Torezan J.M., Morina J.C., Jimenez J.J., Quinde J.D., Alatalo J., Seeber J., Stadler J., Kriiska K., Coulibaly K., Fukuzawa K., Szlavecz K., Gerhatova K., Lajtha K., Kappeler K., Jennings K.A., Tielborger K., Hoshizaki K., Green K., Ye L., Pazianoto L.H.R., Dienstbach L., Williams L., Yahdjian L., Brigham L.M., van den Brink L., Rustad L., Zhang L., Morillas L., Xiankai L., Carneiro L.S., Di Martino L., Villar L., Bader M.Y., Morley M., Lebouvier M., Tomaselli M., Sternberg M., Schaub M., Santos-Reis M., Glushkova M., Torres M.G.A., Giroux M.-A., de Graaff M.-A., Pons M.-N., Bauters M., Mazon M., Frenzel M., Didion M., Wagner M., Hamid M., Lopes M.L., Apple M., Schadler M., Weih M., Gualmini M., Vadeboncoeur M.A., Bierbaumer M., Danger M., Liddell M., Mirtl M., Scherer-Lorenzen M., Ruzek M., Carbognani M., Di Musciano M., Matsushita M., Zhiyanski M., Puscas M., Barna M., Ataka M., Jiangming M., Alsafran M., Carnol M., Barsoum N., Tokuchi N., Eisenhauer N., Lecomte N., Filippova N., Holzel N., Ferlian O., Romero O., Pinto O.B., Peri P., Weber P., Vittoz P., Turtureanu P.D., Fleischer P., Macreadie P., Haase P., Reich P., Petrik P., Choler P., Marmonier P., Muriel P., Ponette Q., Guariento R.D., Canessa R., Kiese R., Hewitt R., Ronn R., Adrian R., Kanka R., Weigel R., Gatti R.C., Martins R.L., Georges R., Meneses R.I., Gavilan R.G., Dasgupta S., Wittlinger S., Puijalon S., Freda S., Suzuki S., Charles S., Gogo S., Drollinger S., Mereu S., Wipf S., Trevathan-Tackett S., Lofgren S., Stoll S., Trogisch S., Hoeber S., Seitz S., Glatzel S., Milton S.J., Dousset S., Mori T., Sato T., Ise T., Hishi T., Kenta T., Nakaji T., Michelan T.S., Camboulive T., Mozdzer T.J., Scholten T., Spiegelberger T., Zechmeister T., Kleinebecker T., Hiura T., Enoki T., Ursu T.-M., di Cella U.M., Hamer U., Klaus V.H., Rego V.M., Di Cecco V., Busch V., Fontana V., Piscova V., Carbonell V., Ochoa V., Bretagnolle V., Maire V., Farjalla V., Zhou W., Luo W., McDowell W.H., Hu Y., Utsumi Y., Kominami Y., Zaika Y., Rozhkov Y., Kotroczo Z., Toth Z., and Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
- Subjects
DYNAMICS ,010504 meteorology & atmospheric sciences ,Biome ,Biochimie, Biologie Moléculaire ,Carbon turnover ,01 natural sciences ,CARBON ,Waste Management and Disposal ,ComputingMilieux_MISCELLANEOUS ,CLIMATE-CHANGE ,биомы ,Tea bag, Green tea, Rooibos tea, Carbon turnover, TeaComposition initiative ,04 agricultural and veterinary sciences ,Pollution ,Environmental chemistry ,[SDE]Environmental Sciences ,Terrestrial ecosystem ,Life Sciences & Biomedicine ,Biologie ,TRAITS ,Rooibos tea ,IMPACTS ,Environmental Engineering ,почвенные процессы ,chemistry.chemical_element ,Climate change ,Environmental Sciences & Ecology ,Ingénierie de l'environnement ,Green tea ,Tea bag ,TeaComposition initiative ,Ecology and Environment ,Atmosphere ,подстилки ,Environmental Chemistry ,Ecosystem ,RATES ,0105 earth and related environmental sciences ,оборот углерода ,Science & Technology ,Tea composition initiative ,FEEDBACK ,15. Life on land ,Decomposition ,влияние климата ,TERRESTRIAL ECOSYSTEMS ,MODEL ,экосистемы ,chemistry ,13. Climate action ,PATTERNS ,040103 agronomy & agriculture ,Litter ,0401 agriculture, forestry, and fisheries ,Environmental science ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,500 Naturwissenschaften und Mathematik::570 Biowissenschaften ,Biologie::577 Ökologie ,Carbon ,Environmental Sciences - Abstract
Through litter decomposition enormous amounts of carbon is emitted to the atmosphere. Numerous large-scale decomposition experiments have been conducted focusing on this fundamental soil process in order to understand the controls on the terrestrial carbon transfer to the atmosphere. However, previous studies were mostly based on site-specific litter and methodologies, adding major uncertainty to syntheses, comparisons and meta-analyses across different experiments and sites. In the TeaComposition initiative, the potential litter decomposition is investigated by using standardized substrates (Rooibos and Green tea) for comparison of litter mass loss at 336 sites (ranging from -9 to +26 °C MAT and from 60 to 3113 mm MAP) across different ecosystems. In this study we tested the effect of climate (temperature and moisture), litter type and land-use on early stage decomposition (3 months) across nine biomes. We show that litter quality was the predominant controlling factor in early stage litter decomposition, which explained about 65% of the variability in litter decomposition at a global scale. The effect of climate, on the other hand, was not litter specific and explained
- Published
- 2018
43. Averting biodiversity collapse in tropical forest protected areas.
- Author
-
Laurance WF, Useche DC, Rendeiro J, Kalka M, Bradshaw CJ, Sloan SP, Laurance SG, Campbell M, Abernethy K, Alvarez P, Arroyo-Rodriguez V, Ashton P, Benítez-Malvido J, Blom A, Bobo KS, Cannon CH, Cao M, Carroll R, Chapman C, Coates R, Cords M, Danielsen F, De Dijn B, Dinerstein E, Donnelly MA, Edwards D, Edwards F, Farwig N, Fashing P, Forget PM, Foster M, Gale G, Harris D, Harrison R, Hart J, Karpanty S, Kress WJ, Krishnaswamy J, Logsdon W, Lovett J, Magnusson W, Maisels F, Marshall AR, McClearn D, Mudappa D, Nielsen MR, Pearson R, Pitman N, van der Ploeg J, Plumptre A, Poulsen J, Quesada M, Rainey H, Robinson D, Roetgers C, Rovero F, Scatena F, Schulze C, Sheil D, Struhsaker T, Terborgh J, Thomas D, Timm R, Urbina-Cardona JN, Vasudevan K, Wright SJ, Arias-G JC, Arroyo L, Ashton M, Auzel P, Babaasa D, Babweteera F, Baker P, Banki O, Bass M, Bila-Isia I, Blake S, Brockelman W, Brokaw N, Brühl CA, Bunyavejchewin S, Chao JT, Chave J, Chellam R, Clark CJ, Clavijo J, Congdon R, Corlett R, Dattaraja HS, Dave C, Davies G, Beisiegel Bde M, da Silva Rde N, Di Fiore A, Diesmos A, Dirzo R, Doran-Sheehy D, Eaton M, Emmons L, Estrada A, Ewango C, Fedigan L, Feer F, Fruth B, Willis JG, Goodale U, Goodman S, Guix JC, Guthiga P, Haber W, Hamer K, Herbinger I, Hill J, Huang Z, Sun IF, Ickes K, Itoh A, Ivanauskas N, Jackes B, Janovec J, Janzen D, Jiangming M, Jin C, Jones T, Justiniano H, Kalko E, Kasangaki A, Killeen T, King HB, Klop E, Knott C, Koné I, Kudavidanage E, Ribeiro JL, Lattke J, Laval R, Lawton R, Leal M, Leighton M, Lentino M, Leonel C, Lindsell J, Ling-Ling L, Linsenmair KE, Losos E, Lugo A, Lwanga J, Mack AL, Martins M, McGraw WS, McNab R, Montag L, Thompson JM, Nabe-Nielsen J, Nakagawa M, Nepal S, Norconk M, Novotny V, O'Donnell S, Opiang M, Ouboter P, Parker K, Parthasarathy N, Pisciotta K, Prawiradilaga D, Pringle C, Rajathurai S, Reichard U, Reinartz G, Renton K, Reynolds G, Reynolds V, Riley E, Rödel MO, Rothman J, Round P, Sakai S, Sanaiotti T, Savini T, Schaab G, Seidensticker J, Siaka A, Silman MR, Smith TB, de Almeida SS, Sodhi N, Stanford C, Stewart K, Stokes E, Stoner KE, Sukumar R, Surbeck M, Tobler M, Tscharntke T, Turkalo A, Umapathy G, van Weerd M, Rivera JV, Venkataraman M, Venn L, Verea C, de Castilho CV, Waltert M, Wang B, Watts D, Weber W, West P, Whitacre D, Whitney K, Wilkie D, Williams S, Wright DD, Wright P, Xiankai L, Yonzon P, and Zamzani F
- Subjects
- Agriculture statistics & numerical data, Animals, Data Collection, Ecology statistics & numerical data, Environmental Pollution adverse effects, Environmental Pollution statistics & numerical data, Fires statistics & numerical data, Forestry statistics & numerical data, Interviews as Topic, Mining statistics & numerical data, Population Growth, Rain, Reproducibility of Results, Research Personnel, Surveys and Questionnaires, Temperature, Biodiversity, Conservation of Natural Resources statistics & numerical data, Endangered Species statistics & numerical data, Trees physiology, Tropical Climate
- Abstract
The rapid disruption of tropical forests probably imperils global biodiversity more than any other contemporary phenomenon. With deforestation advancing quickly, protected areas are increasingly becoming final refuges for threatened species and natural ecosystem processes. However, many protected areas in the tropics are themselves vulnerable to human encroachment and other environmental stresses. As pressures mount, it is vital to know whether existing reserves can sustain their biodiversity. A critical constraint in addressing this question has been that data describing a broad array of biodiversity groups have been unavailable for a sufficiently large and representative sample of reserves. Here we present a uniquely comprehensive data set on changes over the past 20 to 30 years in 31 functional groups of species and 21 potential drivers of environmental change, for 60 protected areas stratified across the world’s major tropical regions. Our analysis reveals great variation in reserve ‘health’: about half of all reserves have been effective or performed passably, but the rest are experiencing an erosion of biodiversity that is often alarmingly widespread taxonomically and functionally. Habitat disruption, hunting and forest-product exploitation were the strongest predictors of declining reserve health. Crucially, environmental changes immediately outside reserves seemed nearly as important as those inside in determining their ecological fate, with changes inside reserves strongly mirroring those occurring around them. These findings suggest that tropical protected areas are often intimately linked ecologically to their surrounding habitats, and that a failure to stem broad-scale loss and degradation of such habitats could sharply increase the likelihood of serious biodiversity declines.
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.