92 results on '"Jia-ju Zhang"'
Search Results
2. Dissimilarities of reduced density matrices and eigenstate thermalization hypothesis
- Author
-
Song He, Feng-Li Lin, and Jia-ju Zhang
- Subjects
AdS-CFT Correspondence ,Conformal Field Theory ,Field Theories in Lower Dimensions ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract We calculate various quantities that characterize the dissimilarity of reduced density matrices for a short interval of length ℓ in a two-dimensional (2D) large central charge conformal field theory (CFT). These quantities include the Rényi entropy, entanglement entropy, relative entropy, Jensen-Shannon divergence, as well as the Schatten 2-norm and 4-norm. We adopt the method of operator product expansion of twist operators, and calculate the short interval expansion of these quantities up to order of ℓ9 for the contributions from the vacuum conformal family. The formal forms of these dissimilarity measures and the derived Fisher information metric from contributions of general operators are also given. As an application of the results, we use these dissimilarity measures to compare the excited and thermal states, and examine the eigenstate thermalization hypothesis (ETH) by showing how they behave in high temperature limit. This would help to understand how ETH in 2D CFT can be defined more precisely. We discuss the possibility that all the dissimilarity measures considered here vanish when comparing the reduced density matrices of an excited state and a generalized Gibbs ensemble thermal state. We also discuss ETH for a microcanonical ensemble thermal state in a 2D large central charge CFT, and find that it is approximately satisfied for a small subsystem and violated for a large subsystem.
- Published
- 2017
- Full Text
- View/download PDF
3. New BPS Wilson loops in N=4 $$ \mathcal{N}=4 $$ circular quiver Chern-Simons-matter theories
- Author
-
Andrea Mauri, Silvia Penati, and Jia-ju Zhang
- Subjects
Chern-Simons Theories ,M-Theory ,Supersymmetric Gauge Theory ,Wilson, ’t Hooft and Polyakov loops ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract We construct new families of 1/4 BPS Wilson loops in circular quiver N=4 $$ \mathcal{N}=4 $$ superconformal Chern-Simons-matter (SCSM) theories in three dimensions. They are defined as the holonomy of superconnections that contain non-trivial couplings to scalar and fermions, and cannot be reduced to block-diagonal matrices. Consequently, the new operators cannot be written in terms of double-node Wilson loops, as the ones considered so far in the literature. For particular values of the couplings the superconnection becomes block-diagonal and we recover the known fermionic 1/4 and 1/2 BPS Wilson loops. The new operators are cohomologically equivalent to bosonic 1/4 BPS Wilson loops and are then amenable of exact evaluation via localization techniques. Moreover, in the case of orbifold ABJM theory we identify the corresponding gravity duals for some of the 1/4 and 1/2 BPS Wilson loops.
- Published
- 2017
- Full Text
- View/download PDF
4. Corrections to holographic entanglement plateau
- Author
-
Bin Chen, Zhibin Li, and Jia-ju Zhang
- Subjects
AdS-CFT Correspondence ,Conformal Field Theory ,Field Theories in Lower Dimensions ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract We investigate the robustness of the Araki-Lieb inequality in a two-dimensional (2D) conformal field theory (CFT) on torus. The inequality requires that ΔS = S(L) − |S(L − ℓ) − S(ℓ)| is nonnegative, where S(L) is the thermal entropy and S(L − ℓ), S(ℓ) are the entanglement entropies. Holographically there is an entanglement plateau in the BTZ black hole background, which means that there exists a critical length such that when ℓ ≤ ℓ c the inequality saturates ΔS =0. In thermal AdS background, the holographic entanglement entropy leads to ΔS = 0 for arbitrary ℓ. We compute the next-to-leading order contributions to ΔS in the large central charge CFT at both high and low temperatures. In both cases we show that ΔS is strictly positive except for ℓ = 0 or ℓ = L. This turns out to be true for any 2D CFT. In calculating the single interval entanglement entropy in a thermal state, we develop new techniques to simplify the computation. At a high temperature, we ignore the finite size correction such that the problem is related to the entanglement entropy of double intervals on a complex plane. As a result, we show that the leading contribution from a primary module takes a universal form. At a low temperature, we show that the leading thermal correction to the entanglement entropy from a primary module does not take a universal form, depending on the details of the theory.
- Published
- 2017
- Full Text
- View/download PDF
5. String theory duals of Wilson loops from Higgsing
- Author
-
Marco Lietti, Andrea Mauri, Silvia Penati, and Jia-ju Zhang
- Subjects
Chern-Simons Theories ,M-Theory ,Supersymmetry and Duality ,Wilson ,’t Hooft and Polyakov loops ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract For three-dimensional ABJ(M) theories and N = 4 $$ \mathcal{N}=4 $$ Chern-Simons-matter quiver theories, we construct two sets of 1/2 BPS Wilson loop operators by applying the Higgsing procedure along independent directions of the moduli space, and choosing different massive modes. For theories whose dual M-theory description is known, we also determine the corresponding spectrum of 1/2 BPS M2-brane solutions. We identify the supercharges in M-theory and field theory, as well as the supercharges preserved by M2-/anti-M2-branes and 1/2 BPS Wilson loops. In particular, in N = 4 $$ \mathcal{N}=4 $$ orbifold ABJM theory we find pairs of different 1/2 BPS Wilson loops that preserve exactly the same set of supercharges. In field theory they arise by Higgsing with the choice of either particles or antiparticles, whereas in the dual description they correspond to a pair of M2-/anti-M2-branes localized at different positions in the compact space. This result enlightens the origin of classical Wilson loop degeneracy in these theories, already discussed in arXiv:1506.07614 . A discussion on possible scenarios that emerge by comparison with localization results is included.
- Published
- 2017
- Full Text
- View/download PDF
6. Subsystem eigenstate thermalization hypothesis for entanglement entropy in CFT
- Author
-
Song He, Feng-Li Lin, and Jia-ju Zhang
- Subjects
AdS-CFT Correspondence ,Conformal Field Theory ,Holography and condensed matter physics (AdS/CMT) ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract We investigate a weak version of subsystem eigenstate thermalization hypothesis (ETH) for a two-dimensional large central charge conformal field theory by comparing the local equivalence of high energy state and thermal state of canonical ensemble. We evaluate the single-interval Rényi entropy and entanglement entropy for a heavy primary state in short interval expansion. We verify the results of Rényi entropy by two different replica methods. We find nontrivial results at the eighth order of short interval expansion, which include an infinite number of higher order terms in the large central charge expansion. We then evaluate the relative entropy of the reduced density matrices to measure the difference between the heavy primary state and thermal state of canonical ensemble, and find that the aforementioned nontrivial eighth order results make the relative entropy unsuppressed in the large central charge limit. By using Pinsker’s and Fannes-Audenaert inequalities, we can exploit the results of relative entropy to yield the lower and upper bounds on trace distance of the excited-state and thermal-state reduced density matrices. Our results are consistent with subsystem weak ETH, which requires the above trace distance is of power-law suppression by the large central charge. However, we are unable to pin down the exponent of power-law suppression. As a byproduct we also calculate the relative entropy to measure the difference between the reduced density matrices of two different heavy primary states.
- Published
- 2017
- Full Text
- View/download PDF
7. Construction and classification of novel BPS Wilson loops in quiver Chern–Simons-matter theories
- Author
-
Hao Ouyang, Jun-Bao Wu, and Jia-ju Zhang
- Subjects
Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
In this paper we construct and classify novel Drukker–Trancanelli (DT) type BPS Wilson loops along infinite straight lines and circles in N=2,3 quiver superconformal Chern–Simons-matter theories, Aharony–Bergman–Jafferis–Maldacena (ABJM) theory, and N=4 orbifold ABJM theory. Generally we have four classes of Wilson loops, and all of them preserve the same supersymmetries as the BPS Gaiotto–Yin (GY) type Wilson loops. There are several free complex parameters in the DT type BPS Wilson loops, and for two classes of Wilson loops in ABJM theory and N=4 orbifold ABJM theory there are supersymmetry enhancements at special values of the parameters. We check that the differences of the DT type and GY type Wilson loops are Q-exact with Q being some supercharges preserved by both the DT type and GY type Wilson loops. The results would be useful to calculate vacuum expectation values of the DT type Wilson loops in matrix models if they are still BPS quantum mechanically.
- Published
- 2016
- Full Text
- View/download PDF
8. Novel BPS Wilson loops in three-dimensional quiver Chern–Simons-matter theories
- Author
-
Hao Ouyang, Jun-Bao Wu, and Jia-ju Zhang
- Subjects
Physics ,QC1-999 - Abstract
We show that generic three-dimensional N=2 quiver super Chern–Simons-matter theories admit Bogomol'nyi–Prasad–Sommerfield (BPS) Drukker–Trancanelli (DT) type Wilson loops. We investigate both Wilson loops along timelike infinite straight lines in Minkowski spacetime and circular Wilson loops in Euclidean space. In Aharnoy–Bergman–Jafferis–Maldacena theory, we find that generic BPS DT type Wilson loops preserve the same number of supersymmetries as Gaiotto–Yin type Wilson loops. There are several free parameters for generic BPS DT type Wilson loops in the construction, and supersymmetry enhancement for Wilson loops happens for special values of the parameters.
- Published
- 2016
- Full Text
- View/download PDF
9. Precise Measurement of the e+e− → π+π−J/ψ Cross Section at Center-of-Mass Energies from 3.77 to 4.60 GeV
- Author
-
S. Han, Haiwen Liu, G. X. Sun, M. Savrie, J. M. Bian, Qun Ouyang, Y.N. Gao, L. Xia, Wolfgang Kuhn, P. F. Duan, A. Calcaterra, X. S. Jiang, Kanglin He, D. Y. Wang, S. H. Zhu, D. P. Jin, Xiao-Rui Lyu, H. Y. Sheng, J. S. Huang, A. Sarantsev, L. H. Wu, M. Tiemens, X. S. Qin, Xian Gao, C. Leng, M. Shao, B. L. Wang, Jianyu Zhang, L. B. Guo, D. H. Wei, E. Fioravanti, P. Musiol, C. F. Redmer, C. Schnier, Zhenyu Zhang, M. Ablikim, Yu Zhang, A. A. Zafar, B. J. Liu, Lei Zhao, X. D. Ruan, Y. J. Sun, Tao Hu, I. Tapan, Jia Liu, I. B. Nikolaev, Ding-Xiong Wang, Q. P. Ji, J. M. Zhang, R. Farinelli, Jie Zhang, L. L. Ma, L. Gong, Jingzhou Zhao, Guangshun Huang, L. Yan, Wang Zengqiang, Niu Xiaoyang, Z. Jiao, Z. J. Sun, H. L. Dai, H. X. Yang, C. Morales Morales, C. L. Luo, J. Z. Bai, Zhiqing Liu, Yuanbo Chen, Z. P. Mao, Y. P. Guo, Y. S. Zhu, Y. B. Liu, F. Feldbauer, Z. Y. You, H. H. Liu, X. L. Ji, H. H. Zhang, Michela Greco, Guangyu Zhao, J. W. Zhao, Jie Zhao, Gang Li, G. S. Varner, M. G. Zhao, Bibo Ke, Jia Xu, L. Zotti, Yuekun Heng, H. Muramatsu, J.H. Yin, H. Xiao, Hao Liang, Krisztian Peters, A. Amoroso, M. Wolke, B. Zhong, E. Boger, Lei Xu, Yongke Zhao, M. Fritsch, X. Y. Ma, Minglin Ma, L. G. Xia, M. N. Achasov, L. Yang, Xinying Song, P. Wang, D. J. Ambrose, I. Denysenko, Giulietto Felici, S. Pacetti, Xuan Zhang, N. Kalantar-Nayestanaki, Jie Liu, A. Yuncu, Chang-Zheng Yuan, Y. J. Mo, J. G. Messchendorp, Jin Li, Yingchun Zhu, M. Pelizaeus, Xiaocong Ai, Q. L. Xiu, Y. F. Wang, O. B. Kolcu, F. F. An, Y. H. Guan, F. Y. Li, R. Baldini Ferroli, A. Q. Guo, L. Fava, L. Zhang, X. R. Chen, H. Loehner, Y. F. Liang, Ming-Xing Luo, Jiajun Zheng, L. L. Wang, M. Destefanis, H. S. Chen, G. Rong, Y. T. Gu, B. Wang, J. F. Hu, T. Weber, H. Y. Zhang, Jianhao Zhang, M. Albrecht, Zheng Wang, Jianbei Liu, W. Shan, Dan Bennett, Ming Qi, X. Q. Hao, Z. Wu, Jianguo Zhang, O. Albayrak, G. A. Chelkov, Z. H. Qin, O. Bakina, M. H. Ye, S. Marcello, Talib Hussain, R. A. Briere, A. Julin, I. Uman, Chen Hu, J. F. Chang, X. K. Zhou, Y. Q. Wang, Yun-Zhi Zhang, Y. P. Lu, W. M. Song, Zhi Zeng, Y. N. Zhang, Qiang Zhao, S. Nisar, Meng Wang, X. S. Kang, Zhanwen Zhu, T. Held, Y. H. Yan, Wu Li, Xiang Li, Zhengguo Zhao, Feng Liu, Ling Zhao, Y. Ma, B. Kopf, D. M. Li, Y. Hu, T. Ma, M. Ripka, P. X. Shen, Wenbiao Yan, Kai Liu, Cunming Liu, Cui Li, N. Yu. Muchnoi, H. Cai, P. Weidenkaff, Yanwei Wang, L. D. Liu, Hong Ma, B. Y. Zhang, L. W. Jiang, Tiefu Zhao, G. Mezzadri, W. C. Yan, Xin Fang, R. Poling, G. R. Liao, X. W. Tang, S. L. Niu, M. Kornicer, Changjian Tang, X. H. Mo, W. P. Wang, Zhiqing Zhang, S. Spataro, S. S. Fang, Jingzhou Fan, D. Xiao, Li Zhou, Y. G. Xie, Yunpeng Lu, X. P. Xu, R. E. Mitchell, Y. Xia, X. K. Chu, W. J. Zheng, Shujun Zhao, J. F. Sun, Q. A. Malik, B. Kloss, D. H. Zhang, Y. Nefedov, Z. L. Dou, R. P. Guo, J. Liu, X. Y. Jiang, L. Q. Qin, F. Nerling, Zhao-Long Wang, K. Zhang, J. Lange, M. Bertani, F. A. Harris, Z. Y. Deng, M. H. Gu, W. Ikegami Andersson, X. Z. Cai, Yong Liu, D. Bettoni, Tord Johansson, C. Dong, H. J. Lu, Cunfeng Feng, Yi Fang, L. Lavezzi, K. H. Rashid, H. M. Hu, N. Qin, Lei Li, P. R. Li, Orhan Cakir, S. Sosio, Jiemin Li, Y. Z. Sun, J. L. Ping, W. X. Gong, Z. L. Hou, U. Wiedner, G. F. Xu, P. Kiese, G. Cibinetto, Siyuan Sun, Jia-ju Zhang, P. L. Liu, X. L. Luo, Y. Zhang, Zahra Haddadi, Qingnian Xu, Xiaozhong Huang, Ye-Fei Yuan, F. C. Ma, A. Denig, H. B. Liu, S. B. Liu, X. Y. Shen, Z. Gao, Mingshui Chen, Y. Pan, X. L. Kang, Q. J. Xu, Ch. Rosner, Q. W. Zhao, J. Chai, Xu Zhou, Ka-Yuet Liu, Joachim Pettersson, Andrzej Kupsc, X. C. Lou, Zhen Wang, Yiming Zhang, H. B. Li, F. De Mori, Shou-hua Zhu, Z. Liu, Fu-Hu Liu, L. J. Wu, Y. Zeng, P. Larin, F. E. Maas, W. F. Wang, S. X. Du, Cen Zhang, Teng Li, B. S. Zou, W. Gradl, X. L. Li, C. F. Qiao, J. P. Dai, S. Ahmed, Y. X. Yang, K. Schoenning, Q. Y. Li, J. V. Bennett, Niklaus Berger, K. Li, X. N. Ma, Jianbin Jiao, Y. Ding, L. S. Wang, Y. T. Liang, B. X. Yu, A. Hafner, X. H. Sun, Dmitri Dedovich, Xiang Zhou, Z. B. Li, K. Goetzen, I. Boyko, H. P. Peng, I. Garzia, B. X. Zhang, S. Z. Chen, Y. J. Mao, M. Kavatsyuk, T. Holtmann, G. F. Cao, E. H. Thorndike, Q. Gao, Fabrizio Bianchi, Q. An, J. Y. Zhang, Yuehong Xie, A. Zhemchugov, S. P. Wen, X. B. Ji, Y. Guo, Xingtao Huang, M. Y. Dong, Y. B. Li, Qingming Ma, Kai Zhu, Z. L. Huang, J. C. Chen, S. Qian, Xiang Liu, Xiaoyu Li, Jiaheng Zou, Chunxu Yu, T. J. Min, T. Luo, Junguang Lu, M. Maggiora, J. S. Yu, R. Kliemt, Guo-Ming Chen, H. Leithoff, Qi Liu, X. D. Chen, Y. H. Zheng, Fang Liu, Bingxuan Liu, H. J. Li, M. Ye, S. Jin, S. L. Olsen, C. P. Shen, Sai-Juan Chen, Jian Zhuang, M. Lara, Y. D. Wang, Wei Li, R. G. Ping, Hongji Yang, Kejun Zhu, Zhiyong Zhang, H. R. Qi, Z. J. Xiao, J. Min, C. D. Fu, Serkant Ali Cetin, P. Patteri, D. Y. Liu, Jianmin Dong, Jian Fang, Yong Ban, J. F. Qiu, S. Q. Zhang, Z. Ning, D. X. Lin, Xuejun Wang, Kai Wang, B. Zheng, Z. T. Sun, V. Prasad, L. Y. Dong, Xianglei Zhu, F. H. Heinsius, X. R. Zhou, Cheng Li, and A. Dbeyssi
- Subjects
Nuclear physics ,Physics ,Cross section (physics) ,Sigma ,Center of mass ,Resonance (particle physics) ,Belle experiment ,Storage ring - Abstract
The cross section for the process e(+)e(-)-> pi(+) pi(-) J/psi is measured precisely at center-of-mass energies from 3.77 to 4.60 GeV using 9 fb(-1) of data collected with the BESIII detector operating at the BEPCII storage ring. Two resonant structures are observed in a fit to the cross section. The first resonance has a mass of (222.0 +/- 3.1 +/- 1.4) MeV/ c(2) and a width of (44.1 +/- 4.3 +/- 2.0)MeV, while the second one has a mass of (4320.0 +/- 10.4 +/- 7.0)MeV/c(2) and a width of (101.4(- 19.7)(+25.3) +/- 10.2) MeV, where the first errors are statistical and second ones are systematic. The first resonance agrees with the Y(4260) resonance reported by previous experiments. The precision of its resonant parameters is improved significantly. The second resonance is observed in e(+)e(-)-> pi(+) pi(-) J/psi for the first time. The statistical significance of this resonance is estimated to be larger than 7.6 sigma. The mass and width of the second resonance agree with the Y(4360) resonance reported by the BABAR and Belle experiments within errors. Finally, the Y(4008) resonance previously observed by the Belle experiment is not confirmed in the description of the BESIII data.
- Published
- 2020
- Full Text
- View/download PDF
10. Lattice Bisognano-Wichmann modular Hamiltonian in critical quantum spin chains
- Author
-
Marcello Dalmonte, Pasquale Calabrese, M. A. Rajabpour, and Jia-ju Zhang
- Subjects
Computer Science::Machine Learning ,Logarithm ,Discretization ,QC1-999 ,FOS: Physical sciences ,Quantum entanglement ,Computer Science::Digital Libraries ,01 natural sciences ,symbols.namesake ,Condensed Matter - Strongly Correlated Electrons ,Lattice (order) ,0103 physical sciences ,Trace distance ,010306 general physics ,Condensed Matter - Statistical Mechanics ,Mathematical physics ,Physics ,Strongly Correlated Electrons (cond-mat.str-el) ,Statistical Mechanics (cond-mat.stat-mech) ,010308 nuclear & particles physics ,business.industry ,Modular design ,Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici ,Computer Science::Mathematical Software ,symbols ,business ,Hamiltonian (quantum mechanics) ,Ground state - Abstract
We carry out a comprehensive comparison between the exact modular Hamiltonian and the lattice version of the Bisognano-Wichmann (BW) one in one-dimensional critical quantum spin chains. As a warm-up, we first illustrate how the trace distance provides a more informative mean of comparison between reduced density matrices when compared to any other Schatten $n$-distance, normalized or not. In particular, as noticed in earlier works, it provides a way to bound other correlation functions in a precise manner, i.e., providing both lower and upper bounds. Additionally, we show that two close reduced density matrices, i.e. with zero trace distance for large sizes, can have very different modular Hamiltonians. This means that, in terms of describing how two states are close to each other, it is more informative to compare their reduced density matrices rather than the corresponding modular Hamiltonians. After setting this framework, we consider the ground states for infinite and periodic XX spin chain and critical Ising chain. We provide robust numerical evidence that the trace distance between the lattice BW reduced density matrix and the exact one goes to zero as $\ell^{-2}$ for large length of the interval $\ell$. This provides strong constraints on the difference between the corresponding entanglement entropies and correlation functions. Our results indicate that discretized BW reduced density matrices reproduce exact entanglement entropies and correlation functions of local operators in the limit of large subsystem sizes. Finally, we show that the BW reduced density matrices fall short of reproducing the exact behavior of the logarithmic emptiness formation probability in the ground state of the XX spin chain., 27 pages 11 Figures V2: minor changes
- Published
- 2020
11. Subsystem distance after a local operator quench
- Author
-
Pasquale Calabrese and Jia-ju Zhang
- Subjects
High Energy Physics - Theory ,Nuclear and High Energy Physics ,Primary field ,Lattice Integrable Models ,FOS: Physical sciences ,Quantum entanglement ,01 natural sciences ,Operator (computer programming) ,Quantum mechanics ,0103 physical sciences ,Trace distance ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,010306 general physics ,Condensed Matter - Statistical Mechanics ,Physics ,Conformal Field Theory ,Statistical Mechanics (cond-mat.stat-mech) ,010308 nuclear & particles physics ,Conformal field theory ,Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici ,High Energy Physics - Theory (hep-th) ,Quasiparticle ,lcsh:QC770-798 ,Ising model ,Ground state - Abstract
We investigate the time evolution of the subsystem trace distance and Schatten distances after local operator quenches in two-dimensional conformal field theory (CFT) and in one-dimensional quantum spin chains. We focus on the case of a subsystem being an interval embedded in the infinite line. The initial state is prepared by inserting a local operator in the ground state of the theory. We only consider the cases in which the inserted local operator is a primary field or a sum of several primaries. While a nonchiral primary operator can excite both left-moving and right-moving quasiparticles, a holomorphic primary operator only excites a right-moving quasiparticle and an anti-holomorphic primary operator only excites a left-moving one. The reduced density matrix (RDM) of an interval hosting a quasiparticle is orthogonal to the RDM of the interval without any quasiparticles. Moreover, the RDMs of two intervals hosting quasiparticles at different positions are also orthogonal to each other. We calculate numerically the entanglement entropy, R\'enyi entropy, trace distance, and Schatten distances in time-dependent states excited by different local operators in the critical Ising and XX spin chains. These results match the CFT predictions in the proper limit., Comment: v1, 32 pages, 9 figures; v2, 33 pages, 9 figures, published version
- Published
- 2020
12. First search for the ηc2(1D) in B decays at Belle
- Author
-
F. Di Capua, P. Pakhlov, H. Aihara, J. Biswal, Tagir Aushev, S. Nishida, R. Mussa, M. Uchida, W. B. Yan, Z. Natkaniec, C. MacQueen, Leo Piilonen, V. Zhukova, Y. Onuki, L. K. Li, K. Sumisawa, V. Bhardwaj, M. Iwasaki, B. G. Cheon, K. Nishimura, C.-L. Hsu, J. H. Yin, G. Schnell, Pavel Krokovny, S. Cunliffe, M. C. Chang, H. Hayashii, P. L. Wang, A. Ishikawa, Y. Seino, M. Nakao, C. Kiesling, G. Pakhlova, T. K. Pedlar, A. Sangal, T. Kuhr, P. Križan, T. Mori, Y. Usov, Y. Choi, B. Golob, K. Trabelsi, K. Lieret, V.M. Aulchenko, Z. S. Stottler, R. Itoh, V. Savinov, Rok Pestotnik, A. Rostomyan, M. Campajola, N. K. Nisar, Prafulla Kumar Behera, V. Popov, V. Gaur, K. Belous, Andrey Sokolov, Peter Kodys, W. W. Jacobs, J. S. Lange, T. D. Kimmel, S. K. Choi, M. Mrvar, Z. P. Zhang, T. Sumiyoshi, M. Bračko, M. Z. Wang, T. Podobnik, E. Solovieva, Jia-ju Zhang, A. B. Kaliyar, M. Hernandez Villanueva, K. Kinoshita, Y. Iwasaki, Martin Ritter, N. Dash, V. Babu, Y. J. Kwon, T. Sanuki, J. Schueler, N. Gabyshev, D. Červenkov, Shih-Chang Lee, N. Rout, Y. Sakai, Phillip Urquijo, G. Varner, X. P. Xu, P. Oskin, E. Prencipe, L. Cao, T. Ferber, M. Nayak, G. Karyan, B. G. Fulsom, James E. Fast, K. Senyo, Seokhee Park, Rocky Bala Garg, Samo Korpar, C. H. Kim, Y. B. Li, S. Al Said, Luka Santelj, V.N. Zhilich, Semen Eidelman, Sadaharu Uehara, L. Li Gioi, A. Garmash, Y. Kato, D. Ferlewicz, W. Sutcliffe, K. Chilikin, G. De Nardo, T. J. Moon, A. Chen, Soumen Paul, C. Beleño, H. Park, A. Bozek, K. Miyabayashi, M. Shapkin, Kohei Ogawa, S. Patra, Kiyoshi Tanida, E. Wang, M. Röhrken, G.V. Russo, K. Inami, R. Kulasiri, Yongsun Kim, Yoshinobu Unno, W. S. Hou, Z. Doležal, K. Lalwani, S. Uno, C. Schwanda, D. Cinabro, A. K. Giri, K. K. Joo, E. Won, V. Chekelian, M. Merola, G. B. Mohanty, M. Masuda, D. Matvienko, B.A. Shwartz, T. V. Dong, C. Z. Yuan, M. Starič, D. Liventsev, M. Takizawa, Vladimir Zhulanov, K.-H. Kim, R. Kroeger, I. S. Lee, P. Goldenzweig, V. Vorobyev, S. Jia, Y. Jin, O. Grzymkowska, C. H. Wang, H. Ye, T. Bilka, M. Watanabe, T. E. Browder, T. Matsuda, G. Bonvicini, J. Libby, D. M. Asner, K. Hayasaka, A. Vinokurova, J. G. Shiu, O. Hartbrich, S. H. Kim, Rakesh Kumar, M. T. Prim, Takeo Kawasaki, Shoichi Watanuki, D. Epifanov, S. Pardi, Seongbae Yang, G. Inguglia, Somnath Choudhury, J. Bennett, T. Uglov, A. Kuzmin, E.-J. Jang, S. Ogawa, F. Tenchini, R. Ayad, K. Cho, Seema Bahinipati, Iki Adachi, Doo Young Kim, H. Ono, R. Mizuk, Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Belle, Collaboration, Campajola, M., De Nardo, G., Di Capua, F., Merola, M., Pardi, S., Russo, G., and Et, Al.
- Subjects
+charmed+meson+K%2B%22">B+ --> charmed meson K+ ,Analytical chemistry ,+charmed+meson+pi%2B+K0%28S%29%22">B+ --> charmed meson pi+ K0(S) ,annihilation [electron positron] ,01 natural sciences ,High Energy Physics - Experiment ,e +e − experiments ,Experiment ,10.57 GeV-cms ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Physics ,[PHYS]Physics [physics] ,B0: hadronic decay ,e+-e- Experiments ,e ,B+: branching ratio: upper limit ,e +-e − Experiments ,electron positron: colliding beams ,Quarkonium ,3. Good health ,+charmed+meson+K0%28S%29%22">B0 --> charmed meson K0(S) ,electroproduction [Upsilon(10570)] ,colliding beams [electron positron] ,radiative decay [charmed meson] ,quarkonium ,Nuclear and High Energy Physics ,spectroscopy ,Upsilon(10570): electroproduction ,Meson ,+photon+h%2Fc%283526%29%22">charmed meson --> photon h/c(3526) ,BELLE ,electron positron: annihilation ,+ ,KEKB ,KEK-B ,0103 physical sciences ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,ddc:530 ,+charmed+meson+K%2B+pi%22">B0 --> charmed meson K+ pi ,010306 general physics ,hadronic decay [B0] ,mesons ,010308 nuclear & particles physics ,h/c(3526) ,branching ratio: upper limit [B+] ,B0: branching ratio: upper limit ,− ,Resonance ,e(+)-e(-) experiments ,charmed meson: radiative decay ,B+: hadronic decay ,lcsh:QC770-798 ,hadronic decay [B+] ,branching ratio: upper limit [B0] ,experimental results - Abstract
Journal of high energy physics 2020(5), 34 (2020). doi:10.1007/JHEP05(2020)034, The first dedicated search for the η$_{c2}$(1D) is carried out using the decays B$^{+}$→ η$_{c2}$(1D)K$^{+}$, B$^{0}$ → η$_{c2}$(1D)$ {K}_S^0 $, B$^{0}$→ η$_{c2}$(1D)π$^{−}$K$^{+}$, and B$^{+}$→ η$_{c2}$(1D)π$^{+} {K}_S^0 $ with η$_{c2}$(1D) → h$_{c}$γ. No significant signal is found. For the η$_{c2}$(1D) mass range between 3795 and 3845 MeV/c$^{2}$, the branching-fraction upper limits are determined to be ℬ(B$^{+}$→ η$_{c2}$(1D)K$^{+}$) × ℬ(η$_{c2}$(1D) → h$_{c}$γ) < 3.7 × 10$^{−5}$, ℬ(B$^{0}$→ η$_{c2}$(1D)K$^{0}$) × ℬ(η$_{c2}$(1D) → h$_{c}$γ) < 3.5 × 10$^{−5}$, ℬ(B$^{0}$→ η$_{c2}$(1D)π$^{−}$K$^{+}$) × ℬ(η$_{c2}$(1D) → h$_{c}$γ) < 1.0 × 10$^{−4}$, and ℬ(B$^{+}$→ η$_{c2}$(1D)π$^{+} {K}_S^0 $) × ℬ(η$_{c2}$(1D) → h$_{c}$γ) < 1.1 × 10$^{−4}$ at 90% C.L. The analysis is based on the 711 fb$^{−1}$ data sample collected on the ϒ(4S) resonance by the Belle detector, which operated at the KEKB asymmetric-energy e$^{+}$e$^{−}$ collider.[graphic not available: see fulltext], Published by SISSA, [Trieste]
- Published
- 2020
- Full Text
- View/download PDF
13. BPS Wilson loops in N $$ \mathcal{N} $$ ≥ 2 superconformal Chern-Simons-matter theories
- Author
-
Hao Ouyang, Silvia Penati, Jun-Bao Wu, Jia-ju Zhang, and Andrea Mauri
- Subjects
High Energy Physics - Theory ,Nuclear and High Energy Physics ,Wilson loop ,Chern-Simons Theories ,High Energy Physics::Lattice ,Chern–Simons theory ,FOS: Physical sciences ,Computer Science::Digital Libraries ,01 natural sciences ,Supersymmetric Gauge Theory ,High Energy Physics::Theory ,0103 physical sciences ,Minkowski space ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,010306 general physics ,Orbifold ,Mathematical physics ,Physics ,010308 nuclear & particles physics ,Quiver ,M-Theory ,Wilson, ’t Hooft and Polyakov loops ,Superalgebra ,High Energy Physics - Theory (hep-th) ,Supersymmetric gauge theory ,Computer Science::Mathematical Software ,lcsh:QC770-798 ,Supersymmetry algebra - Abstract
In $\mathcal N \geq 2$ superconformal Chern-Simons-matter theories we construct the infinite family of Bogomol'nyi-Prasad-Sommerfield (BPS) Wilson loops featured by constant parametric couplings to scalar and fermion matter, including both line Wilson loops in Minkowski spacetime and circle Wilson loops in Euclidean space. We find that the connection of the most general BPS Wilson loop cannot be decomposed in terms of double-node connections. Moreover, if the quiver contains triangles, it cannot be interpreted as a supermatrix inside a superalgebra. However, for particular choices of the parameters it reduces to the well-known connections of 1/6 BPS Wilson loops in Aharony-Bergman-Jafferis-Maldacena (ABJM) theory and 1/4 BPS Wilson loops in $\mathcal N = 4$ orbifold ABJM theory. In the particular case of $\mathcal N = 2$ orbifold ABJM theory we identify the gravity duals of a subset of operators. We investigate the cohomological equivalence of fermionic and bosonic BPS Wilson loops at quantum level by studying their expectation values, and find strong evidence that the cohomological equivalence holds quantum mechanically, at framing one. Finally, we discuss a stronger formulation of the cohomological equivalence, which implies non-trivial identities for correlation functions of composite operators in the defect CFT defined on the Wilson contour and allows to make novel predictions on the corresponding unknown integrals that call for a confirmation., Comment: 53 pages, 12 figures
- Published
- 2018
- Full Text
- View/download PDF
14. Corrections to holographic entanglement plateau
- Author
-
Jia-ju Zhang, Zhibin Li, and Bin Chen
- Subjects
High Energy Physics - Theory ,Physics ,Nuclear and High Energy Physics ,Conformal Field Theory ,Statistical Mechanics (cond-mat.stat-mech) ,010308 nuclear & particles physics ,Conformal field theory ,Field Theories in Lower Dimensions ,FOS: Physical sciences ,Torus ,Quantum entanglement ,AdS-CFT Correspondence ,01 natural sciences ,AdS/CFT correspondence ,High Energy Physics - Theory (hep-th) ,0103 physical sciences ,lcsh:QC770-798 ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,010306 general physics ,Central charge ,Complex plane ,Entropy (arrow of time) ,Condensed Matter - Statistical Mechanics ,Mathematical physics ,BTZ black hole - Abstract
We investigate the robustness of the Araki-Lieb inequality in a two-dimensional (2D) conformal field theory (CFT) on torus. The inequality requires that $\Delta S=S(L)-|S(L-\ell)-S(\ell)|$ is nonnegative, where $S(L)$ is the thermal entropy and $S(L-\ell)$, $S(\ell)$ are the entanglement entropies. Holographically there is an entanglement plateau in the BTZ black hole background, which means that there exists a critical length such that when $\ell \leq \ell_c$ the inequality saturates $\Delta S=0$. In thermal AdS background, the holographic entanglement entropy leads to $\Delta S=0$ for arbitrary $\ell$. We compute the next-to-leading order contributions to $\Delta S$ in the large central charge CFT at both high and low temperatures. In both cases we show that $\Delta S$ is strictly positive except for $\ell = 0$ or $\ell = L$. This turns out to be true for any 2D CFT. In calculating the single interval entanglement entropy in a thermal state, we develop new techniques to simplify the computation. At a high temperature, we ignore the finite size correction such that the problem is related to the entanglement entropy of double intervals on a complex plane. As a result, we show that the leading contribution from a primary module takes a universal form. At a low temperature, we show that the leading thermal correction to the entanglement entropy from a primary module does not take a universal form, depending on the details of the theory., Comment: 32 pages, 8 figures; V2, typos corrected, published version
- Published
- 2017
- Full Text
- View/download PDF
15. Evidence for B+→hcK+ and observation of ηc(2S)→pp¯π+π−
- Author
-
C. MacQueen, Y. Iwasaki, S. Nishida, O. Schneider, S. Cunliffe, P. C. Lu, R. Mizuk, K. Chilikin, C. Beleño, N. Gabyshev, D. Červenkov, A. Ishikawa, A. Chen, G. Schnell, D. M. Asner, K. Hayasaka, M. Nakao, D. Matvienko, M. Campajola, C.-L. Hsu, Peter Kodys, W. W. Jacobs, Zdenek Dolezal, S. Di Carlo, G. Karyan, U. Tamponi, A. K. Giri, J. S. H. Lee, M. Masuda, G. B. Mohanty, L. Cao, Y. Seino, Rahul Kumar, S. Jia, J. F. Strube, Y. Kato, P. Goldenzweig, S. Sandilya, F. Tenchini, Babu, M. Merola, Z. P. Zhang, Samo Korpar, T. Sumiyoshi, Jia-ju Zhang, Shoichi Watanuki, Martin Ritter, K. Inami, M. Starič, Sudhanwa Patra, K. Miyabayashi, I. Badhrees, Savinov, T. Sanuki, H. Ono, K. K. Joo, G. Pakhlova, Leo Piilonen, D. Cinabro, D. Joffe, R. Kulasiri, O. Grzymkowska, C. H. Wang, D. Y. Kim, Popov, M. Z. Wang, K. Kinoshita, S. Paul, Seongbae Yang, M. Nayak, T. Julius, Yang Li, T. V. Dong, Y. Choi, K. J. Nath, Aulchenko, R. Pestotnik, C. Kiesling, R. B. Garg, G. Varner, B. G. Fulsom, Frank Simon, T. E. Browder, T. Hara, Ya-Qiu Jin, B. G. Cheon, M. Bračko, Jyoti Prakash Biswal, Gaur, G.V. Russo, Andrey Sokolov, Y-J Kwon, H. Ye, J. K. Lee, S. Pardi, Bansal, K. Senyo, K. Lalwani, S. Uno, K. Nishimura, C. Schwanda, Li Gio, L[Li Gio, L.], H. Hayashii, W. S. Hou, D. Kotchetkov, J. Haba, R. Kroeger, J. MacNaughton, C. H. Kim, R. Ayad, K. Cho, M. E. Sevior, Massimo Berger, M. Uchida, Semen Eidelman, Z. S. Stottler, L. K. Li, D. Liventsev, J. E. Fast, Zhilich, Y. Sakai, Tao Luo, T. Mori, Y. Usov, R. Itoh, K. Tanida, C. Z. Yuan, A. Rostomyan, P. Wang, Zhukova, I. Adachi, M. Salehi, E. Solovieva, S. C. Lee, T. Bilka, R. Van Tonder, B. K. Pal, M. Watanabe, P. Pakhlov, T. Ferber, H. Park, A. Bozek, J. G. Shiu, Phillip Urquijo, J. H. Yin, Pavel Krokovny, N. K. Nisar, Bhardwaj, J. S. Lange, A. B. Kaliyar, K. Trabelsi, C. P. Shen, Seok Kim, E. Won, T. Matsuda, A. Vinokurova, D. Epifanov, A.E. Bondar, M. Takizawa, John Yelton, T. K. Pedlar, S. K. Choi, A. Garmash, Motoki Iwasaki, M. Gelb, Chekelian, P. K. Behera, W. Sutcliffe, Tagir Aushev, Y. Onuki, M. Niiyama, J. Libby, Bo Wang, A. Bobrov, and B. Shwartz
- Subjects
Physics ,KEKB ,010308 nuclear & particles physics ,Branching fraction ,Electron–positron annihilation ,0103 physical sciences ,Pi ,Analytical chemistry ,Resonance ,Invariant mass ,010306 general physics ,01 natural sciences ,Bar (unit) - Abstract
A search for the decays B+→hcK+ and B0→hcKS0 is performed. Evidence for the decay B+→hcK+ is found; its significance is 4.8σ. No evidence is found for B0→hcKS0. The branching fraction for B+→hcK+ is measured to be (3.7-0.9+1.0 -0.8+0.8)×10-5; the upper limit for the B0→hcKS0 branching fraction is 1.4×10-5 at 90% C.L. In addition, a study of the pp¯π+π- invariant mass distribution in the channel B+→(pp¯π+π-)K+ results in the first observation of the decay ηc(2S)→pp¯π+π- with 12.1σ significance. The analysis is based on the 711 fb-1 data sample collected by the Belle detector at the asymmetric-energy e+e- collider KEKB at the ϒ(4S) resonance.
- Published
- 2019
- Full Text
- View/download PDF
16. Subsystem trace distance in low-lying states of $(1+1)$-dimensional conformal field theories
- Author
-
Pasquale Calabrese, Paola Ruggiero, and Jia-ju Zhang
- Subjects
High Energy Physics - Theory ,Nuclear and High Energy Physics ,One-dimensional space ,FOS: Physical sciences ,Conformal map ,01 natural sciences ,0103 physical sciences ,Trace distance ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,Quantum field theory ,010306 general physics ,Eigenvalues and eigenvectors ,Condensed Matter - Statistical Mechanics ,Mathematical physics ,Physics ,Conformal Field Theory ,Statistical Mechanics (cond-mat.stat-mech) ,Field Theories in Lower Dimensions ,010308 nuclear & particles physics ,Conformal field theory ,Scale invariance ,Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici ,High Energy Physics - Theory (hep-th) ,Path integral formulation ,lcsh:QC770-798 - Abstract
We report on a systematic replica approach to calculate the subsystem trace distance for a quantum field theory. This method has been recently introduced in [J. Zhang, P. Ruggiero, P. Calabrese, Phys. Rev. Lett. 122, 141602 (2019)], of which this work is a completion. The trace distance between two reduced density matrices $\rho_A$ and $\sigma_A$ is obtained from the moments $\textrm{tr} (\rho_A-\sigma_A)^n$ and taking the limit $n\to1$ of the traces of the even powers. We focus here on the case of a subsystem consisting of a single interval of length $\ell$ embedded in the low lying eigenstates of a one-dimensional critical system of length $L$, a situation that can be studied exploiting the path integral form of the reduced density matrices of two-dimensional conformal field theories. The trace distance turns out to be a scale invariant universal function of $\ell/L$. Here we complete our previous work by providing detailed derivations of all results and further new formulas for the distances between several low-lying states in two-dimensional free massless compact boson and fermion theories. Remarkably, for one special case in the bosonic theory and for another in the fermionic one, we obtain the exact trace distance, as well as the Schatten $n$-distance, for an interval of arbitrary length, while in generic case we have a general form for the first term in the expansion in powers of $\ell/L$. The analytical predictions in conformal field theories are tested against exact numerical calculations in XX and Ising spin chains, finding perfect agreement. As a byproduct, new results in two-dimensional CFT are also obtained for other entanglement-related quantities, such as the relative entropy and the fidelity., Comment: 32 pages + 4 appendices
- Published
- 2019
17. Search for X(3872) and X(3915) decay into χc1π0 in B decays at Belle
- Author
-
M. Z. Wang, K. Kinoshita, T. Matsuda, G. Bonvicini, D. M. Asner, P. K. Resmi, A. Garmash, C.-L. Hsu, Daniel Greenwald, P. Krokovny, V. Bansal, P. Goldenzweig, S. Sandilya, J. Libby, K. Cho, Z. P. Zhang, J. E. Fast, Peter Kodys, W. W. Jacobs, M. Starič, D. Cinabro, P. Chang, Somnath Choudhury, M. Nayak, P. K. Behera, S. Di Carlo, H. Ono, T. Bilka, Ya-Qiu Jin, A. B. Kaliyar, Y. Seino, D. Epifanov, Shoichi Watanuki, S. Pardi, Jyoti Prakash Biswal, G. Karyan, Y. Sakai, D. Y. Kim, M. Watanabe, J. K. Lee, V. Gaur, Y. Iwasaki, B. G. Cheon, Y. J. Kwon, R. Kroeger, M. E. Sevior, I. S. Lee, V. Bhardwaj, T. K. Pedlar, A. K. Giri, L. Li Gioi, D. Matvienko, M. Nakao, O. Schneider, M. Uchida, T. Uglov, L. K. Li, S. Nishida, C. MacQueen, M. Masuda, E. Won, H. Ye, S. Cunliffe, Seokhee Park, G. Schnell, T. Iijima, Sudhanwa Patra, D. Liventsev, J. MacNaughton, H. Hayashii, C. H. Kim, J. Haba, K. Lalwani, S. Uno, C. Schwanda, Seema Bahinipati, G. B. Mohanty, S. Korpar, R. Mussa, T. V. Dong, X. L. Wang, V. Chekelian, G. S. Varner, Jihwa Lee, L. Cao, Y. Choi, K. J. Nath, R. Mizuk, T. Kuhr, C. Kiesling, P. C. Lu, E. Solovieva, S. Ogawa, T. Hara, L. Santelj, U. Tamponi, A. Ishikawa, M. Merola, C. Beleño, T. Mori, H. Aihara, K. Tanida, R. Itoh, R. Van Tonder, M. Bračko, Rahul Kumar, B. K. Pal, S. K. Choi, Z. S. Stottler, F. Tenchini, A. Rostomyan, P. Wang, Shih-Chang Lee, G.V. Russo, J. G. Shiu, R. B. Garg, B. Bhuyan, R. Ayad, S. Jia, Victoria Zhukova, P. Križan, B. G. Fulsom, T. E. Browder, T. Sumiyoshi, Jia-ju Zhang, A. Chen, N. Gabyshev, D. Červenkov, K. Inami, W. S. Hou, Phillip Urquijo, Martin Ritter, O. Grzymkowska, C. H. Wang, S. Uehara, K. Chilikin, S. Paul, T. Sanuki, Massimo Berger, V. Savinov, Y. B. Li, L. E. Piilonen, Andrey Sokolov, A.E. Bondar, G. Pakhlova, R. Kulasiri, R. Pestotnik, D. Kotchetkov, E. Prencipe, S. Eidelman, K. Senyo, M. Takizawa, P. Pakhlov, M. Campajola, K. Nishimura, V. V. Zhulanov, John Yelton, Z. Doležal, T. Kawasaki, B. Shwartz, I. Adachi, H. Park, A. Bozek, T. Julius, J. H. Yin, M. Salehi, W. Sutcliffe, D. Joffe, Seongbae Yang, Y. Onuki, N. K. Nisar, J. S. Lange, K. K. Joo, O. Seon, Frank Simon, Vladimir Popov, M. Sumihama, Motoki Iwasaki, V.N. Zhilich, Y. Kato, K. Miyabayashi, I. Badhrees, K. Trabelsi, C. P. Shen, Seok Kim, V. Babu, T. Aushev, T. Ferber, M. Niiyama, Bo Wang, K. Hayasaka, A. Bobrov, and H. E. Cho
- Subjects
Physics ,KEKB ,010308 nuclear & particles physics ,Branching fraction ,Electron–positron annihilation ,0103 physical sciences ,Analytical chemistry ,Pi ,Resonance ,010306 general physics ,01 natural sciences ,X(3872) - Abstract
We report a search for X(3872) and X(3915) in B+→χc1π0K+ decays. We set an upper limit of B(B+→X(3872)K+)×B(X(3872)→χc1π0)
- Published
- 2019
- Full Text
- View/download PDF
18. Evidence for the decay B0→pp¯π0
- Author
-
L. E. Piilonen, K. Nishimura, G. Pakhlova, H. Miyata, R. Kulasiri, Bo Wang, D. Joffe, Seongbae Yang, K. Hayasaka, A. Bobrov, C.-L. Hsu, Peter Kodys, W. W. Jacobs, S. Di Carlo, G. Karyan, K. T. Kim, Frank Simon, P. C. Lu, R. Mizuk, C. Beleño, K. Adamczyk, Vladimir Popov, G.V. Russo, S. K. Choi, A. Ishikawa, W. S. Hou, A. K. Giri, M. Masuda, G. B. Mohanty, L. Cao, C. P. Shen, P. Križan, Y. Sakai, Seok Kim, R. B. Garg, B. Bhuyan, I. Adachi, H. Aihara, K. Senyo, V. Babu, B. G. Fulsom, M. Salehi, T. Aushev, Jyoti Prakash Biswal, M. Takizawa, A. B. Kaliyar, T. E. Browder, Y. Iwasaki, Y. J. Kwon, M. Uchida, John Yelton, L. K. Li, M. Iwasaki, Z. Doležal, J. Schueler, Z. S. Stottler, G. Schnell, T. Iijima, T. Ferber, E. Won, D. Y. Kim, O. Schneider, D. Liventsev, B. G. Cheon, K. Inami, J. F. Strube, V. Gaur, V. Savinov, E. Solovieva, J. Libby, F. Tenchini, M. Nakao, H. Atmacan, G. S. Varner, M. Z. Wang, J. MacNaughton, Jihwa Lee, H. Ono, K. Kinoshita, S. Ogawa, U. Tamponi, R. Itoh, J. Haba, T. Sumiyoshi, Sudhanwa Patra, S. Nishida, Shih-Chang Lee, D. Kotchetkov, A. Rostomyan, Jia-ju Zhang, P. Wang, P. Goldenzweig, S. Korpar, Z. P. Zhang, V. Chekelian, S. Sandilya, Y. Seino, M. Merola, T. Sanuki, Massimo Berger, R. Van Tonder, B. K. Pal, N. K. Nisar, Shoichi Watanuki, M. Starič, S. Eidelman, S. Pardi, J. G. Shiu, R. Ayad, P. Pakhlov, E. Prencipe, S. Jia, S. Uno, C. Schwanda, S. Cunliffe, H. Hayashii, C. Kiesling, Phillip Urquijo, Y. Guan, C. H. Kim, D. M. Asner, A. Bozek, Y. B. Li, C. MacQueen, D. Matvienko, R. Kroeger, M. E. Sevior, A. J. Schwartz, M. Bračko, C. H. Wang, Seokhee Park, Tao Luo, K. Tanida, S. Paul, L. Li Gioi, M. Campajola, T. Uglov, V.N. Zhilich, D. Cinabro, H. Kichimi, H. Ye, K. Miyabayashi, I. Badhrees, M. Nayak, N. Gabyshev, D. Červenkov, W. Sutcliffe, Y. Onuki, Ya-Qiu Jin, J. E. Fast, V. M. Aulchenko, D. Dossett, T. Matsuda, A. Garmash, T. Bilka, M. Watanabe, V. Bansal, A. Vinokurova, P. K. Behera, P. Krokovny, K. Cho, D. Epifanov, V. Bhardwaj, T. K. Pedlar, Victoria Zhukova, A. Chen, K. Chilikin, R. Pestotnik, Y. Yusa, K. K. Joo, T. V. Dong, Y. Choi, K. J. Nath, T. Hara, and Andrey Sokolov
- Subjects
Physics ,Particle physics ,010308 nuclear & particles physics ,Branching fraction ,Electron–positron annihilation ,Resonance ,01 natural sciences ,Belle experiment ,Luminosity ,Baryon ,KEKB ,0103 physical sciences ,010306 general physics ,Bar (unit) - Abstract
We report a search for the charmless baryonic decay $B^0\to p\bar{p}\pi^0$ with a data sample corresponding to an integrated luminosity of 711~$\rm fb^{-1}$ containing $(772\pm 10)\times 10^6$ $B^0\bar{B}^0$ pairs. The data was collected by the Belle experiment running on the $\Upsilon(4S)$ resonance at the KEKB $e^+e^-$ collider. We measure a branching fraction $\mathcal{B}(B^0\to p\bar{p}\pi^0)= (5.0\pm1.8\pm0.6 )\times 10^{-7}$, where the first uncertainty is statistical and the second is systematic. The signal has a significance of 3.1 standard deviations and constitutes the first evidence for this decay mode. We also search for the intermediate two-body decays $B^{0}\to\Delta^+\bar{p}$ and $B^0\to\bar{\Delta}^-p$, and set an upper limit on the branching fraction: $\mathcal{B}(B^0\to \Delta^+\bar{p})+\mathcal{B}(B^0\to\bar{\Delta}^-p)
- Published
- 2019
- Full Text
- View/download PDF
19. Subsystem Trace Distance in Quantum Field Theory
- Author
-
Paola Ruggiero, Jia-ju Zhang, and Pasquale Calabrese
- Subjects
Physics ,High Energy Physics - Theory ,Trace (linear algebra) ,Statistical Mechanics (cond-mat.stat-mech) ,General Physics and Astronomy ,FOS: Physical sciences ,Quantum entanglement ,01 natural sciences ,Computer Science::Digital Libraries ,Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici ,Entanglement ,High Energy Physics - Theory (hep-th) ,0103 physical sciences ,Path integral formulation ,Trace distance ,Operator product expansion ,Quantum field theory ,010306 general physics ,Eigenvalues and eigenvectors ,Replica trick ,Condensed Matter - Statistical Mechanics ,Mathematical physics - Abstract
We develop a systematic method to calculate the trace distance between two reduced density matrices in 1+1 dimensional quantum field theories. The approach exploits the path integral representation of the reduced density matrices and an ad hoc replica trick. We then extensively apply this method to the calculation of the distance between reduced density matrices of one interval of length $\ell$ in eigenstates of conformal field theories. When the interval is short, using the operator product expansion of twist operators, we obtain a universal form for the leading order in $\ell$ of the trace distance. We compute the trace distances among the reduced density matrices of several low lying states in two-dimensional free massless boson and fermion theories. We compare our analytic conformal results with numerical calculations in XX and Ising spin chains finding perfect agreement., 6 pages, 3 figures
- Published
- 2019
20. The Belle II Physics Book
- Author
-
C. Niebuhr, Ulrich Nierste, I. Heredia-De La Cruz, Mikihiko Nakao, Philip Bambade, Kristine M. Smith, Concettina Sfienti, S. Bilokin, M. Iwasaki, G. Tetlalmatzi-Xolocotzi, S. Sandilya, Andreas Crivellin, M. Uchida, Melissa K. Takahashi, L. K. Li, S. Bettarini, B. G. Cheon, M. Blanke, M. Starič, Yoshinobu Unno, L. M. Cremaldi, D. van Dyk, T. Kumita, Andrey Sokolov, V. Bhardwaj, Ikaros I.Y. Bigi, J. Tan, Shuji Tanaka, G. S. Varner, M. Arndt, R. A. Briere, I. Nakamura, M. Maggiora, R. Itoh, T. Geßler, K. Nishimura, Cai-Dian Lü, Kevin Varvell, Matthias Jamin, Gil Paz, D. Cinabro, Fady Bishara, R. Giordano, M. Lubej, J. Schueler, K. Belous, S. Korpar, W. Yuan, C. Joo, G. López Castro, A. Gaz, H. Kindo, X. Zhou, Andrzej J. Buras, Mikolaj Misiak, E. Solovieva, L. E. Piilonen, B. Gobbo, P. Chang, M. Kumar, A. Rostomyan, Takuya Higuchi, A. Frey, Michael Gronau, Ian Watson, Bruce Yabsley, E. Won, James E. Fast, K. Huang, A. Morda, F. Forti, M. Mrvar, M. Ciuchini, Agnese Martini, A. K. Giri, K. Sumisawa, D. Neverov, B. G. Fulsom, G. De Pietro, Y. Guan, G. Rizzo, M. Bračko, M. Destefanis, G. Bell, P. Taras, B. Bhuyan, L. Podesta Lerma, S. Marcello, S. Gribanov, S. Jahn, V. Gaur, Michael Ritzert, Antonio Pich, M. Schram, A. Sibidanov, Dipak Kumar Sahoo, L. Zani, S. E. Vahsen, R. Mussa, Z. Was, A. Vossen, Yukinori Sato, A. Zupanc, F. Meier, M. Künzel, J. V. Bennett, A. Garmash, H. Atmacan, Satoshi Mishima, Jelena Ninkovic, Mehmet Zeyrek, W. Sutcliffe, T. J. Moon, Soumen Paul, Q. Xu, Rocky Bala Garg, Henryk Czyz, Y.-T. Lai, R. Godang, Andreas Warburton, Hitoshi Yamamoto, W. Yan, J. G. Shiu, C. L. Hsu, H. B. Jeon, H. Aihara, D. Greenwald, C. Hearty, Thorsten Feldmann, M. Tanaka, H. Miyata, U. Gebauer, T. E. Browder, Prafulla Kumar Behera, T. Iijima, O. Seon, Frank Simon, Felix Metzner, M. Greco, F. Müller, S.I. Eidelman, A. Ishikawa, Y. Usov, P. Ahlburg, Stephen Godfrey, Y. Kiyo, Zoltan Ligeti, G. Muroyama, K. Kim, Svjetlana Fajfer, Stephen Lars Olsen, D. J. Summers, C. Wessel, S. Wehle, O. Frost, P. K. Resmi, Sumio Yamada, N. Dash, Nora Brambilla, U. Tippawan, B. Scavino, F. Di Capua, Phillip Urquijo, Felix Kahlhoefer, Y. Iwasaki, B. Paschen, S. Longo, H. Ono, Pablo Roig, R. Mizuk, W. Kuehn, F. J. Tackmann, S. Rummel, P. Križan, Joachim Brod, M. De Nuccio, Javier Virto, C. S. Park, S. Y. Suzuki, X. P. Xu, H. Miyake, T. Kuhr, I. Ripp-Baudot, C. MacQueen, R. Kowalewski, D. Shih, M. Hoek, Y. J. Kwon, S. Zakharov, J. Jones, W. W. Jacobs, E. Passemar, Kohei Ogawa, D. Nomura, V. Savinov, R. J. Sobie, John Webb, W. Gradl, D. Kotchetkov, M. V. Purohit, L. Vitale, W. S. Hou, D. J. Robinson, Y. B. Li, Massimo Berger, S. Hollitt, A. Sangal, Shih-Chang Lee, Shoji Hashimoto, S. Fiore, S. Di Carlo, K. Wan, P. Branchini, Yongsun Kim, A. Rabusov, A. De Yta Hernandez, Marcel Vos, Vittorio Lubicz, Samo Stanič, A. J. Schwartz, L. Cao, P. Leitl, S. Bilmis, J. Stypula, K. Lalwani, C. Schwanda, Ayan Paul, G. Tejeda Muñoz, Xuejun Wang, R. Sinha, M. Hernandez Villanueva, S. Uehara, Makoto Tabata, Jakub Kandra, N. Rout, Jakob Schwichtenberg, E. Graziani, S. Hirose, C. Miller, H. J. Kim, A. S. Kronfeld, K. Inami, Junko Shigemitsu, Kai Schmidt-Hoberg, A. Fodor, C. Z. Yuan, S. H. Robertson, J. M. Roney, D. Cuesta, Wolfgang Altmannshofer, D. Matvienko, R. Stroili, Megumi Naruki, Jernej F. Kamenik, F. Luetticke, J. H. Yin, H. Schreeck, Florian Bernlochner, S. X. Li, B.A. Shwartz, A. Passeri, E. Prencipe, M. Gabriel, I. Yeo, R. Rasheed, Noritaka Shimizu, T. V. Dong, K. Adamczyk, F. De Fazio, M. Nayak, F. Tenchini, M. Merola, Heather E. Logan, A. Nefediev, Qiang Li, Matthew T. Bender, Ihn Sik Seong, M. Remnev, B. Gao, I. M. Peruzzi, D. Getzkow, I. Domínguez Jiménez, B. Golob, T. Lueck, D. Liventsev, A. B. Kaliyar, G. Pakhlova, T. Sumiyoshi, Janusz Rosiek, Jia-ju Zhang, Luca Silvestrini, Antonio D. Polosa, Abhisek Datta, V. Chekelian, D. Rodríguez Pérez, Vladimir Zhulanov, Christoph Bobeth, H. K. Moon, B. Spruck, Y. Jin, R. Kroeger, K. Prasanth, J. Evans, Roman Zwicky, Y. Zhang, H. Nakazawa, I. Adachi, Xuyang Gao, J. S. Lange, Y. Ushiroda, M. E. Sevior, S. Westhoff, Victoria Zhukova, V. M. Braun, N. Gabyshev, D. Červenkov, G. B. Mohanty, C. Ketter, Martin Ritter, Thomas Teubner, Dmytro Levit, P. Goldenzweig, T. D. Kimmel, G. Casarosa, N. Taniguchi, M. Z. Wang, R. Van Tonder, E. De La Cruz Burelo, Alberto Aloisio, Antonio Vairo, Y. Ban, G. De Nardo, J. F. Krohn, N. Offen, N. Anh Ky, R. Kulasiri, Y. Kato, P. Pakhlov, Jure Zupan, J. F. Strube, M. Sumihama, K. Kinoshita, U. Tamponi, Nils Braun, Tao Luo, K. Tanida, P. Wieduwilt, J. B. Kim, Y. Yusa, N. T. Hong Van, Peter Stoffer, K. Senyo, R. Cheaib, Feng-Kun Guo, Tobias Huber, A. Tayduganov, T. Yoshinobu, E. Guido, L. Li Gioi, Vladimir Popov, G. Inguglia, M. Perelló, G. Russo, N. Nellikunnummel, H. Park, A. Bozek, M. Takizawa, M. Jung, S. Levonian, S. Skambraks, A. Korobov, Z. S. Stottler, I. Jaegle, Jae-Yong Lee, J. Pradler, K. Miyabayashi, S. Baehr, B. Moussallam, A. Gellrich, L. Burmistrov, S. Cunliffe, Y. Onuki, Yi Fan Hu, X. Ji, Y. Maeda, Hidekazu Kakuno, H. Kichimi, M. C. Chang, T. Morii, M. Salehi, Rakesh Kumar, H. Y. Cheng, Z. J. Liptak, Bingran Wang, M. Khasmidatul, F. Beaujean, Ezio Torassa, J. Wiechczynski, Tariq Aziz, V. Aushev, Stephen R. Sharpe, R. Ayad, Seema Bahinipati, Yang Li, U. Stolzenberg, T. Nakano, Massimiliano Procura, K. J. Nath, Kenneth Moats, A. Loos, M. Shapkin, L. Santelj, S. Dey, T. Tsuboyama, Y. Tao, S. Schacht, A. Hershenhorn, D. Y. Kim, K. Chilikin, T. Kaneko, Y. Sakai, Abner Soffer, O. Hartbrich, S. Lacaprara, D. Epifanov, M. Barrett, H. Hayashii, Sasa Prelovsek, R. Pestotnik, B. Pal, J. Baudot, S. Bussino, Farvah Mahmoudi, Giulia Ricciardi, T. K. Pedlar, J. A. McKenna, E. Paoloni, Seongbae Yang, Yi Chen, Maya Hachiya Shimomura, Enrico Bernieri, S. Uno, Ladislav Andricek, G. Bonvicini, O. Gogota, Yu. Onishchuk, A. Vinokurova, Tobias Hurth, P. Krokovny, K. H. Kang, K. Cho, Grzegorz Nowak, A. Kokulu, T. Aushev, T. Ferber, Paul Jackson, Tomoyuki Konno, Alexander L. Kagan, D. Dossett, I. Kadenko, K. Trabelsi, J. Kahn, C. P. Shen, T. Deppisch, K. T. Kim, Gilberto Colangelo, Marcella Bona, H. Nakayama, C. Hanhart, S. Jia, Y. Shimizu, D. A. Sanders, Surajit Maity, J. B. Singh, S. K. Choi, S. Duell, N. Starinsky, Yuval Grossman, M. H. A. Nouxman, Martin Hoferichter, Silvano Simula, Junji Hisano, Alexey A. Petrov, E. Ganiev, S. Halder, A. Kuzmin, F. Abudinen, M. Yonenaga, Kim Maltman, Thomas Hauth, Elisa Manoni, T. Bilka, S. Reiter, E. De Lucia, M. Gelb, Ulrich Haisch, L. B. Rizzuto, Th. Müller, E. Waheed, H. Ye, Ryoutaro Watanabe, B. Deschamps, Claudia Cecchi, K. Hara, G. Caria, David M. Straub, Caleb Smith, Carlos Marinas, Z. Doležal, Tara Nanut, T. Uglov, A. Guo, A. Glazov, Matthew J. Dolan, C. Rosenfeld, R. M. Seddon, Martin Florian Bessner, L. Hofer, Jun Sasaki, Somnath Choudhury, E. Kou, J. Libby, D. M. Asner, K. Hayasaka, Cheng-Wei Chiang, J. W. Choi, Y. Seino, D. Besson, M. T. Prim, Takeo Kawasaki, Martin Beneke, S. Nishida, M. I. Martínez Hernández, S. Jaeger, Jochen Dingfelder, Nejc Košnik, H. M. Wakeling, Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Lyon (ENS Lyon), Institut de Physique Nucléaire de Lyon (IPNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Belle-II, Ministerio de Ciencia, Innovación y Universidades (España), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Kou, E., Urquijo, P., Altmannshofer, W., Beaujean, F., Bell, G., Beneke, M., Bigi, I. I., Blanke, F. Bishara M., Bobeth, C., Bona, M., Brambilla, N., Braun, V. M., Brod, J., Buras, A. J., Cheng, H. Y., Chiang, C. W., Colangelo, G., Czyz, H., Datta, A., De Fazio, F., Deppisch, T., Dolan, M. J., Fajfer, S., Feldmann, T., Godfrey, S., Gronau, M., Grossman, Y., Guo, F. K., Haisch, U., Hanhart, C., Hashimoto, S., Hirose, S., Hisano, J., Hofer, L., Hoferichter, M., Hou, W. S., Huber, T., Jahn, S. Jaeger S., Jamin, M., Jones, J., Jung, M., Kagan, A. L., Kahlhoefer, F., Kamenik, J. F., Kaneko, T., Kiyo, Y., Kokulu, A., Kosnik, N., Kronfeld, A. S., Ligeti, Z., Logan, H., C. D., Lu, Lubicz, V., Mahmoudi, F., Maltman, K., Misiak, M., Mishima, S., Moats, K., Moussallam, B., Nefediev, A., Nierste, U., Nomura, D., Offen, N., Olsen, S. L., Passemar, E., Paul, A., Paz, G., Petrov, A. A., Pich, A., Polosa, A. D., Pradler, J., Prelovsek, S., Procura, M., Ricciardi, G., Robinson, D. J., Roig, P., Schacht, S., Schmidt-Hoberg, K., Schwichtenberg, J., Sharpe, S. R., Shigemitsu, J., Shimizu, N., Shimizu, Y., Silvestrini, L., Simula, S., Smith, C., Stoffer, P., Straub, D., Tackmann, F. J., Tanaka, M., Tayduganov, A., Tetlalmatzi-Xolocotzi, G., Teubner, T., Vairo, A., van Dyk, D., Virto, J., Was, Z., Watanabe, R., Watson, I., Zupan, J., Zwicky, R., Abudinen, F., Adachi, I., Adamczyk, K., Ahlburg, P., Aihara, H., Aloisio, A., Andricek, L., Anh Ky, N., Arndt, M., Asner, D. M., Atmacan, H., Aushev, T., Aushev, V., Ayad, R., Aziz, T., Baehr, S., Bahinipati, S., Bambade, P., Ban, Y., Barrett, M., Baudot, J., Behera, P., Belous, K., Bender, M., Bennett, J., Berger, M., Bernieri, E., Bernlochner, F. U., Bessner, M., Besson, D., Bettarini, S., Bhardwaj, V., Bhuyan, B., Bilka, T., Bilmis, S., Bilokin, S., Bonvicini, G., Bozek, A., Bracko, M., Branchini, P., Braun, N., Briere, R. A., Browder, T. E., Burmistrov, L., Bussino, S., Cao, L., Caria, G., Casarosa, G., Cecchi, C., Cervenkov, D., Chang, M. -C., Chang, P., Cheaib, R., Chekelian, V., Chen, Y., Cheon, B. G., Chilikin, K., Cho, K., Choi, J., Choi, S. -K., Choudhury, S., Cinabro, D., Cremaldi, L. M., Cuesta, D., Cunliffe, S., Dash, N., de la Cruz Burelo, E., De Lucia, E., De Nardo, G., De Nuccio, M., De Pietro, G., De Yta Hernandez, A., Deschamps, B., Destefanis, M., Dey, S., Di Capua, F., Di Carlo, S., Dingfelder, J., Dolezal, Z., Dominguez Jimenez, I., Dong, T. V., Dossett, D., Duell, S., Eidelman, S., Epifanov, D., Fast, J. E., Ferber, T., Fiore, S., Fodor, A., Forti, F., Frey, A., Frost, O., Fulsom, B. G., Gabriel, M., Gabyshev, N., Ganiev, E., Gao, X., Gao, B., Garg, R., Garmash, A., Gaur, V., Gaz, A., Gessler, T., Gebauer, U., Gelb, M., Gellrich, A., Getzkow, D., Giordano, R., Giri, A., Glazov, A., Gobbo, B., Godang, R., Gogota, O., Goldenzweig, P., Golob, B., Gradl, W., Graziani, E., Greco, M., Greenwald, D., Gribanov, S., Guan, Y., Guido, E., Guo, A., Halder, S., Hara, K., Hartbrich, O., Hauth, T., Hayasaka, K., Hayashii, H., Hearty, C., Heredia De La Cruz, I., Hernandez Villanueva, M., Hershenhorn, A., Higuchi, T., Hoek, M., Hollitt, S., Hong Van, N. T., Hsu, C. -L., Hu, Y., Huang, K., Iijima, T., Inami, K., Inguglia, G., Ishikawa, A., Itoh, R., Iwasaki, Y., Iwasaki, M., Jackson, P., Jacobs, W. W., Jaegle, I., Jeon, H. B., Ji, X., Jia, S., Jin, Y., Joo, C., Kuenzel, M., Kadenko, I., Kahn, J., Kakuno, H., Kaliyar, A. B., Kandra, J., Kang, K. H., Kawasaki, T., Ketter, C., Khasmidatul, M., Kichimi, H., Kim, J. B., Kim, K. T., Kim, H. J., Kim, D. Y., Kim, K., Kim, Y., Kimmel, T. D., Kindo, H., Kinoshita, K., Konno, T., Korobov, A., Korpar, S., Kotchetkov, D., Kowalewski, R., Krizan, P., Kroeger, R., Krohn, J. -F., Krokovny, P., Kuehn, W., Kuhr, T., Kulasiri, R., Kumar, M., Kumar, R., Kumita, T., Kuzmin, A., Kwon, Y. -J., Lacaprara, S., Lai, Y. -T., Lalwani, K., Lange, J. S., Lee, S. C., Lee, J. Y., Leitl, P., Levit, D., Levonian, S., Li, S., L. K., Li, Li, Y., Y. B., Li, Li, Q., Li Gioi, L., Libby, J., Liptak, Z., Liventsev, D., Longo, S., Loos, A., Lopez Castro, G., Lubej, M., Lueck, T., Luetticke, F., Luo, T., Mueller, F., Mueller, Th., Macqueen, C., Maeda, Y., Maggiora, M., Maity, S., Manoni, E., Marcello, S., Marinas, C., Martinez Hernandez, M., Martini, A., Matvienko, D., Mckenna, J. A., Meier, F., Merola, M., Metzner, F., Miller, C., Miyabayashi, K., Miyake, H., Miyata, H., Mizuk, R., Mohanty, G. B., Moon, H. K., Moon, T., Morda, A., Morii, T., Mrvar, M., Muroyama, G., Mussa, R., Nakamura, I., Nakano, T., Nakao, M., Nakayama, H., Nakazawa, H., Nanut, T., Naruki, M., Nath, K. J., Nayak, M., Nellikunnummel, N., Neverov, D., Niebuhr, C., Ninkovic, J., Nishida, S., Nishimura, K., Nouxman, M., Nowak, G., Ogawa, K., Onishchuk, Y., Ono, H., Onuki, Y., Pakhlov, P., Pakhlova, G., Pal, B., Paoloni, E., Park, H., Park, C. -S., Paschen, B., Passeri, A., Paul, S., Pedlar, T. K., Perello, M., Peruzzi, I. M., Pestotnik, R., Piilonen, L. E., Podesta Lerma, L., Popov, V., Prasanth, K., Prencipe, E., Prim, M., Purohit, M. V., Rabusov, A., Rasheed, R., Reiter, S., Remnev, M., Resmi, P. K., Ripp-Baudot, I., Ritter, M., Ritzert, M., Rizzo, G., Rizzuto, L., Robertson, S. H., Rodriguez Perez, D., Roney, J. M., Rosenfeld, C., Rostomyan, A., Rout, N., Rummel, S., Russo, G., Sahoo, D., Sakai, Y., Salehi, M., Sanders, D. A., Sandilya, S., Sangal, A., Santelj, L., Sasaki, J., Sato, Y., Savinov, V., Scavino, B., Schram, M., Schreeck, H., Schueler, J., Schwanda, C., Schwartz, A. J., Seddon, R. M., Seino, Y., Senyo, K., Seon, O., Seong, I. S., Sevior, M. E., Sfienti, C., Shapkin, M., Shen, C. P., Shimomura, M., Shiu, J. -G., Shwartz, B., Sibidanov, A., Simon, F., Singh, J. B., Sinha, R., Skambraks, S., Smith, K., Sobie, R. J., Soffer, A., Sokolov, A., Solovieva, E., Spruck, B., Stanic, S., Staric, M., Starinsky, N., Stolzenberg, U., Stottler, Z., Stroili, R., Strube, J. F., Stypula, J., Sumihama, M., Sumisawa, K., Sumiyoshi, T., Summers, D., Sutcliffe, W., Suzuki, S. Y., Tabata, M., Takahashi, M., Takizawa, M., Tamponi, U., Tan, J., Tanaka, S., Tanida, K., Taniguchi, N., Tao, Y., Taras, P., Tejeda Munoz, G., Tenchini, F., Tippawan, U., Torassa, E., Trabelsi, K., Tsuboyama, T., Uchida, M., Uehara, S., Uglov, T., Unno, Y., Uno, S., Ushiroda, Y., Usov, Y., Vahsen, S. E., van Tonder, R., Varner, G., Varvell, K. E., Vinokurova, A., Vitale, L., Vos, M., Vossen, A., Waheed, E., Wakeling, H., Wan, K., Wang, M. -Z., Wang, X. L., Wang, B., Warburton, A., Webb, J., Wehle, S., Wessel, C., Wiechczynski, J., Wieduwilt, P., Won, E., Xu, Q., Xu, X., Yabsley, B. D., Yamada, S., Yamamoto, H., Yan, W., Yang, S. B., Ye, H., Yeo, I., Yin, J. H., Yonenaga, M., Yoshinobu, T., Yuan, W., Yuan, C. Z., Yusa, Y., Zakharov, S., Zani, L., Zeyrek, M., Zhang, J., Zhang, Y., Zhou, X., Zhukova, V., Zhulanov, V., Zupanc, A., DE NARDO, Guglielmo, Kou, E, Urquijo, P, Altmannshofer, W, Beaujean, F, Bell, G, Beneke, M, Bigi, I I, Bishara, F, Blanke, M, Bobeth, C, Bona, M, Brambilla, N, Braun, V M, Brod, J, Buras, A J, Cheng, H Y, Chiang, C W, Ciuchini, M, Colangelo, G, Crivellin, A, Czyz, H, Datta, A, De Fazio, F, Deppisch, T, Dolan, M J, Evans, J, Fajfer, S, Feldmann, T, Godfrey, S, Gronau, M, Grossman, Y, Guo, F K, Haisch, U, Hanhart, C, Hashimoto, S, Hirose, S, Hisano, J, Hofer, L, Hoferichter, M, Hou, W S, Huber, T, Hurth, T, Jaeger, S, Jahn, S, Jamin, M, Jones, J, Jung, M, Kagan, A L, Kahlhoefer, F, Kamenik, J F, Kaneko, T, Kiyo, Y, Kokulu, A, Kosnik, N, Kronfeld, A S, Ligeti, Z, Logan, H, Lu, C D, Lubicz, V, Mahmoudi, F, Maltman, K, Mishima, S, Misiak, M, Moats, K, Moussallam, B, Nefediev, A, Nierste, U, Nomura, D, Offen, N, Olsen, S L, Passemar, E, Paul, A, Paz, G, Petrov, A A, Pich, A, Polosa, A D, Pradler, J, Prelovsek, S, Procura, M, Ricciardi, G, Robinson, D J, Roig, P, Rosiek, J, Schacht, S, Schmidt-Hoberg, K, Schwichtenberg, J, Sharpe, S R, Shigemitsu, J, Shih, D, Shimizu, N, Shimizu, Y, Silvestrini, L, Simula, S, Smith, C, Stoffer, P, Straub, D, Tackmann, F J, Tanaka, M, Tayduganov, A, Tetlalmatzi-Xolocotzi, G, Teubner, T, Vairo, A, van Dyk, D, Virto, J, Was, Z, Watanabe, R, Watson, I, Westhoff, S, Zupan, J, Zwicky, R, Abudinén, F, Adachi, I, Adamczyk, K, Ahlburg, P, Aihara, H, Aloisio, A, Andricek, L, Anh Ky, N, Arndt, M, Asner, D M, Atmacan, H, Aushev, T, Aushev, V, Ayad, R, Aziz, T, Baehr, S, Bahinipati, S, Bambade, P, Ban, Y, Barrett, M, Baudot, J, Behera, P, Belous, K, Bender, M, Bennett, J, Berger, M, Bernieri, E, Bernlochner, F U, Bessner, M, Besson, D, Bettarini, S, Bhardwaj, V, Bhuyan, B, Bilka, T, Bilmis, S, Bilokin, S, Bonvicini, G, Bozek, A, Bračko, M, Branchini, P, Braun, N, Briere, R A, Browder, T E, Burmistrov, L, Bussino, S, Cao, L, Caria, G, Casarosa, G, Cecchi, C, Červenkov, D, Chang, M-C, Chang, P, Cheaib, R, Chekelian, V, Chen, Y, Cheon, B G, Chilikin, K, Cho, K, Choi, J, Choi, S-K, Choudhury, S, Cinabro, D, Cremaldi, L M, Cuesta, D, Cunliffe, S, Dash, N, de la Cruz Burelo, E, de Lucia, E, De Nardo, G, De Nuccio, M, De Pietro, G, De Yta Hernandez, A, Deschamps, B, Destefanis, M, Dey, S, Di Capua, F, Di Carlo, S, Dingfelder, J, Doležal, Z, Domínguez Jiménez, I, Dong, T V, Dossett, D, Duell, S, Eidelman, S, Epifanov, D, Fast, J E, Ferber, T, Fiore, S, Fodor, A, Forti, F, Frey, A, Frost, O, Fulsom, B G, Gabriel, M, Gabyshev, N, Ganiev, E, Gao, X, Gao, B, Garg, R, Garmash, A, Gaur, V, Gaz, A, Geßler, T, Gebauer, U, Gelb, M, Gellrich, A, Getzkow, D, Giordano, R, Giri, A, Glazov, A, Gobbo, B, Godang, R, Gogota, O, Goldenzweig, P, Golob, B, Gradl, W, Graziani, E, Greco, M, Greenwald, D, Gribanov, S, Guan, Y, Guido, E, Guo, A, Halder, S, Hara, K, Hartbrich, O, Hauth, T, Hayasaka, K, Hayashii, H, Hearty, C, Heredia De La Cruz, I, Hernandez Villanueva, M, Hershenhorn, A, Higuchi, T, Hoek, M, Hollitt, S, Hong Van, N T, Hsu, C-L, Hu, Y, Huang, K, Iijima, T, Inami, K, Inguglia, G, Ishikawa, A, Itoh, R, Iwasaki, Y, Iwasaki, M, Jackson, P, Jacobs, W W, Jaegle, I, Jeon, H B, Ji, X, Jia, S, Jin, Y, Joo, C, Künzel, M, Kadenko, I, Kahn, J, Kakuno, H, Kaliyar, A B, Kandra, J, Kang, K H, Kato, Y, Kawasaki, T, Ketter, C, Khasmidatul, M, Kichimi, H, Kim, J B, Kim, K T, Kim, H J, Kim, D Y, Kim, K, Kim, Y, Kimmel, T D, Kindo, H, Kinoshita, K, Konno, T, Korobov, A, Korpar, S, Kotchetkov, D, Kowalewski, R, Križan, P, Kroeger, R, Krohn, J-F, Krokovny, P, Kuehn, W, Kuhr, T, Kulasiri, R, Kumar, M, Kumar, R, Kumita, T, Kuzmin, A, Kwon, Y-J, Lacaprara, S, Lai, Y-T, Lalwani, K, Lange, J S, Lee, S C, Lee, J Y, Leitl, P, Levit, D, Levonian, S, Li, S, Li, L K, Li, Y, Li, Y B, Li, Q, Li Gioi, L, Libby, J, Liptak, Z, Liventsev, D, Longo, S, Loos, A, Lopez Castro, G, Lubej, M, Lueck, T, Luetticke, F, Luo, T, Müller, F, Müller, Th, Macqueen, C, Maeda, Y, Maggiora, M, Maity, S, Manoni, E, Marcello, S, Marinas, C, Martinez Hernandez, M, Martini, A, Matvienko, D, Mckenna, J A, Meier, F, Merola, M, Metzner, F, Miller, C, Miyabayashi, K, Miyake, H, Miyata, H, Mizuk, R, Mohanty, G B, Moon, H K, Moon, T, Morda, A, Morii, T, Mrvar, M, Muroyama, G, Mussa, R, Nakamura, I, Nakano, T, Nakao, M, Nakayama, H, Nakazawa, H, Nanut, T, Naruki, M, Nath, K J, Nayak, M, Nellikunnummel, N, Neverov, D, Niebuhr, C, Ninkovic, J, Nishida, S, Nishimura, K, Nouxman, M, Nowak, G, Ogawa, K, Onishchuk, Y, Ono, H, Onuki, Y, Pakhlov, P, Pakhlova, G, Pal, B, Paoloni, E, Park, H, Park, C-S, Paschen, B, Passeri, A, Paul, S, Pedlar, T K, Perelló, M, Peruzzi, I M, Pestotnik, R, Piilonen, L E, Podesta Lerma, L, Popov, V, Prasanth, K, Prencipe, E, Prim, M, Purohit, M V, Rabusov, A, Rasheed, R, Reiter, S, Remnev, M, Resmi, P K, Ripp-Baudot, I, Ritter, M, Ritzert, M, Rizzo, G, Rizzuto, L, Robertson, S H, Rodriguez Perez, D, Roney, J M, Rosenfeld, C, Rostomyan, A, Rout, N, Rummel, S, Russo, G, Sahoo, D, Sakai, Y, Salehi, M, Sanders, D A, Sandilya, S, Sangal, A, Santelj, L, Sasaki, J, Sato, Y, Savinov, V, Scavino, B, Schram, M, Schreeck, H, Schueler, J, Schwanda, C, Schwartz, A J, Seddon, R M, Seino, Y, Senyo, K, Seon, O, Seong, I S, Sevior, M E, Sfienti, C, Shapkin, M, Shen, C P, Shimomura, M, Shiu, J-G, Shwartz, B, Sibidanov, A, Simon, F, Singh, J B, Sinha, R, Skambraks, S, Smith, K, Sobie, R J, Soffer, A, Sokolov, A, Solovieva, E, Spruck, B, Stanič, S, Starič, M, Starinsky, N, Stolzenberg, U, Stottler, Z, Stroili, R, Strube, J F, Stypula, J, Sumihama, M, Sumisawa, K, Sumiyoshi, T, Summers, D, Sutcliffe, W, Suzuki, S Y, Tabata, M, Takahashi, M, Takizawa, M, Tamponi, U, Tan, J, Tanaka, S, Tanida, K, Taniguchi, N, Tao, Y, Taras, P, Tejeda Munoz, G, Tenchini, F, Tippawan, U, Torassa, E, Trabelsi, K, Tsuboyama, T, Uchida, M, Uehara, S, Uglov, T, Unno, Y, Uno, S, Ushiroda, Y, Usov, Y, Vahsen, S E, van Tonder, R, Varner, G, Varvell, K E, Vinokurova, A, Vitale, L, Vos, M, Vossen, A, Waheed, E, Wakeling, H, Wan, K, Wang, M-Z, Wang, X L, Wang, B, Warburton, A, Webb, J, Wehle, S, Wessel, C, Wiechczynski, J, Wieduwilt, P, Won, E, Xu, Q, Xu, X, Yabsley, B D, Yamada, S, Yamamoto, H, Yan, W, Yang, S B, Ye, H, Yeo, I, Yin, J H, Yonenaga, M, Yoshinobu, T, Yuan, W, Yuan, C Z, Yusa, Y, Zakharov, S, Zani, L, Zeyrek, M, Zhang, J, Zhang, Y, Zhou, X, Zhukova, V, Zhulanov, V, Zupanc, A, Bishara, F., Blanke, M., Ciuchini, M., Crivellin, A., Evans, J., Hurth, T., Jaeger, S., Jahn, S., Lu, C. D., Rosiek, J., Shih, D., Westhoff, S., Kato, Y., Li, L. K., and Li, Y. B.
- Subjects
B: semileptonic decay ,Physics beyond the Standard Model ,Hadron ,electroproduction [charmonium] ,General Physics and Astronomy ,ComputingMilieux_LEGALASPECTSOFCOMPUTING ,B: radiative decay ,annihilation [electron positron] ,7. Clean energy ,01 natural sciences ,charmonium: electroproduction ,B physics ,High Energy Physics - Experiment ,law.invention ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology (hep-ph) ,Z' ,law ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Charm (quantum number) ,dark sector searches ,Physics ,lifetime ,radiative decay [B] ,doublet [Higgs particle] ,new physics ,High Energy Physics - Lattice (hep-lat) ,ddc:530 ,Electroweak interaction ,lepton: flavor: violation ,hep-ph ,Particle Physics - Lattice ,Monte Carlo [numerical calculations] ,electron positron: colliding beams ,Quarkonium ,asymmetry: CP ,quarkonium physics ,electroweak interaction: penguin ,High Energy Physics - Phenomenology ,Improved performance ,colliding beams [electron positron] ,CP violation ,interface ,electroproduction [quarkonium] ,electroweak precision measurements ,numerical calculations: Monte Carlo ,physics ,Particle Physics - Experiment ,performance ,Particle physics ,flavor: violation [lepton] ,review ,hep-lat ,FOS: Physical sciences ,BELLE ,High Energy Physics - Lattice ,electron positron: annihilation ,quarkonium: electroproduction ,CP [asymmetry] ,E(6) ,Higgs particle: doublet ,mixing [D0 anti-D0] ,Theoretical physics ,CP: violation: time dependence ,KEK-B ,0103 physical sciences ,quantum chromodynamics ,hidden sector [photon] ,composite ,010306 general physics ,Collider ,Particle Physics - Phenomenology ,photon: hidden sector ,hep-ex ,010308 nuclear & particles physics ,[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat] ,C50 Other topics in experimental particle physics ,violation: time dependence [CP] ,D0 anti-D0: mixing ,B2TiP ,530 Physik ,Experimental physics ,B: leptonic decay ,CKM matrix ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,penguin [electroweak interaction] ,leptonic decay [B] ,semileptonic decay [B] ,charm ,particle identification ,experimental results - Abstract
cd. autorów: L. Cao48,‡, G. Caria145,‡, G. Casarosa57,‡, C. Cecchi56,‡,D. Cˇ ervenkov10,‡,M.-C. Chang22,‡, P. Chang92,‡, R. Cheaib146,‡, V. Chekelian83,‡, Y. Chen154,‡, B. G. Cheon28,‡, K. Chilikin77,‡, K. Cho70,‡, J. Choi14,‡, S.-K. Choi27,‡, S. Choudhury35,‡, D. Cinabro170,‡, L. M. Cremaldi146,‡, D. Cuesta47,‡, S. Cunliffe16,‡, N. Dash33,‡, E. de la Cruz Burelo9,‡, E. de Lucia52,‡, G. De Nardo54,‡, †Editor. ‡Belle II Collaborator. §Theory or external contributing author. M. De Nuccio16,‡, G. De Pietro59,‡, A. De Yta Hernandez9,‡, B. Deschamps129,‡, M. Destefanis60,‡, S. Dey116,‡, F.Di Capua54,‡, S.Di Carlo75,‡, J. Dingfelder129,‡, Z. Doležal10,‡, I. Domínguez Jiménez125,‡, T.V. Dong30,26,‡, D. Dossett145,‡, S. Duell129,‡, S. Eidelman6,96,77,‡, D. Epifanov6,96,‡, J. E. Fast100,‡, T. Ferber16,‡, S. Fiore18,‡, A. Fodor85,‡, F. Forti57,‡, A. Frey24,‡, O. Frost16,‡, B. G. Fulsom100,‡, M. Gabriel83,‡, N. Gabyshev6,96,‡, E. Ganiev61,‡, X. Gao3,‡, B. Gao23,‡, R. Garg101,‡, A. Garmash6,96,‡, V. Gaur169,‡, A. Gaz90,‡, T. Geßler65,‡, U. Gebauer24,‡, M. Gelb48,‡, A. Gellrich16,‡, D. Getzkow65,‡, R. Giordano54,‡, A. Giri35,‡, A. Glazov16,‡, B. Gobbo61,‡, R. Godang157,‡, O. Gogota110,‡, P. Goldenzweig48,‡, B. Golob141,109,‡,W. Gradl63,‡, E. Graziani59,‡, M. Greco60,‡, D. Greenwald114,‡, S. Gribanov6,96,‡, Y. Guan17,‡, E. Guido60,‡, A. Guo41,‡, S. Halder111,‡, K. Hara30,26,‡, O. Hartbrich138,‡, T. Hauth48,‡, K. Hayasaka94,‡, H. Hayashii91,‡, C. Hearty130,‡, I. Heredia De La Cruz9,‡, M. Hernandez Villanueva9,‡, A. Hershenhorn130,‡, T. Higuchi66,‡,M. Hoek63,‡, S. Hollitt124,‡, N. T. HongVan44,‡, C.-L. Hsu160,‡, Y. Hu41,‡, K. Huang92,‡, T. Iijima89,90,‡, K. Inami90,‡, G. Inguglia40,‡,A. Ishikawa119,‡, R. Itoh30,26,‡, Y. Iwasaki30,‡, M. Iwasaki97,‡, P. Jackson124,‡, W. W. Jacobs37,‡, I. Jaegle137,‡, H. B. Jeon73,‡, X. Ji41,‡, S. Jia3,‡,Y. Jin162,‡, C. Joo66,‡,M. Künzel16,‡, I. Kadenko110,‡, J. Kahn78,‡, H. Kakuno121,‡, A. B. Kaliyar36,‡, J. Kandra10,‡, K. H. Kang73,‡, Y. Kato90,‡, T. Kawasaki68,‡, C. Ketter138,‡, M. Khasmidatul143,‡, H. Kichimi30,‡, J. B. Kim71,‡, K. T. Kim71,‡, H. J. Kim73,‡, D.Y. Kim108,‡, K. Kim172,‡, Y. Kim172,‡, T. D. Kimmel169,‡, H. Kindo30,26,‡, K. Kinoshita135,‡, T. Konno68,‡, A. Korobov6,96,‡, S. Korpar144,109,‡, D. Kotchetkov138,‡, R. Kowalewski165,‡, P. Križan141,109,‡, R. Kroeger146,‡, J.-F. Krohn145,‡, P. Krokovny6,96,‡, W. Kuehn65,‡, T. Kuhr78,‡, R. Kulasiri67,‡, M. Kumar81,‡, R. Kumar101,‡, T. Kumita121,‡, A. Kuzmin6,96,‡, Y.-J. Kwon172,‡, S. Lacaprara55,‡, Y.-T. Lai30,‡, K. Lalwani81,‡, J. S. Lange65,‡, S. C. Lee73,‡, J.Y. Lee106,‡, P. Leitl83,‡, D. Levit114,‡, S. Levonian16,‡, S. Li3,‡, L. K. Li41,‡, Y. Li41,‡,Y. B. Li103,‡, Q. Li103,‡, L. Li Gioi83,‡, J. Libby36,‡, Z. Liptak138,‡, D. Liventsev169,‡, S. Longo165,‡, A. Loos158,‡, G. Lopez Castro9,‡, M. Lubej109,‡, T. Lueck57,‡, F. Luetticke129,‡, T. Luo23,‡, F. Müller16,‡, Th. Müller48,‡, C. MacQueen145,‡, Y. Maeda90,‡, M. Maggiora60,‡, S. Maity33,‡, E. Manoni56,‡, S. Marcello60,‡, C. Marinas129,‡, M. Martinez Hernandez4,‡, A. Martini59,‡, D. Matvienko6,96,77,‡, J. A. McKenna130,‡, F. Meier160,‡, M. Merola54,‡, F. Metzner48,‡, C. Miller165,‡, K. Miyabayashi91,‡, H. Miyake30,26,‡, H. Miyata94,‡, R. Mizuk77,88,87,‡, G. B. Mohanty111,163,‡, H. K. Moon71,‡, T. Moon106,‡,A. Morda55,‡, T. Morii66,‡, M. Mrvar109,‡, G. Muroyama90,‡, R. Mussa60,‡, I. Nakamura30,26,‡, T. Nakano99,‡, M. Nakao30,26,‡, H. Nakayama30,26,‡, H. Nakazawa92,‡, T. Nanut109,‡, M. Naruki72,‡, K. J. Nath34,‡, M. Nayak116,‡, N. Nellikunnummel151,‡, D. Neverov90,‡, C. Niebuhr16,‡, J. Ninkovic84,‡, S. Nishida30,26,‡, K. Nishimura138,‡, M. Nouxman143,‡, G. Nowak93,‡, K. Ogawa94,‡, Y. Onishchuk110,‡, H. Ono94,‡, Y. Onuki162,‡, P. Pakhlov77,88,‡, G. Pakhlova87,‡, B. Pal5,‡, E. Paoloni57,‡, H. Park73,‡, C.-S. Park172,‡, B. Paschen129,‡, A. Passeri59,‡, S. Paul114,‡, T. K. Pedlar80,‡, M. Perelló46,‡, I. M. Peruzzi52,‡, R. Pestotnik109,‡, L. E. Piilonen169,‡, L. Podesta Lerma125,‡, V. Popov87,‡, K. Prasanth111,‡, E. Prencipe21,‡, M. Prim48,‡, M. V. Purohit158,‡, A. Rabusov114,‡, R. Rasheed47,‡, S. Reiter65,‡, M. Remnev6,96,‡, P. K. Resmi36,‡, I. Ripp-Baudot47,‡, M. Ritter78,‡, M. Ritzert139,‡, G. Rizzo57,‡, L. Rizzuto141,109,‡, S. H. Robertson85,‡, D. Rodriguez Perez125,‡, J. M. Roney165,‡, C. Rosenfeld158,‡, A. Rostomyan16,‡, N. Rout36,‡, S. Rummel78,‡, G. Russo54,‡, D. Sahoo111,‡, Y. Sakai30,26,‡, M. Salehi143,78,‡, D. A. Sanders146,‡, S. Sandilya135,‡, A. Sangal135,‡, L. Santelj47,‡, J. Sasaki162,‡, Y. Sato30,‡, V. Savinov151,‡, B. Scavino63,‡, M. Schram100,‡, H. Schreeck24,‡, J. Schueler138,‡,C. Schwanda40,‡,A. J. Schwartz135,‡,R.M. Seddon85,‡,Y. Seino94,‡, K. Senyo171,‡, O. Seon90,‡, I. S. Seong138,‡, M. E. Sevior145,‡, C. Sfienti63,‡, M. Shapkin38,‡, C. P. Shen3,‡,M. Shimomura91,‡, J.-G. Shiu92,‡, B. Shwartz6,96,‡,A. Sibidanov165,‡, F. Simon83,113,‡, J. B. Singh101,‡, R. Sinha42,‡, S. Skambraks83,‡, K. Smith145,‡, R. J. Sobie165,‡, A. Soffer116,‡, A. Sokolov38,‡, E. Solovieva77,87,‡, B. Spruck63,‡, S. Staniˇc149,‡, M. Stariˇc109,‡, N. Starinsky147,‡, U. Stolzenberg24,‡, Z. Stottler169,‡, R. Stroili55,‡, J. F. Strube100,‡, J. Stypula93,‡, M. Sumihama25,‡, K. Sumisawa30,26,‡, T. Sumiyoshi121,‡, D. Summers146,‡, W. Sutcliffe48,‡, S. Y. Suzuki30,26,‡, M. Tabata13,‡, M. Takahashi16,‡, M. Takizawa107,‡, U. Tamponi60,‡, J. Tan145,‡, S. Tanaka30,26,‡, K. Tanida2,‡, N. Taniguchi30,‡, Y. Tao137,‡, P. Taras147,‡, G. Tejeda Munoz4,‡, F. Tenchini16,‡, U. Tippawan12,‡, E. Torassa55,‡, K. Trabelsi30,26,‡, T. Tsuboyama30,26,‡, M. Uchida120,‡, S. Uehara30,26,‡, T. Uglov77,87,‡, Y. Unno28,‡, S. Uno30,26,‡, Y. Ushiroda30,26,162,‡, Y. Usov6,96,‡, S. E. Vahsen138,‡, R. van Tonder48,‡, G. Varner138,‡, K. E. Varvell160,‡, A. Vinokurova6,96,‡, L.Vitale61,‡,M.Vos46,‡,A.Vossen17,‡,E.Waheed145,‡,H.Wakeling85,‡,K.Wan162,‡, M.-Z.Wang92,‡, X. L. Wang23,‡, B. Wang135,‡, A. Warburton85,‡, J. Webb145,‡, S. Wehle16,‡, C. Wessel129,‡, J. Wiechczynski93,‡, P. Wieduwilt24,‡, E. Won71,‡, Q. Xu41,‡, X. Xu41,‡, B. D. Yabsley160,‡, S. Yamada30,‡, H. Yamamoto119,‡, W. Yan3,‡, W. Yan154,‡, S. B. Yang71,‡, H. Ye16,‡, I. Yeo70,‡, J. H. Yin41,‡, M. Yonenaga121,‡, T. Yoshinobu94,‡, W. Yuan55,‡, C. Z. Yuan41,‡, Y. Yusa94,‡, S. Zakharov77,87,‡, L. Zani57,‡, M. Zeyrek86,‡, J. Zhang41,‡,Y. Zhang23,‡,Y. Zhang154,‡, X. Zhou3,‡, V. Zhukova77,‡, V. Zhulanov6,96,‡, and A. Zupanc141,109,‡ †Editor. ‡Belle II Collaborator. §Theory or external contributing author., "The Belle II Theory Interface Platform (B2TiP) was created as a physics prospects working group of the Belle II collaboration in June 2014. It offered a platform where theorists and experimentalists could work together to elucidate the potential impacts of the Belle II program, which includes a wide scope of physics topics: B physics, charm, τ , quarkonium physics, electroweak precision measurements, and dark sector searches. It is composed of nine working groups (WGs), which 6/654 Downloaded from https://academic.oup.com/ptep/article-abstract/2019/12/123C01/5685006 by Uniwersytet Slaski Biblioteka Glowna user on 20 February 2020 PTEP 2019, 123C01 E. Kou et al. are coordinated by teams of theory and experiment conveners: WG1, Semileptonic and leptonic B Decays; WG2, Radiative and Electroweak Penguins; WG3, φ1 and φ2 (Time-Dependent CP Violation) Measurements; WG4, φ3 Measurement; WG5, Charmless Hadronic B Decay; WG6, Charm; WG7, Quarkonium(-like); WG8, τ and Low-Multiplicity Processes; WG9, New Physics. We organized workshops twice a year from 2014 until 2016, which moved from KEK in Japan to Europe and the Americas, gathering experts in the respective fields for discussions with Belle II members. One of the goals for B2TiP was to propose so-called “golden and silver channels”: we asked each working group to choose, among numerous possible measurements, those that would have the highest potential impact and to focus on them for the writeup. Theorists scrutinized the role of those measurements in terms of understanding the theory behind them, and estimated the theoretical uncertainties now achievable as well as prospects for the future. For flavor physics, having tight control of hadronic uncertainties is one of the most crucial aspects in the field, and this is considered an important criterion in determining the golden or silver channels. Experimentalists, on the other hand, investigated the expected improvements with data from Belle II. For the channels where the errors are dominated by statistical uncertainties, or where systematic errors are reducible, the errors can decrease rapidly as more data becomes available. The impact of the upgraded performance from Belle II is a crucial element in reducing the uncertainties: we therefore include the latest available studies of the detector efficiency using Monte Carlo simulated events.We list the golden and silver channel table in the introductory chapter, as a guide for the chapters that follow. This book is not a collection of reports based on talks given at the workshops. The working group conveners endeavored to construct a coherent document that can be used by Belle II collaborators, and others in the field of flavor physics, as a reference. Two books of a similar type have been produced in the past: The BaBar Book [1] and The Physics of the B Factories [2]. In order to avoid too much repetition with respect to those references, we refer to them wherever possible for introductory material. We would like to thank the section editors and contributing authors for the many stimulating discussions and their tremendous efforts in bringing the book together." (Preface)
- Published
- 2019
- Full Text
- View/download PDF
21. Rényi entropy at large energy density in 2D CFT
- Author
-
Feng Li Lin, Wu Zhong Guo, and Jia-ju Zhang
- Subjects
Canonical ensemble ,Physics ,High Energy Physics - Theory ,Nuclear and High Energy Physics ,Conformal Field Theory ,010308 nuclear & particles physics ,Conformal field theory ,Field Theories in Lower Dimensions ,Quantum entanglement ,AdS-CFT Correspondence ,01 natural sciences ,General Relativity and Quantum Cosmology ,Rényi entropy ,AdS/CFT correspondence ,Microcanonical ensemble ,0103 physical sciences ,Thermodynamic limit ,lcsh:QC770-798 ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,Statistical physics ,Entropy (energy dispersal) ,010306 general physics ,Condensed Matter - Statistical Mechanics - Abstract
We investigate the R\'enyi entropy and entanglement entropy of an interval with an arbitrary length in the canonical ensemble, microcanonical ensemble and primary excited states at large energy density in the thermodynamic limit of a two-dimensional large central charge $c$ conformal field theory. As a generalization of the recent work [Phys. Rev. Lett. 122 (2019) 041602], the main purpose of the paper is to see whether one can distinguish these various large energy density states by the R\'enyi entropies of an interval at different size scales, namely, short, medium and long. Collecting earlier results and performing new calculations in order to compare with and fill gaps in the literature, we give a more complete and detailed analysis of the problem. Especially, we find some corrections to the recent results for the holographic R\'enyi entropy of a medium size interval, which enlarge the validity region of the results. Based on the R\'enyi entropies of the three interval scales, we find that R\'enyi entropy cannot distinguish the canonical and microcanonical ensemble states for a short interval, but can do the job for both medium and long intervals. At the leading order of large $c$ the entanglement entropy cannot distinguish the canonical and microcanonical ensemble states for all interval lengths, but the difference of entanglement entropy for a long interval between the two states would appear with $1/c$ corrections. We also discuss R\'enyi entropy and entanglement entropy differences between the thermal states and primary excited state. Overall, our work provides an up-to-date picture of distinguishing different thermal or primary states at various length scales of the subsystem., Comment: V1, 20 pages, 7 figures; V2, 22 pages, 7 figures, minor revision, references added; V3, 22 pages, 5 figures, publised version
- Published
- 2019
- Full Text
- View/download PDF
22. Construction and classification of novel BPS Wilson loops in quiver Chern–Simons-matter theories
- Author
-
Jia-ju Zhang, Jun-Bao Wu, and Hao Ouyang
- Subjects
High Energy Physics - Theory ,Physics ,Nuclear and High Energy Physics ,010308 nuclear & particles physics ,High Energy Physics::Lattice ,Supercharge ,Quiver ,Chern–Simons theory ,FOS: Physical sciences ,Supersymmetry ,Type (model theory) ,01 natural sciences ,Matrix (mathematics) ,High Energy Physics::Theory ,High Energy Physics - Theory (hep-th) ,0103 physical sciences ,lcsh:QC770-798 ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,010306 general physics ,Quantum ,Orbifold ,Mathematical physics - Abstract
In this paper we construct and classify novel Drukker-Trancanelli (DT) type BPS Wilson loops along infinite straight lines and circles in $\mathcal N=2,3$ quiver superconformal Chern-Simons-matter theories, Aharony-Bergman-Jafferis-Maldacena (ABJM) theory, and $\mathcal N=4$ orbifold ABJM theory. Generally we have four classes of Wilson loops, and all of them preserve the same supersymmetries as the BPS Gaiotto-Yin (GY) type Wilson loops. There are several free complex parameters in the DT type BPS Wilson loops, and for two classes of Wilson loops in ABJM theory and $\mathcal N=4$ orbifold ABJM theory there are supersymmetry enhancements at special values of the parameters. We check that the differences of the DT type and GY type Wilson loops are $Q$-exact with $Q$ being some supercharges preserved by both the DT type and GY type Wilson loops. The results would be useful to calculate vacuum expectation values of the DT type Wilson loops in matrix models if they are still BPS quantum mechanically., Comment: V1, 28 pages; V2,35 pages, published version
- Published
- 2016
- Full Text
- View/download PDF
23. Roadmap on Wilson loops in 3d Chern–Simons-matter theories
- Author
-
Maxime Trépanier, Domenico Seminara, Matias Leoni, Fedor Levkovich-Maslyuk, Guillermo A. Silva, Diego H. Correa, Itamar Yaakov, Marco S. Bianchi, Michelangelo Preti, Silvia Penati, Marcia Tenser, Valentina Forini, Pavel Putrov, Nadav Drukker, Edoardo Vescovi, Luca Griguolo, Lorenzo Bianchi, Malte Probst, Diego Trancanelli, Jia-ju Zhang, Gabriel Nagaoka, Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Université Paris Diderot - Paris 7 (UPD7), Drukker, N, Trancanelli, D, Bianchi, L, Bianchi, M, Correa, D, Forini, V, Griguolo, L, Leoni, M, Levkovich-Maslyuk, F, Nagaoka, G, Penati, S, Preti, M, Probst, M, Putrov, P, Seminara, D, Silva, G, Tenser, M, Trépanier, M, Vescovi, E, Yaakov, I, and Zhang, J
- Subjects
High Energy Physics, Theory ,High Energy Physics - Theory ,Statistics and Probability ,dimension: 3 ,Field (physics) ,Chern–Simons theory ,FOS: Physical sciences ,General Physics and Astronomy ,nonperturbative ,01 natural sciences ,Wilson loop ,Theoretical physics ,0103 physical sciences ,Wilson loops ,roadmap ,QA ,010306 general physics ,Baseline (configuration management) ,ABJM model ,QC ,Ciencias Exactas ,Mathematical Physics ,Physics ,Chern-Simons term ,[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th] ,010308 nuclear & particles physics ,High Energy Physics,Theory ,matrix model ,Statistical and Nonlinear Physics ,State (functional analysis) ,FIS/02 - FISICA TEORICA, MODELLI E METODI MATEMATICI ,High Energy Physics - Theory (hep-th) ,Chern–Simons ,supersymmetry: 4 ,Modeling and Simulation ,string ,BPS ,supersymmetry - Abstract
This is a compact review of recent results on supersymmetric Wilson loops in ABJ(M) and related theories. It aims to be a quick introduction to the state of the art in the field and a discussion of open problems. It is divided into short chapters devoted to different questions and techniques. Some new results, perspectives and speculations are also presented. We hope this might serve as a baseline for further studies of this topic., Facultad de Ciencias Exactas, Instituto de Física La Plata
- Published
- 2020
- Full Text
- View/download PDF
24. Distinguishing Black Hole Microstates using Holevo Information
- Author
-
Feng Li Lin, Wu Zhong Guo, and Jia-ju Zhang
- Subjects
High Energy Physics - Theory ,Canonical ensemble ,Physics ,Statistical Mechanics (cond-mat.stat-mech) ,010308 nuclear & particles physics ,Conformal field theory ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,General Physics and Astronomy ,General Relativity and Quantum Cosmology (gr-qc) ,Space (mathematics) ,01 natural sciences ,General Relativity and Quantum Cosmology ,Black hole ,Microcanonical ensemble ,High Energy Physics - Theory (hep-th) ,Ministate ,Quantum mechanics ,0103 physical sciences ,Quantum gravity ,010306 general physics ,Central charge ,Condensed Matter - Statistical Mechanics - Abstract
We use the Holevo information in a two-dimensional conformal field theory (CFT) with a large central charge $c$ to distinguish microstates from the underlying thermal state. Holographically, the CFT microstates of a thermal state are dual to black hole microstate geometries in three-dimensional anti-de Sitter space. It was found recently that the holographic Holevo information shows plateau behaviors at both short and long interval regions. This indicates that the black hole microstates are indistinguishable from the thermal state by measuring over a small region, and perfectly distinguishable over a region with its size comparable to the whole system. In this letter, we demonstrate that the plateaus are lifted by including the $1/c$ corrections from both the vacuum and non-vacuum conformal families of CFT in either the canonical ensemble or microcanonical ensemble thermal state. Our results imply that the aforementioned indistinguishability and distinguishability of black hole microstate geometries from the underlying black hole are spoiled by higher order Newton constant $G_N$ corrections of quantum gravity., V1, 5+7 pages, 3 figures; V2, discussions on numbers of primary and descendant states refined; V3, 5+7 page, 1+2 figures, references added, published version
- Published
- 2018
- Full Text
- View/download PDF
25. Non-geometric States in a Holographic Conformal Field Theory
- Author
-
Jia-ju Zhang, Feng Li Lin, and Wu Zhong Guo
- Subjects
Physics ,High Energy Physics - Theory ,Conformal field theory ,FOS: Physical sciences ,General Relativity and Quantum Cosmology (gr-qc) ,Quantum entanglement ,General Relativity and Quantum Cosmology ,Bohr model ,symbols.namesake ,Superposition principle ,High Energy Physics::Theory ,High Energy Physics - Theory (hep-th) ,symbols ,Anti-de Sitter space ,Central charge ,Quantum ,Replica trick ,Mathematical physics - Abstract
In the AdS$_3$/CFT$_2$ correspondence, we find some conformal field theory (CFT) states that have no bulk description by the Ba\~nados geometry. We elaborate the constraints for a CFT state to be geometric, i.e., having a dual Ba\~nados metric, by comparing the order of central charge of the entanglement/R\'enyi entropy obtained respectively from the holographic method and the replica trick in CFT. We find that the geometric CFT states fulfill Bohr's correspondence principle by reducing the quantum KdV hierarchy to its classical counterpart. We call the CFT states that satisfy the geometric constraints geometric states, and otherwise non-geometric states. We give examples of both the geometric and non-geometric states, with the latter case including the superposition states and descendant states., Comment: 19 pages, v2 match the published version
- Published
- 2018
26. Dissimilarities of reduced density matrices and eigenstate thermalization hypothesis
- Author
-
Feng Li Lin, Jia-ju Zhang, and Song He
- Subjects
High Energy Physics - Theory ,Nuclear and High Energy Physics ,Kullback–Leibler divergence ,FOS: Physical sciences ,AdS-CFT Correspondence ,01 natural sciences ,Rényi entropy ,0103 physical sciences ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,Statistical physics ,Operator product expansion ,010306 general physics ,Eigenstate thermalization hypothesis ,Condensed Matter - Statistical Mechanics ,Canonical ensemble ,Physics ,Quantum Physics ,Conformal Field Theory ,Statistical Mechanics (cond-mat.stat-mech) ,Field Theories in Lower Dimensions ,010308 nuclear & particles physics ,Conformal field theory ,Microcanonical ensemble ,High Energy Physics - Theory (hep-th) ,lcsh:QC770-798 ,Quantum Physics (quant-ph) ,Central charge - Abstract
We calculate various quantities that characterize the dissimilarity of reduced density matrices for a short interval of length $\ell$ in a two-dimensional (2D) large central charge conformal field theory (CFT). These quantities include the R\'enyi entropy, entanglement entropy, relative entropy, Jensen-Shannon divergence, as well as the Schatten 2-norm and 4-norm. We adopt the method of operator product expansion of twist operators, and calculate the short interval expansion of these quantities up to order of $\ell^9$ for the contributions from the vacuum conformal family. The formal forms of these dissimilarity measures and the derived Fisher information metric from contributions of general operators are also given. As an application of the results, we use these dissimilarity measures to compare the excited and thermal states, and examine the eigenstate thermalization hypothesis (ETH) by showing how they behave in high temperature limit. This would help to understand how ETH in 2D CFT can be defined more precisely. We discuss the possibility that all the dissimilarity measures considered here vanish when comparing the reduced density matrices of an excited state and a generalized Gibbs ensemble thermal state. We also discuss ETH for a microcanonical ensemble thermal state in a 2D large central charge CFT, and find that it is approximately satisfied for a small subsystem and violated for a large subsystem., Comment: V1, 34 pages, 5 figures, see collection of complete results in the attached Mathematica notebook; V2, 38 pages, 5 figures, published version
- Published
- 2017
27. String theory duals of Wilson loops from Higgsing
- Author
-
Andrea Mauri, Jia-ju Zhang, Silvia Penati, Marco Lietti, Lietti, M, Mauri, A, Penati, S, and Zhang, J
- Subjects
High Energy Physics - Theory ,Nuclear and High Energy Physics ,Wilson loop ,Chern-Simons Theories ,FOS: Physical sciences ,Chern-Simons Theorie ,String theory ,01 natural sciences ,ât Hooft and Polyakov loop ,Theoretical physics ,High Energy Physics::Theory ,0103 physical sciences ,Field theory (psychology) ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,010306 general physics ,Orbifold ,Physics ,M-theory ,010308 nuclear & particles physics ,Quiver ,Wilson ,M-Theory ,Moduli space ,High Energy Physics - Theory (hep-th) ,’t Hooft and Polyakov loops ,lcsh:QC770-798 ,Supersymmetry and Duality ,Dual polyhedron - Abstract
For three-dimensional ABJ(M) theories and $\mathcal N=4$ Chern-Simons-matter quiver theories, we construct two sets of 1/2 BPS Wilson loop operators by applying the Higgsing procedure along independent directions of the moduli space, and choosing different massive modes. For theories whose dual M-theory description is known, we also determine the corresponding spectrum of 1/2 BPS M2-brane solutions. We identify the supercharges in M-theory and field theory, as well as the supercharges preserved by M2-/anti-M2-branes and 1/2 BPS Wilson loops. In particular, in $\mathcal N=4$ orbifold ABJM theory we find pairs of different 1/2 BPS Wilson loops that preserve exactly the same set of supercharges. In field theory they arise by Higgsing with the choice of either particles or antiparticles, whereas in the dual description they correspond to a pair of M2-/anti-M2-branes localized at different positions in the compact space. This result enlightens the origin of classical Wilson loop degeneracy in these theories, already discussed in arXiv:1506.07614. A discussion on possible scenarios that emerge by comparison with localization results is included., 52 pages, 4 figures; V2, 61 pages, 4 figures, supercharges in gravity and field theory identified, conclusion unchanged, published version
- Published
- 2017
28. Holographic Rényi entropy for two-dimensional N=(2,2) superconformal field theory
- Author
-
Zhibin Li and Jia-ju Zhang
- Subjects
Physics ,010308 nuclear & particles physics ,Cauchy stress tensor ,Supergravity ,High Energy Physics::Phenomenology ,Graviton ,Torus ,01 natural sciences ,Rényi entropy ,High Energy Physics::Theory ,Quantum electrodynamics ,0103 physical sciences ,Vector field ,Gravitino ,010306 general physics ,Complex plane ,Mathematical physics - Abstract
We investigate the holographic Renyi entropy for two-dimensional N=(2,2) superconformal field theory (SCFT), which is dual to N=2 supergravity in an AdS3 background. In SCFT we have the stress tensor, the current, and their supersymmetric partners, and in supergravity we have the graviton, the vector field, and two gravitinos. We get the Renyi mutual information of two short intervals on the complex plane in expansion by the cross ratio x to order x4, and the Renyi entropy of one interval on a torus in expansion by q=exp(-2πβ/L), with β being the inverse temperature and L being the spatial period, to order q2. We calculate on both the supergravity and SCFT sides, and we find matches of the results.
- Published
- 2017
- Full Text
- View/download PDF
29. Precise Measurement of the e+e−→π+π−J/ψ Cross Section at Center-of-Mass Energies from 3.77 to 4.60 GeV
- Author
-
Teng Li, B. S. Zou, D. Y. Liu, J. P. Dai, Jianmin Dong, Yong Ban, Y. D. Wang, J. F. Qiu, S. Q. Zhang, C. F. Qiao, Z. Ning, K. Li, K. Zhang, J. Lange, Q. P. Ji, Lei Li, W. X. Gong, Y. J. Mao, G. Cibinetto, F. C. Ma, M. Maggiora, Wei Li, R. G. Ping, J. V. Bennett, T. Holtmann, J. S. Yu, S. S. Fang, Xuejun Wang, Hongji Yang, Kejun Zhu, Q. J. Xu, Zhiyong Zhang, A. Sarantsev, X. H. Sun, Guangshun Huang, L. Yan, Q. Gao, Lei Zhao, Q. An, H. R. Qi, X. C. Lou, Zhen Wang, Yiming Zhang, F. A. Harris, J. Y. Zhang, Yuehong Xie, A. Dbeyssi, J. Min, Z. J. Xiao, M. H. Gu, X. D. Ruan, L. L. Ma, H. Loehner, L. Gong, Ming-Xing Luo, X. N. Ma, A. Zhemchugov, L. S. Wang, Y. T. Liang, Qi Liu, X. D. Chen, Zhiqing Liu, X. L. Ji, Z. B. Li, M. Kavatsyuk, Bibo Ke, Yuekun Heng, E. H. Thorndike, S. P. Wen, C. D. Fu, G. Rong, Wolfgang Kuhn, Serkant Ali Cetin, H. Leithoff, P. F. Duan, H. H. Zhang, Bingxuan Liu, S. Jin, Xingtao Huang, L. Lavezzi, B. L. Wang, M. N. Achasov, Giulietto Felici, Xiaozhong Huang, X. B. Ji, Mingshui Chen, A. Amoroso, W. M. Song, Sai-Juan Chen, S. Pacetti, Y. H. Zheng, Fang Liu, Y. F. Wang, H. Muramatsu, Hao Liang, M. Wolke, Z. Wu, O. B. Kolcu, Jian Zhuang, Y. B. Li, A. Denig, Jin Li, Qun Ouyang, Jian Fang, S. H. Zhu, X. H. Mo, W. P. Wang, Yingchun Zhu, Orhan Cakir, M. Lara, P. Kiese, Siyuan Sun, M. Shao, A. Q. Guo, Andrzej Kupsc, C. Leng, Xu Zhou, H. B. Li, Shou-hua Zhu, M. Tiemens, X. Q. Hao, R. Kliemt, H. J. Li, M. Ye, L. Zotti, L. Zhang, Jiajun Zheng, Y. T. Gu, Zhi Zeng, N. Yu. Muchnoi, H. Cai, D. X. Lin, Y. H. Guan, R. A. Briere, A. Julin, Kai Wang, Y. Xia, F. Y. Li, S. L. Olsen, Z. Liu, B. Zheng, Zheng Wang, Guo-Ming Chen, J. Z. Bai, F. Feldbauer, Shujun Zhao, H. L. Dai, Z. T. Sun, C. P. Shen, Yong Liu, D. Bettoni, D. Y. Wang, Y. Zeng, R. Farinelli, G. F. Xu, Xuan Zhang, Jie Liu, H. Y. Sheng, Wang Zengqiang, Niu Xiaoyang, Z. Jiao, C. L. Luo, Cen Zhang, S. X. Du, Y. P. Lu, Y. N. Zhang, Fabrizio Bianchi, Zhengguo Zhao, Michela Greco, Guangyu Zhao, J. W. Zhao, Jie Zhao, S. Z. Chen, Changjian Tang, S. Ahmed, Y. X. Yang, Jie Zhang, Jia Xu, H. X. Yang, V. Prasad, L. Y. Dong, M. G. Zhao, Xianglei Zhu, R. Baldini Ferroli, F. H. Heinsius, J. F. Chang, X. K. Zhou, Wenbiao Yan, Ming Qi, Xian Gao, P. Wang, S. Marcello, J.H. Yin, G. F. Cao, A. Yuncu, D. M. Li, Haiwen Liu, J. F. Sun, Yongke Zhao, R. Poling, B. Zhong, L. B. Guo, D. H. Wei, E. Fioravanti, Y. G. Xie, Jia-ju Zhang, Yunpeng Lu, X. P. Xu, K. Schoenning, Q. Y. Li, Jiemin Li, T. Luo, Y. Zhang, B. Wang, Y. Z. Sun, Junguang Lu, X. R. Zhou, Cheng Li, Yuanbo Chen, Jingzhou Fan, T. Held, Niklaus Berger, A. Hafner, J. G. Messchendorp, T. Ma, Dmitri Dedovich, Q. L. Xiu, M. Pelizaeus, G. X. Sun, Z. P. Mao, I. Uman, Xiang Li, A. Calcaterra, L. L. Wang, Xiang Zhou, S. B. Liu, B. Kloss, X. S. Qin, Cunming Liu, Y. Guo, G. R. Liao, X. Y. Shen, Jingzhou Zhao, X. W. Tang, B. Kopf, I. B. Nikolaev, Ding-Xiong Wang, Ye-Fei Yuan, B. X. Zhang, M. Bertani, Minglin Ma, S. L. Niu, M. Kornicer, Z. Y. You, J. S. Huang, Hong Ma, R. E. Mitchell, L. Yang, F. F. An, I. Denysenko, Q. A. Malik, Z. Y. Deng, J. Liu, H. H. Liu, M. Fritsch, C. Dong, Y. H. Yan, O. Albayrak, Zhenyu Zhang, B. J. Liu, L. G. Xia, Tiefu Zhao, S. Sosio, H. Y. Zhang, Wu Li, Jianhao Zhang, Tao Hu, Joachim Pettersson, Meng Wang, Jia Liu, M. Destefanis, X. S. Kang, Chang-Zheng Yuan, Y. J. Mo, Cunfeng Feng, D. H. Zhang, G. Mezzadri, W. C. Yan, F. E. Maas, L. Q. Qin, L. Fava, Zhanwen Zhu, Y. F. Liang, X. L. Li, H. S. Chen, M. Ripka, T. Weber, Y. Ding, N. Qin, P. L. Liu, Chen Hu, Z. L. Hou, X. L. Luo, X. K. Chu, H. J. Lu, B. Y. Zhang, C. Morales Morales, Feng Liu, Ling Zhao, O. Bakina, X. S. Jiang, Kanglin He, Zhao-Long Wang, Z. Gao, Ch. Rosner, I. Garzia, Jianyu Zhang, L. H. Wu, P. X. Shen, Ka-Yuet Liu, P. Musiol, L. W. Jiang, C. F. Redmer, C. Schnier, Zhiqing Zhang, W. Gradl, M. Ablikim, Yu Zhang, A. A. Zafar, J. M. Zhang, S. Han, M. Savrie, J. M. Bian, Y.N. Gao, L. Xia, Jianbei Liu, Lei Xu, W. Shan, Dan Bennett, N. Kalantar-Nayestanaki, Jianguo Zhang, Yi Fang, Y. Q. Wang, K. H. Rashid, U. Wiedner, Qingnian Xu, Qiang Zhao, S. Nisar, Y. Hu, Kai Liu, Xin Fang, H. B. Liu, X. L. Kang, D. Xiao, Q. W. Zhao, M. H. Ye, X. Y. Jiang, Yun-Zhi Zhang, P. Weidenkaff, L. D. Liu, P. R. Li, J. L. Ping, Zahra Haddadi, W. J. Zheng, Y. Nefedov, F. Nerling, Y. Pan, J. Chai, X. Z. Cai, R. P. Guo, W. Ikegami Andersson, Tord Johansson, F. De Mori, Fu-Hu Liu, Y. J. Sun, Z. J. Sun, Y. P. Guo, Y. S. Zhu, Y. B. Liu, Gang Li, G. S. Varner, G. A. Chelkov, Z. H. Qin, Talib Hussain, Yanwei Wang, Li Zhou, Z. L. Dou, D. P. Jin, Xiao-Rui Lyu, X. Y. Ma, M. Y. Dong, Qingming Ma, Kai Zhu, Z. L. Huang, J. C. Chen, S. Qian, Xiang Liu, Xiaoyu Li, Jiaheng Zou, Chunxu Yu, T. J. Min, L. J. Wu, P. Larin, Krisztian Peters, J. F. Hu, Y. Ma, S. Spataro, Jianbin Jiao, B. X. Yu, K. Goetzen, I. Boyko, H. P. Peng, H. M. Hu, I. Tapan, W. F. Wang, H. Xiao, E. Boger, Xinying Song, D. J. Ambrose, Xiaocong Ai, X. R. Chen, M. Albrecht, Cui Li, and P. Patteri
- Subjects
Nuclear physics ,Physics ,Cross section (physics) ,010308 nuclear & particles physics ,0103 physical sciences ,General Physics and Astronomy ,Sigma ,Center of mass ,010306 general physics ,01 natural sciences ,Resonance (particle physics) ,Belle experiment ,Storage ring - Abstract
The cross section for the process e(+)e(-)-> pi(+) pi(-) J/psi is measured precisely at center-of-mass energies from 3.77 to 4.60 GeV using 9 fb(-1) of data collected with the BESIII detector operating at the BEPCII storage ring. Two resonant structures are observed in a fit to the cross section. The first resonance has a mass of (222.0 +/- 3.1 +/- 1.4) MeV/ c(2) and a width of (44.1 +/- 4.3 +/- 2.0)MeV, while the second one has a mass of (4320.0 +/- 10.4 +/- 7.0)MeV/c(2) and a width of (101.4(- 19.7)(+25.3) +/- 10.2) MeV, where the first errors are statistical and second ones are systematic. The first resonance agrees with the Y(4260) resonance reported by previous experiments. The precision of its resonant parameters is improved significantly. The second resonance is observed in e(+)e(-)-> pi(+) pi(-) J/psi for the first time. The statistical significance of this resonance is estimated to be larger than 7.6 sigma. The mass and width of the second resonance agree with the Y(4360) resonance reported by the BABAR and Belle experiments within errors. Finally, the Y(4008) resonance previously observed by the Belle experiment is not confirmed in the description of the BESIII data.
- Published
- 2017
- Full Text
- View/download PDF
30. Subsystem eigenstate thermalization hypothesis for entanglement entropy in CFT
- Author
-
Feng Li Lin, Jia-ju Zhang, and Song He
- Subjects
High Energy Physics - Theory ,Nuclear and High Energy Physics ,Kullback–Leibler divergence ,FOS: Physical sciences ,Quantum entanglement ,AdS-CFT Correspondence ,01 natural sciences ,Rényi entropy ,Condensed Matter - Strongly Correlated Electrons ,0103 physical sciences ,Trace distance ,Entropy (information theory) ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,Statistical physics ,010306 general physics ,Eigenstate thermalization hypothesis ,Condensed Matter - Statistical Mechanics ,Physics ,Canonical ensemble ,Quantum Physics ,Conformal Field Theory ,Statistical Mechanics (cond-mat.stat-mech) ,Strongly Correlated Electrons (cond-mat.str-el) ,010308 nuclear & particles physics ,Holography and condensed matter physics (AdS/CMT) ,High Energy Physics - Theory (hep-th) ,lcsh:QC770-798 ,Central charge ,Quantum Physics (quant-ph) - Abstract
We investigate a weak version of subsystem eigenstate thermalization hypothesis (ETH) for a two-dimensional large central charge conformal field theory by comparing the local equivalence of high energy state and thermal state of canonical ensemble. We evaluate the single-interval R\'enyi entropy and entanglement entropy for a heavy primary state in short interval expansion. We verify the results of R\'enyi entropy by two different replica methods. We find nontrivial results at the eighth order of short interval expansion, which include an infinite number of higher order terms in the large central charge expansion. We then evaluate the relative entropy of the reduced density matrices to measure the difference between the heavy primary state and thermal state of canonical ensemble, and find that the aforementioned nontrivial eighth order results make the relative entropy unsuppressed in the large central charge limit. By using Pinsker's and Fannes-Audenaert inequalities, we can exploit the results of relative entropy to yield the lower and upper bounds on trace distance of the excited-state and thermal-state reduced density matrices. Our results are consistent with subsystem weak ETH, which requires the above trace distance is of power-law suppression by the large central charge. However, we are unable to pin down the exponent of power-law suppression. As a byproduct we also calculate the relative entropy to measure the difference between the reduced density matrices of two different heavy primary states., Comment: 28 pages, 4 figures;v2 change author list;v3 related subtleties about weak ETH clarified; v4 minor correction to match JHEP version
- Published
- 2017
31. New BPS Wilson loops in N = 4 circular quiver Chern-Simons-matter theories
- Author
-
Silvia Penati, Jia-ju Zhang, Andrea Mauri, Mauri, A, Penati, S, and Zhang, J
- Subjects
M-theory ,Physics ,High Energy Physics - Theory ,Nuclear and High Energy Physics ,Chern-Simons Theories M-Theory Supersymmetric Gauge Theory Wilson, ’t Hooft and Polyakov loops ,010308 nuclear & particles physics ,High Energy Physics::Lattice ,Scalar (mathematics) ,Quiver ,Chern–Simons theory ,Holonomy ,FOS: Physical sciences ,Computer Science::Digital Libraries ,01 natural sciences ,Cohomology ,High Energy Physics::Theory ,High Energy Physics - Theory (hep-th) ,Supersymmetric gauge theory ,0103 physical sciences ,Computer Science::Mathematical Software ,010306 general physics ,Orbifold ,Mathematical physics - Abstract
We construct new families of 1/4 BPS Wilson loops in circular quiver $\mathcal N=4$ superconformal Chern-Simons-matter (SCSM) theories in three dimensions. They are defined as the holonomy of superconnections that contain non-trivial couplings to scalar and fermions, and cannot be reduced to block-diagonal matrices. Consequently, the new operators cannot be written in terms of double-node Wilson loops, as the ones considered so far in the literature. For particular values of the couplings the superconnection becomes block-diagonal and we recover the known fermionic 1/4 and 1/2 BPS Wilson loops. The new operators are cohomologically equivalent to bosonic 1/4 BPS Wilson loops and are then amenable of exact evaluation via localization techniques. Moreover, in the case of orbifold ABJM theory we identify the corresponding gravity duals for some of the 1/4 and 1/2 BPS Wilson loops., Comment: 32 pages; v2: minor improvements, general classification of BPS WLs added; v3: comments added, typos fixed, JHEP published version
- Published
- 2017
32. Thermodynamics of two-dimensional conformal field theory dual to black holes
- Author
-
Jia-ju Zhang
- Subjects
Physics ,High Energy Physics - Theory ,Nuclear and High Energy Physics ,Black hole information paradox ,White hole ,Astrophysics::High Energy Astrophysical Phenomena ,Thermodynamics ,FOS: Physical sciences ,General Relativity and Quantum Cosmology (gr-qc) ,Charged black hole ,General Relativity and Quantum Cosmology ,Black hole ,High Energy Physics::Theory ,Rotating black hole ,High Energy Physics - Theory (hep-th) ,Mathematics::Quantum Algebra ,Mathematics::Category Theory ,Extremal black hole ,Black brane ,Black hole thermodynamics - Abstract
In this note we investigate the first law of thermodynamics of the two-dimensional conformal field theory (CFT) that is dual to black holes. We start from the Cardy formula and get the CFT thermodynamics with minimal reasonable assumptions. We use both the microcanonical ensemble and canonical ensemble versions of the Cardy formula. In the black hole/CFT correspondence the black hole is dual to a CFT with excitations, and the black hole mass $M$ and charge $N$ correspond to the energy and charge of the excited CFT. The CFT left- and right-moving central charges $c_{L,R}$ should be quantized, and so we assume that they are mass-independent. Also we assume the difference of the left- and right-moving sector levels $N_L-N_R$ is mass-independent dual to level matching condition. The thermodynamics of two-dimensional CFT we get is universal and supports the thermodynamics method of black hole/CFT correspondence., Comment: 10 pages
- Published
- 2014
- Full Text
- View/download PDF
33. Measurements of the absolute branching fractions forDs+→ηe+νeandDs+→η′e+νe
- Author
-
H. J. Lu, J. G. Lu, Xiangdong Ruan, S. L. Niu, Q. Liu, Lei Zhao, F. Y. Li, X. Q. Li, Y. F. Long, L. L. Ma, L. Gong, L. Fava, F. E. Maas, M. Greco, T. Hu, A. Amoroso, O. Bakina, W. G. Li, P. L. Wang, X. L. Luo, A. Dbeyssi, J. H. Yin, Q. P. Ji, Y. J. Sun, P. X. Shen, Y. T. Gu, S. Spataro, X. P. Xu, Y. Y. Liu, K. Y. Liu, W. P. Wang, F. Bianchi, Z. L. Huang, Feng Liu, X. L. Ji, S. Ahmed, Y. X. Yang, Z. Wu, Zhigang Wang, L. W. Jiang, Lei Li, Z. B. Li, W. Ikegami Andersson, E. Fioravanti, M. Ablikim, G. A. Chelkov, L. J. Wu, Jun-Yi Zhang, A. Julin, Y. P. Guo, Zhiqing Zhang, X. Q. He, X. L. Gao, Jin Li, A. Zallo, X. L. Kang, A. Sarantsev, D. H. Wei, Q. Ouyang, Y. J. Mo, D. Liu, S. S. Fang, Y. B. Liu, Q. L. Xiu, G. F. Cao, J. S. Lange, Q. W. Zhao, A. Hafner, Q. Zhao, Zhe Zeng, P. Kiese, Y. Pan, M. H. Ye, H. H. Liu, Jia Xu, Y. Z. Sun, L. Zotti, Cheng Li, C. Hu, Xiang Zhou, X. Tang, F. De Mori, D. W. Bennett, Zujian Wang, X. A. Xiong, Z. T. Sun, M. Qi, Y. X. Xia, J. C. Li, S. L. Olsen, A. Yuncu, R. A. Briere, Yaquan Fang, Z. A. Liu, Zhiqing Liu, W. C. Yan, Jie Liu, L. D. Liu, X. N. Ma, I. Tapan, X. Y. Zhou, Gang Zhao, Y. T. Liang, Y. G. Xie, J. Zhuang, T. Weber, M. Shao, A. A. Zafar, S. B. Liu, Ke Wang, X. S. Jiang, Y. H. Guan, C. Leng, X. C. Lou, L. Y. Dong, M. X. Luo, Y. H. Yan, V. Prasad, S. X. Du, Y. Ban, T. Johansson, J. F. Chang, H. J. Yang, Z. G. Zhao, J. W. Zhao, W. J. Zheng, Yucheng Huang, D. V. Dedovich, Z. L. Dou, T. Holtmann, P. L. Li, G. Rong, P. Weidenkaff, F. H. Heinsius, W. M. Song, Y. C. Zhu, Kai Liu, X. F. Wang, K. H. Rashid, P. F. Duan, K. Schoenning, Q. Y. Li, Y. B. Zhao, O. Cakir, O. B. Kolcu, M. Fritsch, X. Cai, Q. M. Ma, Liqing Xu, X. Y. Shen, G. F. Xu, Klaus Peters, F. A. Harris, S. P. Wen, B. L. Wang, X. S. Qin, Q. Gao, Y. N. Gao, S. Jin, B. Kloss, W. Shan, Niklaus Berger, K. J. Zhu, Y. F. Wang, J. Z. Bai, J. Q. Zhang, E. H. Thorndike, M. Kavatsyuk, X. Y. Niu, T. Held, Y. Zhang, T. C. Zhao, Y. Yuan, Y. S. Zhu, Chi Zhang, M. G. Zhao, X. Q. Hao, S. J. Chen, R. P. Guo, Jie Zhao, D. X. Lin, H. M. Hu, H. Leithoff, G. S. Huang, Zhenghao Zhang, Z. H. Qin, Y. Nefedov, A. Zhemchugov, Y. Guo, Jia-Jia Qin, Jia-ju Zhang, Xiao-Rui Lyu, Y. Ding, B. S. Zou, I. B. Nikolaev, Y. Q. Wang, T. Hussain, F. C. Ma, X. Y. Ma, O. Dorjkhaidav, S. Nisar, C. J. Tang, Y. Hu, Y. P. Lu, D. J. Ambrose, Tao Luo, B. X. Zhang, Z. Ning, S. Han, Y. J. Mao, J. B. Liu, X. K. Chu, H. X. Yang, W. X. Gong, A. Calcaterra, S. Fegan, X. Y. Song, F. Feldbauer, I. Garzia, B. J. Liu, B. X. Yu, G. S. Varner, A. Q. Guo, D. Bettoni, X. H. Mo, Dan Wang, H. P. Peng, J. L. Zhang, R. Farinelli, M. Bertani, R. Poling, L. H. Wu, M. Savrie, D. Xiao, Cui Li, H. H. Zhang, Z. Haddadi, H. L. Ma, W. Kühn, Z. Y. You, X. Fang, M. Albrecht, S. H. Zhu, Z. A. Zhu, L. S. Wang, X. B. Ji, Jianping Zheng, J. P. Liu, J. F. Sun, J. F. Qiu, X. C. Chen, S. Zhu, S. Schumann, H. S. Chen, D. M. Li, Z. J. Sun, H. Loehner, B.Y. Wang, H. Xiao, L. Yang, Yao Wang, J. M. Bian, Zhenyu Zhang, S. J. Zhao, S. Marcello, Y. Zeng, P. Patteri, W. D. Li, Peilian Liu, X. Y. Jiang, Lingxuan Zhang, X. H. Sun, Jianhao Zhang, K. Goetzen, J. G. Messchendorp, M. Pelizaeus, H. L. Dai, Igor Boyko, L. L. Wang, H. Cai, Q. A. Malik, G. Mezzadri, M. M. Ma, J. P. Dai, F. Nerling, I. Uman, Bingxuan Liu, H. B. Li, M. Shi, J. Chai, W. Gradl, J. C. Chen, C. P. Shen, G. Cibinetto, X. R. Zhou, Yu Zhang, M. Destefanis, Y. B. Chen, Xiaofeng Zhu, J. Z. Zhang, R. Baldini Ferroli, G. Li, M. Ripka, A. G. Denig, C. L. Luo, L. P. Zhou, Nasser Kalantar-Nayestanaki, P. Musiol, B. Y. Zhang, D. Y. Wang, C. C. Zhang, C. Morales Morales, Q. J. Xu, Y. M. Ma, Z. P. Mao, M. H. Gu, C. D. Fu, C. Dong, S. Sosio, P. Larin, J. Min, C. F. Redmer, Xiaocong Ai, B. Zhong, L. B. Guo, X. R. Chen, C. Schnier, X. T. Huang, Z. G. Wang, H. Y. Zhang, X. N. Li, Z. Y. Deng, Haiwen Liu, H. P. Cheng, L. Xia, J. Fang, Tao Li, Joachim Pettersson, B. Kopf, J. Liu, W. B. Yan, C. X. Yu, K. L. He, G. X. Sun, J. V. Bennett, H. Muramatsu, Xingguo Li, Ulrich Wiedner, Y. H. Zheng, Cong-Feng Qiao, G. F. Chen, X. K. Zhou, O. Albayrak, D. H. Zhang, Ch. Rosner, R. Kliemt, Z. Jiao, Fu-Hu Liu, C. Q. Feng, M. Z. Wang, Jimin Zhao, R. G. Ping, G. R. Liao, J. F. Hu, J. Y. Zhang, Jie Yu, Y. B. Li, N. Yu. Muchnoi, B. Zheng, X. S. Kang, Y. H. Zhang, M. Kornicer, T. Ma, Z. Gao, J. S. Huang, C. X. Liu, T. J. Min, Y. K. Heng, Z. Y. Wang, L. Yan, Y. T. Zhang, M. Maggiora, Ling Zhao, Z. L. Hou, H. Y. Sheng, C. Z. Yuan, X. Liu, H. R. Qi, Z. J. Xiao, Serkant Ali Cetin, J. B. Jiao, Jianmin Dong, S. Q. Zhang, Fang Liu, Q. An, I. Denysenko, S. Qian, Jialun Ping, K. Zhang, X. Y. Zhang, M. Lara, E. Boger, Hao-Lin Li, M. Y. Dong, M. Tiemens, H. B. Liu, J. H. Zou, S. S. Sun, R. E. Mitchell, Bibo Ke, M. N. Achasov, Giulietto Felici, S. Pacetti, Ke Li, H. Liang, P. L. Chen, F. F. An, Magnus Wolke, Y. F. Liang, D. P. Jin, Dayong Wang, N. Qin, Xiaozhong Huang, Andrzej Kupsc, W. L. Yuan, and M. L. Chen
- Subjects
Physics ,010308 nuclear & particles physics ,Branching fraction ,Electron–positron annihilation ,0103 physical sciences ,Analytical chemistry ,High Energy Physics::Experiment ,Astrophysics::Earth and Planetary Astrophysics ,Atomic physics ,Nuclear Experiment ,010306 general physics ,Branching (polymer chemistry) ,01 natural sciences - Abstract
By analyzing 482 pb(-1) of e(+)e(-) collision data collected at root s = 4.009 GeV with the BESIII detector at the BEPCII collider, we measure the absolute branching fractions for the semileptonic decays D-s(+) -> eta e(+)nu(e) and D-s(+) -> eta ' e(+)nu(e) to be B(D-s(+) -> eta e(+)nu(e)) = (2.30 +/- 0.31 +/- 0.08)% and B(D-s(+) -> eta ' e(+)nu(e)) = (0.93 +/- 0.30 +/- 0.05)%, respectively, and their ratio B(D-s(+) -> eta ' e(+)nu(e)) / B(D-s(+) -> eta ' e(+)nu(e)) = 0.40 +/- 0.14 +/- 0.02, where the first uncertainties are statistical and the second ones are systematic. The results are in good agreement with previous measurements within uncertainties; they can be used to determine the eta-eta' mixing angle and improve upon the D-s(+) semileptonic branching ratio precision.
- Published
- 2016
- Full Text
- View/download PDF
34. Thermality and excited state R\'enyi entropy in two-dimensional CFT
- Author
-
Jia-ju Zhang, Feng Li Lin, and Huajia Wang
- Subjects
Physics ,High Energy Physics - Theory ,Nuclear and High Energy Physics ,010308 nuclear & particles physics ,Conformal field theory ,Conformal map ,Quantum entanglement ,01 natural sciences ,Excited state ,0103 physical sciences ,Thermal ,Entropy (information theory) ,Operator product expansion ,Twist ,010306 general physics ,Mathematical physics - Abstract
We evaluate one-interval R\'enyi entropy and entanglement entropy for the excited states of two-dimensional conformal field theory (CFT) on a cylinder, and examine their differences from the ones for the thermal state. We assume the interval to be short so that we can use operator product expansion (OPE) of twist operators to calculate R\'enyi entropy in terms of sum of one-point functions of OPE blocks. We find that the entanglement entropy for highly excited state and thermal state behave the same way after appropriate identification of the conformal weight of the state with the temperature. However, there exists no such universal identification for the R\'enyi entropy in the short-interval expansion. Therefore, the highly excited state does not look thermal when comparing its R\'enyi entropy to the thermal state one. As the R\'enyi entropy captures the higher moments of the reduced density matrix but the entanglement entropy only the average, our results imply that the emergence of thermality depends on how refined we look into the entanglement structure of the underlying pure excited state., Comment: 16 pages, 1 figure; V2, 17 pages, 2 figures, published version
- Published
- 2016
35. Holographic description of 2D conformal block in semi-classical limit
- Author
-
Jie-qiang Wu, Bin Chen, and Jia-ju Zhang
- Subjects
High Energy Physics - Theory ,Physics ,Nuclear and High Energy Physics ,010308 nuclear & particles physics ,Conformal field theory ,Mathematical analysis ,FOS: Physical sciences ,Conformal map ,Conical surface ,01 natural sciences ,Classical limit ,Rényi entropy ,AdS/CFT correspondence ,High Energy Physics - Theory (hep-th) ,0103 physical sciences ,Entropy (information theory) ,010306 general physics ,Finite set - Abstract
In this paper, we study the holographic descriptions of the conformal block of heavy operators in two-dimensional large c conformal field theory. We consider the case that the operators are pairwise inserted such that the distance between the operators in a pair is much smaller than the others. In this case, each pair of heavy operators creates a conical defect in the bulk. We propose that the conformal block is dual to the on-shell action of three dimensional geometry with conical defects in the semi-classical limit. We show that the variation of the on-shell action with respect to the conical angle is equal to the length of the corresponding conical defect. We derive this differential relation on the conformal block in the field theory by introducing two extra light operators as both the probe and the perturbation. Our study also suggests that the area law of the holographic Renyi entropy must holds for a large class of states generated by a finite number of heavy operators insertion., 29 pages, 2 figures; more discussion
- Published
- 2016
- Full Text
- View/download PDF
36. Short interval expansion of Rényi entropy on torus
- Author
-
Jun-Bao Wu, Jia-ju Zhang, and Bin Chen
- Subjects
Physics ,Density matrix ,High Energy Physics - Theory ,Nuclear and High Energy Physics ,010308 nuclear & particles physics ,Conformal field theory ,Torus ,01 natural sciences ,Rényi entropy ,AdS/CFT correspondence ,0103 physical sciences ,Statistical physics ,Operator product expansion ,Twist ,010306 general physics ,Entropy (arrow of time) - Abstract
We investigate the short interval expansion of the R\'enyi entropy for two-dimensional conformal field theory (CFT) on a torus. We require the length of the interval $\ell$ to be small with respect to the spatial and temporal sizes of the torus. The operator product expansion of the twist operators allows us to compute the short interval expansion of the R\'enyi entropy at any temperature. In particular, we pay special attention to the large $c$ CFTs dual to the AdS$_3$ gravity and its cousins. At both low and high temperature limits, we read the R\'enyi entropies to order $\ell^6$, and find good agreements with holographic results. Moreover, the expansion allows us to read $1/c$ contribution, which is hard to get by expanding the thermal density matrix. We generalize the study to the case with the chemical potential as well., Comment: 19 pages; V2, 19 pages, typos corrected, published version
- Published
- 2016
37. On one-loop entanglement entropy of two short intervals from OPE of twist operators
- Author
-
Zhibin Li and Jia-ju Zhang
- Subjects
Physics ,High Energy Physics - Theory ,Nuclear and High Energy Physics ,010308 nuclear & particles physics ,Conformal field theory ,Cauchy stress tensor ,FOS: Physical sciences ,Quantum entanglement ,01 natural sciences ,Rényi entropy ,High Energy Physics::Theory ,Operator (computer programming) ,High Energy Physics - Theory (hep-th) ,0103 physical sciences ,Operator product expansion ,Twist ,010306 general physics ,Complex plane ,Mathematical physics - Abstract
We investigate the one-loop entanglement entropy of two short intervals with small cross ratio $x$ on a complex plane in two-dimensional conformal field theory (CFT) using operator product expansion of twist operators. We focus on the one-loop entanglement entropy instead of the general order $n$ R\'enyi entropy, and this makes the calculation much easier. We consider the contributions of stress tensor to order $x^{10}$, contributions of $W_3$ operator to order $x^{12}$, and contributions of $W_4$ operator to order $x^{14}$. The CFT results agree with the ones in gravity., Comment: V1, 27 pages; V2, 27 pages, typos corrected, references added, published version
- Published
- 2016
38. Polymorphisms of miRNAs genes are associated with the risk and prognosis of coronary artery disease
- Author
-
Bei Wang, Lina Wang, Yi Zhu, Jia-ju Zhang, Genshan Ma, Xingzhou Ye, Hong Zhi, Yu Zhang, and Xiaojin Yu
- Subjects
Male ,Coronary angiography ,China ,medicine.medical_specialty ,Pathology ,Genotype ,Coronary Artery Disease ,Coronary Angiography ,Polymorphism, Single Nucleotide ,Coronary artery disease ,Asian People ,Risk Factors ,Internal medicine ,microRNA ,Humans ,Medicine ,Gene ,Aged ,Proportional Hazards Models ,Genetics ,business.industry ,Follow up studies ,Case-control study ,General Medicine ,Middle Aged ,Prognosis ,medicine.disease ,Phenotype ,MicroRNAs ,Case-Control Studies ,Cardiology ,Female ,Cardiology and Cardiovascular Medicine ,business ,Follow-Up Studies - Abstract
MicroRNAs (miRNAs) are small, single-stranded, non-protein-coding RNAs of about 22 nucleotides. miRNA molecules have been identified that plays key roles in a broad range of physiologic and pathologic processes. Polymorphisms in the corresponding sequence space are likely to make a significant contribution to phenotypic variation.To assess the variations of rs11614913 T → C in hsa-mir-196a2 and rs3746444 A → G in hsa-mir-499 in the complex etiology of coronary artery disease (CAD), 956 CAD patients diagnosed by coronary arterial angiography and 620 controls were enrolled. Among the patients, 785 (785/956) had complete follow-ups for 42 months. The variant genotypes CC/CT of hsa-mir-196a2 rs11614913 T → C were not associated with a significantly increased risk of CAD (adjusted OR = 1.02, 95% CI = 0.76-1.38), compared with wide genotype TT, but CC and CC/CT genotypes were associated with 34 and 35% increased risks of serious prognosis of CAD (adjusted HR = 1.34, 95% CI = 1.02-1.75 for CC; adjusted HR = 1.35, 95% CI = 1.03-1.75 for CC/CT). In the variant of hsa-mir-499 rs3746444A → G, GG was associated with the 223% increased risk of CAD (adjusted OR = 3.23, 95% CI = 1.56-6.67). Cox regression analysis showed that age, smoking status, numbers of pathological changes in coronary arteries, rs11614913 T → C, and diabetes mellitus were associated with serious prognosis of CAD.Our findings strongly implicate the functional miRNAs polymorphisms of hsa-mir-196a2 and hsa-mir-499 genes may modulate the occurrence or prognosis in Chinese CAD.
- Published
- 2011
- Full Text
- View/download PDF
39. BPS Wilson loops in Minkowski spacetime and Euclidean space
- Author
-
Jun-Bao Wu, Jia-ju Zhang, and Hao Ouyang
- Subjects
High Energy Physics - Theory ,Physics ,Spinor ,Physics and Astronomy (miscellaneous) ,Euclidean space ,High Energy Physics::Lattice ,FOS: Physical sciences ,Mathematical proof ,High Energy Physics::Theory ,General Relativity and Quantum Cosmology ,High Energy Physics - Theory (hep-th) ,Minkowski space ,Wick rotation ,Engineering (miscellaneous) ,Mathematical physics - Abstract
We give evidence that spacelike BPS Wilson loops do not exist in Minkowski spacetime. We show that spacelike Wilson loops in Minkowski spacetime cannot preserve any supersymmetries, in $d = 4$ $\mathcal N = 4$ super Yang-Mills theory, $d = 3$ $\mathcal N = 2$ super Chern-Simons-matter theory, and $d = 3$ $\mathcal N = 6$ Aharony-Bergman-Jafferis-Maldacena theory. We not only show this using infinite straight lines and circles as examples, but also we give proofs for general curves. We attribute this to the conflicts of reality conditions of the spinors. However, spacelike Wilson loops do exist in Euclidean space. There are both BPS Wilson loops along infinite straight lines and circular BPS Wilson loops. This is because the reality conditions of the spinors are lost after Wick rotation. The result is reasonable in view of the AdS/CFT correspondence., V1, 19 pages, no figure; V2, 25 pages, typos corrected and proofs for general curves added thanks to the careful reading and valuable suggestions of the anonymous referee, version to appear in EPJC; V3, 25 pages, published version
- Published
- 2015
- Full Text
- View/download PDF
40. Supersymmetric Wilson loops in N = 4 $$ \mathcal{N}=4 $$ super Chern-Simons-matter theory
- Author
-
Hao Ouyang, Jun-Bao Wu, and Jia-ju Zhang
- Subjects
Physics ,AdS/CFT correspondence ,Nuclear and High Energy Physics ,High Energy Physics::Theory ,Wilson loop ,Euclidean space ,High Energy Physics::Lattice ,Minkowski space ,Supercharge ,Chern–Simons theory ,Bibliography ,Orbifold ,Mathematical physics - Abstract
We investigate the supersymmetric Wilson loops in d = 3 N = 4 $$ \mathcal{N}=4 $$ super Chern-Simons-matter theory obtained from non-chiral orbifold of ABJM theory. We work in both Minkowski spacetime and Euclidean space, and we construct 1/4 and 1/2 BPS Wilson loops. We also provide a complete proof that the difference between 1/4 and 1/2 Wilson loops is Q -exact with Q being some supercharge that is preserved by both the 1/4 and 1/2 Wilson loops. This plays an important role in applying the localization techniques to compute the vacuum expectation values of Wilson loops. We also study the M-theory dual of the 1/2 BPS circular Wilson loop.
- Published
- 2015
41. Observation ofη′→ωe+e−
- Author
-
M. Tiemens, H. B. Liu, Y. J. Mo, J. Q. Zhang, A. Q. Guo, X. Y. Shen, A. Sarantsev, G. F. Cao, H. S. Chen, F. F. An, T. Weber, K. Peters, M. H. Ye, Y. H. Guan, J. M. Bian, Jianmin Dong, H. Loehner, Yun-Zhi Zhang, Zhenyu Zhang, L. L. Ma, B. X. Yu, Q. P. Ji, Y. J. Sun, Z. H. Wang, Z. Haddadi, S. S. Sun, Y. P. Guo, Z. Jiao, G. S. Varner, D. W. Bennett, Zujian Wang, T. C. Zhao, C. L. Luo, X. Y. Jiang, Ling Zhao, Liqing Xu, P. Weidenkaff, L. D. Liu, B. X. Zhang, Sai-Juan Chen, V. Santoro, Z. P. Zhang, P. R. Li, J. L. Ping, A. Amoroso, O. Cakir, L. Yang, E. E. Eren, I. Denysenko, Lei Zhao, X. R. Chen, Yaquan Fang, Shou-hua Zhu, Fu-Hu Liu, C. Q. Feng, C. F. Redmer, Z. T. Sun, Yang Yang, A. Denig, D. Y. Wang, W. J. Zheng, M. Greco, G. Rong, W. Shan, Z. Ning, A. Dbeyssi, Y. Q. Wang, Y. Nefedov, Qiang Zhao, S. Nisar, C. J. Tang, Y. H. Yan, I. Tapan, Z. A. Liu, Kai Liu, J. C. Li, Q. An, B. Wang, H. H. Zhang, D. Xiao, S. S. Fang, C. Leng, M. Ablikim, X. H. Mo, J. F. Hu, X. L. Ji, J. H. Yin, K. H. Rashid, X. T. Huang, A. Calcaterra, M. Maggiora, V. Prasad, W. Kühn, Z. J. Sun, Z. G. Zhao, U. Wiedner, J. H. Zou, S. Han, Y. F. Wang, E. Fioravanti, M. Ripka, H. Y. Sheng, S. J. Zhao, H. B. Li, X. Y. Song, J. Zhuang, L. Y. Dong, Y. T. Gu, Kejun Zhu, W. D. Li, G. Li, A. Julin, S. Spataro, F. A. Harris, B. Y. Zhang, X. L. Kang, Bibo Ke, Q. W. Zhao, K. Schoenning, S. Schumann, X. D. Ruan, C. Morales Morales, M. Savrie, H. Xiao, A. A. Zafar, M. H. Gu, J. Z. Bai, J. G. Lu, W. Gradl, Andrzej Kupsc, T. Held, W. L. Yuan, Z. G. Wang, Guangshun Huang, X. R. Zhou, Z. Y. Deng, J. Fang, H. Y. Zhang, Cheng Li, F. De Mori, Haiwen Liu, Y. H. Zheng, Yao Wang, T. Luo, X. Y. Gao, X. S. Qin, I. B. Nikolaev, Z. A. Zhu, F. Feldbauer, D. J. Ambrose, X. Y. Zhang, M. N. Achasov, Y. J. Mao, N. Kalantar-Nayestanaki, G. X. Sun, X. Y. Zhou, L. Fava, F. E. Maas, Y. F. Liang, X. C. Chen, Y. Zeng, H. L. Dai, Chi Zhang, L. H. Wu, I. Garzia, Y. B. Chen, S. B. Liu, L. B. Guo, D. H. Wei, J. S. Lange, W. B. Yan, Xiaocong Ai, Xiao-Rui Lyu, C. D. Fu, Serkant Ali Cetin, H. Cai, Brent J. Liu, P. Patteri, L. G. Xia, Yi-Ming Hu, J. Y. Zhang, Y. Huang, Giulietto Felici, S. X. Du, X. N. Ma, M. Pelizaeus, S. P. Wen, M. Albrecht, Jimin Zhao, R. G. Ping, L. S. Wang, Y. T. Liang, J. P. Dai, G. Chen, I. Uman, Q. J. Xu, Jianhao Zhang, K. Goetzen, M. X. Luo, I. Boyko, H. P. Peng, P. X. Shen, M. Bertani, L. W. Jiang, X. Liu, M. Lara, J. S. Huang, J. B. Liu, Y. Yuan, G. F. Xu, Cui Li, Y. X. Yang, D. X. Lin, Z. J. Xiao, H. M. Hu, P. L. Wang, S. Pacetti, H. J. Yang, B. Kloss, Huihui Liu, B. Zhong, Zhiqing Zhang, X. F. Wang, M. Ullrich, Y. P. Lu, Zhiqing Liu, B. Zheng, W. C. Yan, O. Albayrak, J. W. Zhao, M. Fritsch, C. C. Zhang, Y. S. Zhu, X. Q. He, J. P. Zheng, M. Kavatsyuk, Jin Li, Q. Ouyang, C. X. Yu, R. Kliemt, T. Johansson, X. K. Chu, Wei Li, L. L. Wang, L. Q. Qin, Yu Zhang, J. C. Chen, H. X. Yang, Y. Guo, J. P. Liu, O. B. Kolcu, L. Yan, A. Hafner, X. S. Kang, Y. H. Zhang, X. Y. Niu, E. H. Thorndike, Y. Z. Sun, H. J. Lu, M. Destefanis, X. Y. Ma, Jia-ju Zhang, Z. Wu, K. Li, Xiang Zhou, Y. Ban, Y. K. Heng, H. Muramatsu, X. Cai, M. Qi, M. G. Zhao, P. F. Duan, H. P. Cheng, Tao Li, Jie Yu, LiLi Zhang, A. Zallo, X. K. Zhou, J. Min, X. Q. Hao, Z. Y. Wang, X. Tang, J. G. Messchendorp, Y. N. Zhang, Q. M. Ma, Z. Gao, Magnus Wolke, Z. H. Qin, M. Kornicer, J. F. Qiu, Fang Liu, Ch. Rosner, D. P. Jin, F. C. Ma, A. Yuncu, Dayong Wang, N. Qin, P. L. Liu, X. L. Luo, B. S. Zou, Li Zhou, T. Hu, K. Wang, M. Ye, F. Nerling, Q. Gao, G. Zhao, G. Cibinetto, X. M. Li, K. Zhang, S. G. Wang, P. Kiese, C. P. Shen, X. P. Xu, M. Y. Dong, Z. L. Hou, Yuehong Xie, D. H. Zhang, Y. B. Liu, H. L. Ma, Y. B. Zhao, J. Z. Fan, A. Zhemchugov, Lei Li, K. L. He, J. F. Chang, X. Fang, Feng Liu, Jie Zhao, Y. Gao, W. X. Gong, Q. Liu, S. Qian, M. Wang, S. L. Olsen, R. A. Briere, R. Poling, W. P. Wang, F. Bianchi, G. M. Huang, C. Z. Yuan, B. Kopf, X. S. Jiang, P. Larin, R. Baldini Ferroli, T. Ma, J. B. Jiao, J. Liu, X. B. Ji, G. R. Liao, D. Dedovich, Z. P. Mao, R. E. Mitchell, S. H. Zhu, X. N. Li, M. Shao, X. C. Lou, G. Chelkov, J. V. Bennett, C. X. Liu, T. Hussain, M. L. Chen, N. Yu. Muchnoi, Y. C. Zhu, Y. Xia, F. Y. Li, H. Liang, Q. L. Xiu, S. L. Niu, X. Q. Li, D. M. Li, S. Jin, K. Y. Liu, J. B. Wei, C. F. Qiao, K. Moriya, Z. B. Li, X. L. Li, Yunlong Zhang, Y. Ding, D. Bettoni, J. L. Zhang, W. M. Song, L. Zotti, C. Hu, Jie Liu, J. F. Sun, S. Marcello, Xiaofeng Zhu, J. Z. Zhang, K. J. Zhu, E. Boger, C. Dong, S. Sosio, and Joachim Pettersson
- Subjects
Physics ,Nuclear physics ,Nuclear and High Energy Physics ,Meson ,Branching fraction ,Electron–positron annihilation ,Analytical chemistry ,Radiative decay ,High Energy Physics::Experiment ,Vector meson dominance ,Nuclear Experiment ,Omega - Abstract
Based on a sample of eta' mesons produced in the radiative decay J/psi -> gamma eta' in 1.31 x 10(9) J/psi events collected with the BESIII detector, the decay eta' -> omega e(+)e(-) is observed for the first time, with a statistical significance of 8 sigma. The branching fraction is measured to be B(eta' -> omega e(+)e(-)) = (1.97 +/- 0.34(stat) +/- 0.17(syst)) x 10(-4), which is in agreement with theoretical predictions. The branching fraction of eta' -> omega gamma is also measured to be (2.55 +/- 0.03(stat) +/- 0.16(syst)) x 10(-2), which is the most precise measurement to date, and the relative branching fraction B(eta' -> omega e(+)e(-))/B(eta' -> omega gamma) is determined to be (7.71 +/- 1.34(stat) +/- 0.54(syst)) x 10(-3).
- Published
- 2015
- Full Text
- View/download PDF
42. Exact results for Wilson loops in orbifold ABJM theory
- Author
-
Hao Ouyang, Jia-ju Zhang, and Jun-Bao Wu
- Subjects
Physics ,High Energy Physics - Theory ,Nuclear and High Energy Physics ,010308 nuclear & particles physics ,FOS: Physical sciences ,Astronomy and Astrophysics ,General Relativity and Quantum Cosmology (gr-qc) ,Partition function (mathematics) ,01 natural sciences ,General Relativity and Quantum Cosmology ,Gravitation ,High Energy Physics::Theory ,Exact results ,High Energy Physics - Theory (hep-th) ,Saddle point ,0103 physical sciences ,Fundamental representation ,010306 general physics ,Fermi gas ,Instrumentation ,Orbifold ,Mathematical physics - Abstract
We investigate the exact results for circular 1/4 and 1/2 BPS Wilson loops in the $d=3$ ${\mathcal N}=4$ super Chern-Simons-matter theory that could be obtained by orbifolding Aharony-Bergman-Jafferis-Maldacena (ABJM) theory. The partition function of the ${\mathcal N}=4$ orbifold ABJM theory has been computed previously in the literature. In this paper, we re-derive it using a slightly different method. We calculate the vacuum expectation values of the circular 1/4 BPS Wilson loops in fundamental representation and of circular 1/2 BPS Wilson loops in arbitrary representations. We use both the saddle point approach and Fermi gas approach. The results for Wilson loops are in accord with the available gravity results., V1, 19 pages, 1 figure; V2, 24 pages, 1 figure, general representations added; V3, 26 pages, no figure, published version
- Published
- 2015
43. Measurement of thee+e−→ηJ/ψcross section and search fore+e−→π0J/ψat center-of-mass energies between 3.810 and 4.600 GeV
- Author
-
Y. B. Chen, S. B. Liu, L. B. Guo, D. H. Wei, R. G. Ping, O. Bondarenko, G. S. Huang, Z. G. Wang, K. Peters, S. Han, M. Savrie, X. Y. Gao, T. Weber, J. F. Sun, C. F. Redmer, M. Ablikim, H. Y. Zhang, Haiwen Liu, H. P. Huang, Y. J. Mo, Y. J. Sun, S. Ma, Kai Liu, S. S. Sun, X. H. Mo, X. M. Li, K. Zhang, X. N. Ma, L. S. Wang, Y. T. Liang, Z. Haddadi, L. Yang, I. Denysenko, H. S. Chen, J. H. Yin, K. H. Rashid, X. K. Zhou, J. S. Lange, J. Y. Zhang, U. Wiedner, D. Toth, S. Marcello, J. P. Dai, G. Chen, I. Uman, Y. P. Guo, C. F. Qiao, F. F. An, Y. Huang, F. C. Ma, E. Fioravanti, X. P. Xu, Y. B. Zhao, Lei Li, W. X. Gong, Q. Liu, Q. J. Xu, X. K. Chu, H. B. Liu, B. X. Yu, Q. P. Ji, G. R. Liao, F. Feldbauer, J. Q. Zhang, W. D. Li, D. Dedovich, W. L. Yuan, H. H. Zhang, M. Ullrich, M. Fritsch, X. L. Li, G. S. Varner, M. X. Luo, S. S. Fang, X. L. Kang, Q. W. Zhao, J. S. Huang, Z. J. Sun, Y. F. Wang, K. Moriya, Ling Zhao, M. H. Ye, R. E. Mitchell, S. H. Zhang, Yun-Zhi Zhang, Wei Li, L. Fava, F. E. Maas, M. Kavatsyuk, Y. F. Liang, S. J. Zhao, X. D. Ruan, M. Ripka, T. Luo, G. X. Sun, Xiaofeng Zhu, J. Z. Zhang, Z. B. Li, W. Kuehn, Y. Ding, Jin Li, A. Sarantsev, I. Garzia, H. L. Dai, M. Tiemens, P. Weidenkaff, L. D. Liu, O. Cakir, B. Y. Zhang, F. A. Harris, E. H. Thorndike, S. Pacetti, D. W. Bennett, D. Bettoni, G. F. Cao, J. L. Zhang, Zujian Wang, M. Greco, P. Patteri, C. H. Li, A. A. Zafar, M. H. Gu, O. B. Kolcu, J. Zhuang, Xiao-Hai Liu, T. C. Zhao, M. Destefanis, B. Zhong, Z. Jiao, M. Ye, Y. Yuan, J. P. Liu, W. J. Zheng, S. L. Niu, L. L. Ma, X. Q. Li, M. Pelizaeus, R. Kliemt, W. Gradl, J. G. Messchendorp, J. C. Chen, Y. Nefedov, C. L. Luo, M. G. Zhao, P. X. Shen, Zhigang Wang, Y. P. Lu, C. Geng, Qiunan Xu, F. Nerling, A. Zallo, M. Lv, Jie Yu, X. C. Lou, X. L. Ji, D. M. Li, M. Bertani, L. W. Jiang, Bibo Ke, X. Fang, J. H. Zou, Jia-ju Zhang, Magnus Wolke, S. Jin, T. Hussain, L. Yan, P. L. Wang, W. M. Song, J. G. Lu, G. Rong, M. N. Achasov, Zhiqing Zhang, A. Amoroso, S. Schumann, J. M. Bian, X. Y. Song, G. F. Xu, X. F. Wang, K. Y. Liu, D. P. Jin, Z. P. Zhang, Zhenyu Zhang, T. J. Min, W. Lai, J. B. Wei, Giulietto Felici, G. Zhao, Yao Wang, Tord Johansson, C. P. Shen, Y. B. Liu, H. L. Ma, P. R. Li, H. M. Hu, Y. Gao, X. R. Zhou, Y. T. Zhang, Y. H. Guan, S. L. Olsen, Y. Guo, Zhiqing Liu, J. L. Ping, R. A. Briere, W. P. Wang, R. Poling, Z. Wu, Chi Zhang, Brent J. Liu, C. Leng, Z. G. Zhao, F. Bianchi, X. Y. Zhang, Dayong Wang, N. Qin, P. L. Liu, W. C. Yan, X. L. Luo, X. S. Jiang, B. X. Zhang, Qun-Yao Wang, K. Li, Fang Liu, Lei Zhou, O. Albayrak, J. W. Zhao, J. Fang, Lei Xu, L. H. Wu, Lei Zhao, Z. Y. He, Sai-Juan Chen, W. B. Yan, Yang Yang, E. Boger, A. Denig, S. Zhu, C. Dong, S. Sosio, A. Dbeyssi, LiLi Zhang, D. Y. Wang, J. Min, C. Morales Morales, Y. C. Zhu, K. Wang, N. Kalantar-Nayestanaki, T. Ma, K. Goetzen, I. Boyko, H. P. Peng, D. H. Zhang, K. L. He, H. X. Yang, X. S. Kang, Heng-Yun Ye, V. Santoro, Y. H. Zhang, M. Y. Dong, Y. J. Mao, J. F. Chang, Z. A. Zhu, J. Z. Bai, Z. L. Hou, Jimin Zhao, Andrzej Kupsc, Fu-Hu Liu, C. Q. Feng, Yi-Ming Hu, X. Q. Hao, H. Liang, R. Q. Lu, Z. Y. Wang, X. Tang, J. F. Hu, Feng Liu, S. Qian, H. Cai, W. Shan, X. Y. Zhou, Y. X. Yang, S. Spataro, Y. T. Gu, Y. Q. Wang, A. Hafner, Yulei Han, Qiang Zhao, S. Nisar, Y. Z. Sun, A. Julin, Xiang Zhou, C. J. Tang, D. X. Lin, Y. Ban, X. Y. Niu, I. Tapan, Z. A. Liu, F. De Mori, Z. J. Xiao, D. Xiao, B. Zheng, Q. L. Xiu, Z. T. Sun, H. B. Li, L. Y. Dong, Q. Gao, G. Li, Yuehong Xie, Z. Y. Deng, J. Z. Fan, A. Zhemchugov, B. Kloss, Y. S. Zhu, J. P. Zheng, Q. Ouyang, C. X. Yu, Yaquan Fang, K. Schoenning, X. S. Qin, I. B. Nikolaev, L. G. Xia, Jianhao Zhang, Q. A. Malik, Zhiqiang Liu, L. Q. Qin, H. J. Lu, X. Cai, H. P. Cheng, Tao Li, Ch. Rosner, Xiao-Rui Lyu, X. Y. Ma, Y. K. Heng, M. Qi, Kejun Zhu, Q. M. Ma, Z. H. Qin, D. J. Ambrose, J. F. Qiu, X. Liu, Y. H. Zheng, Xiaocong Ai, A. Yuncu, B. S. Zou, C. D. Fu, Serkant Ali Cetin, Li Zhou, X. R. Chen, T. Hu, M. Albrecht, Jianmin Dong, Z. Ning, L. L. Jiang, Q. An, Y. H. Yan, M. Lara, X. T. Huang, A. Calcaterra, M. Maggiora, D. Cronin-Hennessy, H. Y. Sheng, H. H. Liu, T. Held, J. C. Li, J. V. Bennett, C. X. Liu, M. L. Chen, N. Yu. Muchnoi, Y. Xia, G. Cibinetto, R. Baldini Ferroli, Z. P. Mao, Y. Zeng, F. Li, S. X. Du, S. P. Wen, X. N. Li, Hai Yu, C. C. Zhang, L. L. Wang, H. Muramatsu, M. Kornicer, Z. Gao, P. F. Duan, B. L. Wang, A. Q. Guo, X. Y. Shen, H. Loehner, Y. N. Pu, S. G. Wang, Jie Zhao, M. Wang, G. M. Huang, Xurong Chen, C. Z. Yuan, B. Kopf, P. Larin, J. B. Jiao, Huan Ren, J. Liu, X. B. Ji, Yang Qin, M. Shao, G. Chelkov, Joachim Pettersson, L. Zotti, Cheng Li, C. Hu, Jie Liu, B. Wang, and K. J. Zhu
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,010308 nuclear & particles physics ,Electron–positron annihilation ,01 natural sciences ,law.invention ,Mass enhancement ,Nuclear physics ,Cross section (physics) ,law ,0103 physical sciences ,High Energy Physics::Experiment ,Center of mass ,Nuclear Experiment ,010306 general physics ,Collider - Abstract
Using data samples collected with the BESIII detector operating at the BEPCII collider at 17 center-of-mass energies from 3.810 to 4.600 GeV, we perform a study of e(+)e(-) -> eta J/psi and pi(0)J/psi The Born cross sections of these two processes are measured at each center-of-mass energy. The measured energy-dependent Born cross section for e(+)e(-) -> eta J/psi shows an enhancement around 4.2 GeV. The measurement is compatible with an earlier measurement by Belle.
- Published
- 2015
- Full Text
- View/download PDF
44. Study ofe+e−→ωχcJat Center of Mass Energies from 4.21 to 4.42 GeV
- Author
-
Zhiqing Liu, W. C. Yan, R. Kliemt, M. Qi, Y. H. Zheng, Cong-Feng Qiao, O. Albayrak, T. Johansson, J. F. Chang, J. H. Yin, Y. T. Gu, Jie Yu, N. Yu. Muchnoi, X. S. Kang, Heng-Yun Ye, V. Santoro, Y. N. Pu, Y. H. Zhang, X. Cai, T. J. Min, K. J. Zhu, G. R. Liao, E. Fioravanti, F. De Mori, Y. F. Wang, J. F. Hu, P. R. Li, S. L. Niu, X. Q. Li, M. Greco, Kai Liu, T. Hussain, X. Y. Ma, H. Moeini, W. X. Gong, X. L. Kang, S. Qian, Jialun Ping, A. Sarantsev, C. H. Li, Y. J. Mao, H. B. Li, A. G. Denig, C. L. Luo, Jie Zhao, D. X. Lin, K. Y. Liu, Z. B. Li, D. H. Wei, J. S. Lange, Q. W. Zhao, Z. Y. Wang, X. Y. Zhang, L. L. Jiang, Jia-ju Zhang, Shan Wang, Xiao-Rui Lyu, H. M. Hu, S. L. Olsen, R. A. Briere, M. Maggiora, Ling Zhao, X. S. Jiang, C. C. Zhang, M. Lara, X. Y. Zhou, Y. Nefedov, Z. Y. He, F. A. Harris, S. Jin, B. Zhong, L. B. Guo, Z. L. Hou, Yang Yang, Y. C. Zhu, E. Boger, O. Cakir, G. Li, Z. Ning, X. H. Mo, Y. P. Lu, G. X. Sun, J. V. Bennett, Li Yan, H. Muramatsu, C. Dong, S. Sosio, J. F. Sun, D. Y. Wang, Ulrich Wiedner, B. Spruck, E. H. Thorndike, X. K. Zhou, X. N. Ma, C. D. Fu, Y. J. Mo, X. R. Chen, S. Han, G. S. Varner, J. Min, L. S. Wang, Z. Jiao, Fu-Hu Liu, C. Q. Feng, S. Marcello, P. L. Wang, Y. Zeng, Y. J. Sun, Z. Y. Deng, X. K. Chu, J. B. Jiao, Y. D. Wang, O. B. Kolcu, X. F. Wang, Y. T. Liang, L. L. Wang, H. Cai, Yuekun Heng, L. Q. Qin, K. Goetzen, J P Dai, W. Kuehn, Y. P. Guo, Xingguo Li, T. Ma, B. Kopf, F. Feldbauer, Y. B. Chen, Xiaofeng Zhu, J. Z. Zhang, J. Z. Bai, Wei Li, M. H. Ye, W. B. Yan, Yun-Zhi Zhang, D. W. Bennett, Zujian Wang, C. Z. Yuan, Q. M. Ma, K. L. He, Magnus Wolke, Y. F. Liang, Q. An, L. H. Wu, G. A. Chelkov, B. Kloss, L. D. Liu, X. Y. Niu, Y. P. Chu, P. Larin, F. C. Ma, Y. B. Zhao, D. P. Jin, H. J. Lu, M. Z. Wang, X. B. Ji, M. Tiemens, W. Shan, Cheng Li, C. Hu, Jimin Zhao, J. Dong, H. H. Liu, P. Patteri, H. S. Chen, J. C. Li, L. Y. Dong, S. Ma, Xiao-Hai Liu, J. G. Lu, Chi Zhang, Y. Q. Wang, Q. Gao, Yulei Han, X. Tang, Y. N. Gao, Qiang Zhao, J. F. Qiu, D. Toth, M. Kavatsyuk, Huan Ren, J. Liu, S. Nisar, C. J. Tang, X. C. Chen, M. Ye, Jie Liu, J. Zhuang, Y. Yuan, Y. S. Zhu, A. Zallo, Xiangdong Ruan, F. Nerling, M. X. Luo, Dayong Wang, D. H. Zhang, M. Savrie, N. Qin, H. P. Peng, Jian Wei, A. Yuncu, Z. A. Liu, Yucheng Huang, Y. G. Xie, B. Wang, R. Q. Lu, M. Bertani, D. V. Dedovich, D. Xiao, Yang Qin, W. J. Zheng, L. Fava, Y. X. Xia, F. E. Maas, J. S. Huang, Li Zhou, I. Uman, X. Liu, Z. Haddadi, C. X. Liu, T. Hu, S. X. Du, Z. J. Xiao, Q. Liu, Xuantong Zhang, Lei Zhao, L. Yang, L. L. Ma, M. Shao, B. X. Zhang, K. Moriya, B. S. Zou, T. Guo, Serkant Ali Cetin, Q. P. Ji, H. Liang, M. Ullrich, D. Bettoni, Lingxuan Zhang, Qun-Yao Wang, J. L. Zhang, R. Poling, Yaquan Fang, G. F. Xu, Jianping Zheng, Shou-hua Zhu, J. Z. Fan, A. Zhemchugov, A. Calcaterra, M. Lv, A. Q. Guo, L. G. Xia, A. Amoroso, W. M. Song, H. H. Zhang, M. Destefanis, Y. Guo, Liqing Xu, S. H. Zhang, X. Y. Shen, Z. T. Sun, Guangming Huang, X. Y. Song, S. P. Wen, Z. J. Sun, P. X. Shen, H. Loehner, Y. Ding, Zhigang Wang, M. Kornicer, L. W. Jiang, W. Gradl, M. Ripka, F. F. An, Feng Liu, B. Y. Zhang, B. J. Liu, Zhiqing Zhang, Y. Ban, P. Weidenkaff, A. Julin, Z. G. Zhao, X. S. Qin, Jiaxi Liu, J. Q. Zhang, Z. Wu, Andrzej Kupsc, W. L. Yuan, A. A. Zafar, S. B. Liu, M. L. Chen, X. Fang, Z. A. Zhu, M. H. Gu, H. Y. Sheng, C. P. Shen, C. X. Yu, K. H. Rashid, B. Zheng, R. G. Ping, X. R. Zhou, S. Schumann, H. L. Ma, H. W. Yu, K. Schoenning, S. J. Chen, G. S. Huang, D. M. Li, Yi-Ming Hu, M. Pelizaeus, C. F. Redmer, Q. A. Malik, X. T. Huang, M. Ablikim, Y. X. Yang, H. P. Huang, Zhiqiang Liu, O. Bondarenko, M. R. Shepherd, A. Hafner, Y. Z. Sun, Xiang Zhou, Gang Zhao, Jin Li, Z. P. Mao, M. G. Zhao, H. P. Cheng, J. Fang, Tao Li, J. M. Bian, Zhenyu Zhang, S. J. Zhao, W. Lai, J. C. Chen, Nasser Kalantar-Nayestanaki, C. Morales Morales, Z. G. Wang, Tao Luo, Fang Liu, H. Y. Zhang, Haiwen Liu, I. B. Nikolaev, G. F. Chen, J. Y. Zhang, B. X. Yu, I. Denysenko, Jianhao Zhang, F. Y. Li, M. Y. Dong, H. B. Liu, J. H. Zou, H. L. Dai, Igor Boyko, S. S. Sun, R. E. Mitchell, X. L. Ji, Bibo Ke, M. N. Achasov, Ke Wang, G. Rong, Giulietto Felici, S. Pacetti, L. Zhou, Ke Li, P. F. Duan, B. L. Wang, T. C. Zhao, Zhenghao Zhang, Z. H. Qin, G. Cibinetto, R. Baldini Ferroli, Krisztian Peters, Q. J. Xu, Chuan Liu, X. N. Li, X. C. Lou, H. X. Yang, D. J. Ambrose, I. Garzia, Xiaocong Ai, M. Albrecht, W. D. Li, X. L. Luo, I. Tapan, Y. H. Guan, J. G. Messchendorp, Y. H. Yan, J. W. Zhao, W. P. Wang, F. Bianchi, D. Cronin-Hennessy, Qiunan Xu, T. Held, X. M. Li, K. Zhang, S. Spataro, X. P. Xu, G. F. Cao, Q. Ouyang, S. S. Fang, Y. B. Liu, and Q. L. Xiu
- Subjects
Nuclear physics ,Physics ,010308 nuclear & particles physics ,Electron–positron annihilation ,0103 physical sciences ,General Physics and Astronomy ,Resonance ,Center of mass ,Born approximation ,010306 general physics ,01 natural sciences ,Omega - Abstract
Based on data samples collected with the BESIII detector at the BEPCII collider at nine center of mass energies from 4.21 to 4.42 GeV, we search for the production of e(+)e(-) -> omega chi(cJ) (J = 0, 1, 2). The process e(+)e(-) -> omega chi(c0) is observed for the first time, and the Born cross sections at root s = 4.23 and 4.26 GeV are measured to be (55.4 +/- 6.0 +/- 5.9) and (23.7 +/- 5.3 +/- 3.5) pb, respectively, where the first uncertainties are statistical and the second are systematic. The omega chi(c0) signals at the other seven energies and the e(+)e(-) -> omega chi(c1) and omega chi(c2) signals are not significant, and the upper limits on the cross sections are determined. By examining the omega chi(c0) cross section as a function of center of mass energy, we find that it is inconsistent with the line shape of the Y(4260) observed in e(+)e(-) -> pi(+)pi(-) J/psi Assuming the omega chi(c0) signals come from a single resonance, we extract the mass and width of the resonance to be (4230 +/- 8 +/- 6) MeV/c(2) and (38 +/- 12 +/- 2) MeV, respectively, and the statistical significance is more than 9 sigma.
- Published
- 2015
- Full Text
- View/download PDF
45. Precision measurement of the D*(0) decay branching fractions
- Author
-
Kai Liu, Z. Wu, K. Li, Fang Liu, Lei Zhou, S. Zhu, D. H. Zhang, K. L. He, J. F. Chang, M. Tiemens, H. B. Liu, J. Q. Zhang, Z. Jiao, C. L. Luo, X. L. Ji, Bibo Ke, M. N. Achasov, Giulietto Felici, H. M. Hu, J. P. Dai, G. Chen, I. Uman, Q. J. Xu, M. Ullrich, J. V. Bennett, C. X. Liu, D. J. Ambrose, M. L. Chen, N. Yu. Muchnoi, A. Q. Guo, X. Y. Shen, Y. Xia, Xiaocong Ai, D. Bettoni, H. S. Chen, X. L. Li, Andrzej Kupsc, W. L. Yuan, Y. J. Mo, X. R. Chen, H. Loehner, B. Spruck, H. H. Liu, M. Albrecht, Y. Ding, X. Y. Zhou, R. Baldini Ferroli, J. C. Li, Z. P. Zhang, P. R. Li, Z. Haddadi, F. Feldbauer, L. Yang, J. L. Zhang, F. F. An, T. Weber, A. Zallo, I. Denysenko, S. Ma, Z. P. Mao, F. Li, D. Toth, Magnus Wolke, B. X. Yu, Q. P. Ji, J. F. Hu, J. L. Ping, M. Lv, X. N. Ma, D. P. Jin, L. S. Wang, Y. Zeng, I. Garzia, Ling Zhao, W. M. Song, S. H. Zhang, S. Spataro, S. X. Du, X. N. Li, Y. T. Liang, Y. F. Wang, M. Ripka, S. P. Wen, X. C. Lou, Y. H. Yan, B. Y. Zhang, V. Santoro, M. Greco, S. Pacetti, J. G. Lu, X. T. Huang, Y. Huang, Zhiqing Liu, M. Pelizaeus, Fu-Hu Liu, C. Q. Feng, C. C. Zhang, Dayong Wang, N. Qin, A. Calcaterra, M. Maggiora, P. L. Liu, X. L. Luo, H. Y. Sheng, M. Fritsch, G. Rong, L. L. Wang, W. C. Yan, E. Boger, T. Johansson, S. J. Zhao, W. Shan, Chi Zhang, C. Dong, S. Sosio, X. D. Ruan, H. Muramatsu, Brent J. Liu, M. Kavatsyuk, J. C. Chen, Jingzhou Zhao, T. Held, M. Kornicer, Y. Q. Wang, L. Fava, Yulei Han, F. E. Maas, Qiang Zhao, S. Nisar, C. J. Tang, P. F. Duan, E. H. Thorndike, X. Fang, J. H. Zou, Xiao-Rui Lyu, Y. F. Liang, W. Kuehn, K. Goetzen, Jia-ju Zhang, I. Tapan, I. Boyko, H. P. Peng, Z. A. Liu, O. Albayrak, J. W. Zhao, B. Wang, J. F. Sun, Cheng Li, C. Hu, B. L. Wang, X. Y. Song, D. Xiao, H. L. Dai, Y. J. Sun, Jie Liu, H. X. Yang, X. S. Kang, Heng-Yun Ye, S. S. Sun, S. Marcello, J. Zhuang, Y. B. Chen, S. B. Liu, L. B. Guo, D. H. Wei, E. Fioravanti, Y. H. Zhang, X. R. Zhou, Y. P. Guo, G. S. Varner, X. Y. Zhang, W. Gradl, J. Fang, Chuan Liu, Xiaofeng Zhu, J. Z. Zhang, D. W. Bennett, Zujian Wang, T. C. Zhao, L. Yan, P. L. Wang, H. W. Yu, H. H. Zhang, Z. Y. Wang, X. Tang, Yaquan Fang, L. H. Wu, K. J. Zhu, Xuantong Zhang, W. B. Yan, R. G. Ping, O. Bondarenko, G. S. Huang, X. Y. Ma, Y. K. Heng, S. S. Fang, Z. J. Sun, G. F. Xu, X. F. Wang, X. M. Li, K. Zhang, S. Han, Y. Gao, X. P. Xu, M. Qi, F. A. Harris, K. Schoenning, P. X. Shen, A. A. Zafar, M. H. Gu, Y. H. Guan, Zhigang Wang, M. Bertani, W. P. Wang, F. Bianchi, M. Savrie, Y. Guo, Q. A. Malik, Q. M. Ma, Z. H. Qin, Zhiqiang Liu, Y. B. Zhao, L. W. Jiang, R. Q. Lu, L. Q. Qin, J. F. Qiu, W. D. Li, H. J. Lu, T. Ma, W. X. Gong, Q. Liu, B. X. Zhang, Z. Y. He, K. Peters, X. Cai, A. Yuncu, H. P. Cheng, Tao Li, F. C. Ma, Q. Gao, Zhiqing Zhang, Yuehong Xie, B. S. Zou, T. Luo, Li Zhou, J. Z. Fan, A. Zhemchugov, C. F. Redmer, Yang Yang, A. Denig, D. Y. Wang, T. Hu, P. Patteri, X. S. Qin, H. Liang, Xiao-Hai Liu, I. B. Nikolaev, M. Ablikim, G. X. Sun, H. P. Huang, L. G. Xia, Z. A. Zhu, Jianhao Zhang, Sai-Juan Chen, M. Ye, Z. G. Zhao, F. Nerling, Yi-Ming Hu, S. Schumann, B. Zhong, J. P. Liu, O. B. Kolcu, J. G. Messchendorp, C. P. Shen, Y. B. Liu, H. L. Ma, Qiunan Xu, G. R. Liao, D. Dedovich, Y. Yuan, Y. X. Yang, R. Kliemt, J. Z. Bai, R. E. Mitchell, M. R. Shepherd, K. Wang, G. Cibinetto, Jie Yu, M. Y. Dong, Z. L. Hou, T. J. Min, G. Zhao, Feng Liu, S. Qian, A. Hafner, Y. Z. Sun, X. Y. Niu, Xiang Zhou, Y. Ban, T. Hussain, Kejun Zhu, X. Liu, Y. H. Zheng, T. Guo, C. D. Fu, Serkant Ali Cetin, Jianmin Dong, C. Z. Yuan, B. Kopf, Z. Ning, L. L. Jiang, Q. An, X. H. Mo, J. H. Yin, K. H. Rashid, U. Wiedner, X. L. Kang, Q. W. Zhao, M. Lara, Lei Xu, N. Kalantar-Nayestanaki, P. Larin, Y. P. Lu, H. Cai, M. H. Ye, Yun-Zhi Zhang, P. Weidenkaff, L. D. Liu, O. Cakir, Jin Li, W. J. Zheng, Y. Nefedov, J. B. Jiao, Huan Ren, J. Liu, M. Destefanis, X. B. Ji, M. G. Zhao, Z. G. Wang, H. Y. Zhang, Haiwen Liu, X. K. Zhou, J. S. Lange, J. Y. Zhang, M. X. Luo, J. S. Huang, J. M. Bian, D. Cronin-Hennessy, Zhenyu Zhang, W. Lai, C. Morales Morales, Y. J. Mao, D. X. Lin, Z. J. Xiao, B. Zheng, Z. T. Sun, H. B. Li, L. Y. Dong, Y. N. Pu, G. Li, S. G. Wang, Z. Y. Deng, Jie Zhao, X. K. Chu, Y. D. Wang, M. Wang, G. M. Huang, Wei Li, Qun-Yao Wang, LiLi Zhang, J. Min, Yang Qin, M. Shao, G. Chelkov, A. Sarantsev, Lei Zhao, G. F. Cao, L. L. Ma, A. Amoroso, A. Dbeyssi, Y. T. Gu, A. Julin, F. De Mori, B. Kloss, Y. S. Zhu, J. P. Zheng, Q. Ouyang, C. X. Yu, C. F. Qiao, K. Moriya, Z. B. Li, C. H. Li, S. L. Niu, X. Q. Li, D. M. Li, S. Jin, K. Y. Liu, J. B. Wei, S. L. Olsen, R. A. Briere, R. Poling, X. S. Jiang, Y. C. Zhu, Томский государственный университет Радиофизический факультет Научные подразделения РФФ, Research unit Nuclear & Hadron Physics, Doğuş Üniversitesi, Fen Edebiyat Fakültesi, Fizik Bölümü, TR3959, Çetin, Serkant Ali, İstanbul Arel Üniversitesi, and [Ablikim, M. -- Ai, X. C. -- An, F. F. -- Bai, J. Z. -- Cai, X. -- Cao, G. F. -- Chang, J. F. -- Chen, G. -- Chen, H. S. -- Chen, J. C. -- Chen, M. L. -- Chen, X. -- Chen, Y. B. -- Dai, H. L. -- Deng, Z. Y. -- Dong, J. -- Dong, L. Y. -- Dong, M. Y. -- Duan, P. F. -- Fang, J. -- Fang, S. S. -- Fang, Y. -- Fu, C. D. -- Gao, Q. -- Gong, W. X. -- Gu, M. H. -- Guan, Y. H. -- Guo, A. Q. -- Guo, Y. -- Han, Y. L. -- He, K. L. -- Heng, Y. K. -- Hou, Z. L. -- Hu, H. M. -- Hu, T. -- Hu, Y. -- Ji, Q. -- Ji, X. B. -- Ji, X. L. -- Jiang, L. L. -- Jiang, X. S. -- Jin, D. P. -- Jin, S. -- Kang, X. L. -- Lai, W. -- Li, C. H. -- Li, F. -- Li, G. -- Li, H. B. -- Li, J. C. -- Li, W. D. -- Li, W. G. -- Li, X. N. -- Liu, B. J. -- Liu, C. X. -- Liu, Fang -- Liu, H. H. -- Liu, H. M. -- Liu, J. -- Liu, J. Y. -- Liu, P. L. -- Liu, Z. A. -- Liu, Zhiqiang -- Lou, X. C. -- Lu, J. G. -- Lu, Y. -- Lu, Y. P. -- Luo, X. L. -- Lv, M. -- Ma, H. L. -- Ma, Q. M. -- Ma, S. -- Ma, T. -- Ma, X. Y. -- Mao, Z. P. -- Min, J. -- Min, T. J. -- Mo, X. H. -- Ning, Z. -- Niu, S. L. -- Niu, X. Y. -- Ouyang, Q. -- Ping, R. G. -- Qian, S. -- Qin, X. S. -- Qin, Z. H. -- Qiu, J. F. -- Rong, G. -- Shen, X. Y. -- Sheng, H. Y. -- Song, W. M. -- Song, X. Y. -- Sun, G. X. -- Sun, S. S. -- Sun, Y. Z. -- Sun, Z. J. -- Tang, X. -- Wang, K. -- Wang, L. L. -- Wang, L. S. -- Wang, P. -- Wang, P. L. -- Wang, Q. J. -- Wang, W. -- Wang, Y. F. -- Wang, Z. -- Wang, Z. G. -- Wang, Z. Y. -- Wen, S. P. -- Wu, L. H. -- Wu, Z. -- Xiao, D. -- Xie, Y. G. -- Xu, G. F. -- Xu, L. -- Yang, H. X. -- Ye, H. -- Ye, M. -- Yin, J. H. -- Yu, B. X. -- Yuan, C. Z. -- Yuan, Y. -- Zhang, B. X. -- Zhang, B. Y. -- Zhang, C. C. -- Zhang, D. H. -- Zhang, H. Y. -- Zhang, J. J. -- Zhang, J. L. -- Zhang, J. Q. -- Zhang, J. W. -- Zhang, J. Y. -- Zhang, J. Z. -- Zhang, K. -- Zhang, L. -- Zhang, S. H. -- Zhang, X. J. -- Zhang, Y. -- Zhang, Y. H. -- Zhao, G. -- Zhao, J. W. -- Zhao, J. Y. -- Zhao, J. Z. -- Zhao, Ling -- Zhao, Q. -- Zhao, Q. W. -- Zhao, T. C. -- Zhao, Y. B. -- Zheng, J. P. -- Zhou, L. -- Zhou, X. Y. -- Zhu, K. -- Zhu, K. J. -- Zhu, S. -- Zhu, Y. S. -- Zhu, Z. A. -- Zhuang, J. -- Zou, B. S. -- Zou, J. H.] Inst High Energy Phys, Beijing 100049, Peoples R China -- [Chen, H. Y. -- Shen, C. P.] Beihang Univ, Beijing 100191, Peoples R China -- [Albrecht, M. -- Held, T. -- Kopf, B. -- Pelizaeus, M. -- Wiedner, U.] Ruhr Univ Bochum, D-44780 Bochum, Germany -- [Albayrak, O. -- Bennett, J. V. -- Briere, R. A. -- Ke, B. C. -- Liu, C. L.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA -- [Huang, G. M. -- Liu, Feng -- Mo, Y. J. -- Yang, Y. -- Zhang, Z. H.] Cent China Normal Univ, Wuhan 430079, Peoples R China -- [Ye, M. H.] China Ctr Adv Sci & Technol, Beijing 100190, Peoples R China -- [Nisar, S.] COMSATS Inst Informat Technol, Lahore 54000, Pakistan -- [Achasov, M. N. -- Muchnoi, N. Yu. -- Nikolaev, I. B.] G I Budker Inst Nucl Phys SB RAS BINP, Novosibirsk 630090, Russia -- [Goetzen, K. -- Peters, K.] GSI Helmholtzcentre Heavy Ion Res GmbH, D-64291 Darmstadt, Germany -- [Liao, G. R. -- Wei, D. H. -- Yang, Y. X.] Guangxi Normal Univ, Guilin 541004, Peoples R China -- [Gu, Y. T. -- Li, X. M. -- Liu, H. B. -- Ruan, X. D.] Guangxi Univ, Nanning 530004, Peoples R China -- [Li, K. -- Xu, Q. J.] Hangzhou Normal Univ, Hangzhou 310036, Zhejiang, Peoples R China -- [Dbeyssi, A. -- Fritsch, M. -- Kliemt, R. -- Larin, P. -- Lin, D. X. -- Maas, F. E. -- Morales, C. Morales -- Nerling, F.] Helmholtz Inst Mainz, D-55099 Mainz, Germany -- [Huang, J. S. -- Sun, J. F.] Henan Normal Univ, Xinxiang 453007, Peoples R China -- [Liu, H. H.] Henan Univ Sci & Technol, Luoyang 471003, Peoples R China -- [Cheng, H. P. -- Jiao, Z. -- Lu, H. J.] Huangshan Coll, Huangshan 245000, Peoples R China -- [Lu, R. Q. -- Pu, Y. N. -- Xia, Y. -- Yan, Y. H. -- Zeng, Y.] Hunan Univ, Changsha 410082, Peoples R China -- [Bennett, D. W. -- Lara, M. -- Mitchell, R. E. -- Moriya, K. -- Shepherd, M. R. -- Sun, Z. T.] Indiana Univ, Bloomington, IN 47405 USA -- [Ferroli, R. Baldini -- Bertani, M. -- Calcaterra, A. -- Felici, G. -- Patteri, P. -- Wang, Y. D. -- Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy -- [Pacetti, S.] Univ Perugia, Ist Nazl Fis Nucl, I-06100 Perugia, Italy -- [Bettoni, D. -- Cibinetto, G. -- Fioravanti, E. -- Garzia, I. -- Santoro, V.] INFN Sezione Ferrara, I-44122 Ferrara, Italy -- [Savrie, M.] Univ Ferrara, I-44122 Ferrara, Italy -- [Denig, A. -- Feldbauer, F. -- Fritsch, M. -- Gradl, W. -- Guo, Y. P. -- Hafner, A. -- Kloss, B. -- Liu, Zhiqing -- Redmer, C. F. -- Ripka, M. -- Schumann, S. -- Wang, Y. Q. -- Weber, T.] Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany -- [Boger, E. -- Boyko, I. -- Chelkov, G. -- Dedovich, D. -- Denysenko, I. -- Nefedov, Y. -- Sarantsev, A. -- Zhemchugov, A.] Joint Inst Nucl Res, Dubna 141980, Russia -- [Kuehn, W. -- Lange, J. S. -- Liang, Y. T. -- Spruck, B. -- Ullrich, M.] Univ Giessen, D-52425 Giessen, Germany -- [Bondarenko, O. -- Haddadi, Z. -- Kalantar-Nayestanaki, N. -- Kavatsyuk, M. -- Loehner, H. -- Messchendorp, J. G. -- Tiemens, M.] Univ Groningen, KVI CART, NL-9747 AA Groningen, Netherlands -- [Chen, X. R. -- Liu, X. -- Yu, J. S.] Lanzhou Univ, Lanzhou 730000, Peoples R China -- [Ding, Y. -- Liu, K. Y. -- Ma, F. C.] Liaoning Univ, Shenyang 110036, Peoples R China -- [Guo, L. B. -- Guo, T. -- Hu, C. -- Luo, C. L. -- Ping, J. L. -- Xiao, Z. J. -- Zhong, B.] Nanjing Normal Univ, Nanjing 210023, Peoples R China -- [Chen, S. J. -- Huang, Y. -- Qi, M. -- Yuan, W. L. -- Zhang, C.] Nanjing Univ, Nanjing 210093, Peoples R China -- [Dong, C. -- He, Z. Y. -- Ji, Q. P. -- Kang, X. S. -- Li, X. Q. -- Liu, Y. B. -- Ma, X. N. -- Shen, P. X. -- Wang, B. -- Yu, C. X. -- Zhao, M. G. -- Zhou, Li] Nankai Univ, Tianjin 300071, Peoples R China -- [Ban, Y. -- Chu, X. K. -- Liu, L. D. -- Mao, Y. J. -- Qin, Y. -- Shan, W. -- Wang, D. -- Wang, D. Y. -- Wang, S. G. -- Wei, J. B. -- Yu, H. W.] Peking Univ, Beijing 100871, Peoples R China -- [Li, Jin -- Olsen, S. L.] Seoul Natl Univ, Seoul 151747, South Korea -- [Huang, X. T. -- Jiao, J. B. -- Li, K. -- Li, T. -- Li, X. L. -- Ma, L. L. -- Qin, L. Q. -- Wang, M. -- Zhang, X. Y. -- Zheng, W. J.] Shandong Univ, Jinan 250100, Peoples R China -- [Dai, J. P.] Shanghai Jiao Tong Univ, Shanghai 200240, Peoples R China -- [Liu, F. H.] Shanxi Univ, Taiyuan 030006, Peoples R China -- [Liang, Y. F. -- Tang, C. J.] Sichuan Univ, Chengdu 610064, Peoples R China -- [Xu, X. P.] Soochow Univ, Suzhou 215006, Peoples R China -- [Li, Z. B. -- Zhang, H. H.] Sun Yat Sen Univ, Guangzhou 510275, Peoples R China -- [Fan, J. Z. -- Gao, Y. -- Liu, K. -- Wang, X. F. -- Xia, L. G. -- Zhu, X. L.] Tsinghua Univ, Beijing 100084, Peoples R China -- [Cakir, O.] Istanbul Aydin Univ, TR-34295 Istanbul, Turkey -- [Cetin, S. A. -- Kolcu, O. B. -- Uman, I. -- Yuncu, A.] Dogus Univ, TR-34722 Istanbul, Turkey -- [Tapan, I.] Uludag Univ, TR-16059 Bursa, Turkey -- [Li, P. R. -- Liu, Q. -- Liu, X. X. -- Lyu, X. R. -- Qiao, C. F. -- Wang, B. L. -- Xu, Q. N. -- Zheng, Y. H.] Univ Chinese Acad Sci, Beijing 100049, Peoples R China -- [Harris, F. A. -- Kornicer, M. -- Luo, T. -- Varner, G. S.] Univ Hawaii, Honolulu, HI 96822 USA -- [Bian, J. M. -- Cronin-Hennessy, D. -- Julin, A. -- Muramatsu, H. -- Poling, R. -- Toth, D.] Univ Minnesota, Minneapolis, MN 55455 USA -- [Ambrose, D. J. -- Thorndike, E. H.] Univ Rochester, Rochester, NY 14627 USA -- [An, Q. -- Fang, X. -- Feng, C. Q. -- Huang, G. S. -- Li, Cheng -- Liang, H. -- Liu, S. B. -- Peng, H. P. -- Shao, M. -- Sun, Y. J. -- Wang, Z. H. -- Yan, L. -- Yan, W. B. -- Yan, W. C. -- Zhang, Z. P. -- Zhao, Lei -- Zhao, Z. G. -- Zhou, X. K. -- Zhou, X. R. -- Zhu, Y. C.] Univ Sci & Technol China, Hefei 230026, Peoples R China -- [Zheng, B.] Univ South China, Hengyan 421001, Peoples R China -- [Hussain, T. -- Malik, Q. A. -- Rashid, K. H. -- Zafar, A. A.] Univ Punjab, Lahore 54590, Pakistan -- [Amoroso, A. -- Bianchi, F. -- Destefanis, M. -- De Mori, F. -- Greco, M. -- Hu, J. F. -- Maggiora, M. -- Marcello, S. -- Sosio, S. -- Spataro, S.] Univ Turin, I-10125 Turin, Italy -- [Fava, L.] Univ Piemonte Orientale, I-15121 Alessandria, Italy -- [Amoroso, A. -- Bianchi, F. -- Destefanis, M. -- De Mori, F. -- Fava, L. -- Greco, M. -- Maggiora, M. -- Marcello, S. -- Sosio, S. -- Spataro, S.] Ist Nazl Fis Nucl, I-10125 Turin, Italy -- [Johansson, T. -- Kupsc, A. -- Schoenning, K. -- Wolke, M.] Uppsala Univ, SE-75120 Uppsala, Sweden -- [Cai, H. -- Han, S. -- Huang, H. P. -- Jiang, L. W. -- Liu, J. P. -- Qin, N. -- Zhang, Z. Y. -- Zhou, X.] Wuhan Univ, Wuhan 430072, Peoples R China -- [Luo, M. X.] Zhejiang Univ, Hangzhou 310027, Peoples R China -- [Du, S. X. -- Li, D. M. -- Zhao, S. J.] Zhengzhou Univ, Zhengzhou 450001, Peoples R China -- [Achasov, M. N. -- Cakir, O. -- Muchnoi, N. Yu. -- Nikolaev, I. B.] Novosibirsk State Univ, Novosibirsk 630090, Russia -- [Achasov, M. N. -- Cakir, O. -- Muchnoi, N. Yu. -- Nikolaev, I. B.] Ankara Univ, TR-06100 Ankara, Turkey -- [Chelkov, G.] Moscow Phys Tech Inst, Dolgoprudnyi 141700, Russia -- [Chelkov, G.] Tomsk State Univ, Functional Elect Lab, Tomsk 634050, Russia -- [Kolcu, O. B.] Istanbul Arel Univ, Istanbul, Turkey -- [Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA -- [Sarantsev, A.] PNPI, Gatchina 188300, Russia -- [Yuncu, A.] Bogazici Univ, TR-34342 Istanbul, Turkey -- [Boger, E. -- Zhemchugov, A.] Moscow Inst Phys & Technol, Moscow 141700, Russia
- Subjects
Physics ,Nuclear and High Energy Physics ,BESIII, детектор ,Physics and Astronomy (miscellaneous) ,Meson ,квантовая хромодинамика ,Analytical chemistry ,FOS: Physical sciences ,Branching (polymer chemistry) ,QCD ,7. Clean energy ,MESONS ,High Energy Physics - Experiment ,NO ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,бозоны ,Pi - Abstract
WOS: 000349437800001, Using 482 pb(-1) of data taken at root s = 4.009 GeV, we measure the branching fractions of the decays of D*(0) into D-0 pi(0) and D-0 gamma to be B(D*(0) -> D-0 pi(0)) = (65.5 +/- 0.8 +/- 0.5)% and B(D*(0) -> D0 gamma) = (34.5 +/- 0.8 +/- 0.5)%, respectively, by assuming that the D*(0) decays only into these two modes. The ratio of the two branching fractions is B(D*(0) -> D-0 pi(0))/B(D*(0) -> D-0 gamma) = 1.90 +/- 0.07 +/- 0.05, which is independent of the assumption made above. The first uncertainties are statistical and the second ones systematic. The precision is improved by a factor of 3 compared to the present world average values., National Key Basic Research Program of China [2015CB856700]; Joint Funds of the National Natural Science Foundation of China [11079008, 11179007, U1232201, U1332201]; National Natural Science Foundation of China (NSFC) [10935007, 11121092, 11125525, 11235011, 11322544, 11335008]; Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; CAS [KJCX2-YW-N29, KJCX2-YW-N45]; 100 Talents Program of CAS; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; German Research Foundation DFG [Collaborative Research Center CRC-1044]; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey [DPT2006 K-120470]; Russian Foundation for Basic Research [14-07-91152]; U.S. Department of Energy [DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118]; U.S. National Science Foundation; University of Groningen (RuG); Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt; WCU Program of National Research Foundation of Korea [R32-2008-000-10155-0], The BESIII Collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by the National Key Basic Research Program of China under Contract No. 2015CB856700; Joint Funds of the National Natural Science Foundation of China under Contracts No. 11079008, No. 11179007, No. U1232201, and No. U1332201; National Natural Science Foundation of China (NSFC) under Contracts No. 10935007, No. 11121092, No. 11125525, No. 11235011, No. 11322544, and No. 11335008; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; CAS under Contracts No. KJCX2-YW-N29 and No. KJCX2-YW-N45; 100 Talents Program of CAS; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; German Research Foundation DFG under Contract No. Collaborative Research Center CRC-1044; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006 K-120470; Russian Foundation for Basic Research under Contract No. 14-07-91152; U.S. Department of Energy under Contracts No. DE-FG02-04ER41291, No. DE-FG02-05ER41374, No. DE-FG02-94ER40823, and No. DESC0010118; U.S. National Science Foundation; University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt; WCU Program of National Research Foundation of Korea under Contract No. R32-2008-000-10155-0.
- Published
- 2015
46. Time-dependent CP violation effects in partially reconstructed B0→D∗∓π± decays
- Author
-
H. Miyata, Y. Hoshi, C. C. Wang, N. C. Hastings, K. Hayasaka, N. Kent, S. Fratina, S. Suzuki, F.J. Ronga, Z. P. Zhang, M. C. Chang, E. Nakano, M. Dash, Y. Iwasaki, Y. J. Kwon, N. Tamura, T. Matsumoto, I. Adachi, Gobinda Majumder, A. Ishikawa, A. Bay, F. Takasaki, C. W. Park, I. Bedny, J. Li, T. Tsukamoto, O. Schneider, B. Golob, S. Villa, K. Inami, A. Imoto, Y. Chao, W. Ostrowicz, D. Žontar, A. Yamaguchi, A. M. Bakich, H. Miyake, T. Ohshima, S. W. Lin, D. Liventsev, Byung Gu Cheon, S. Cole, Simon Blyth, A. Somov, K. Trabelsi, H. R. Khan, Anton Poluektov, A. Bondar, T. Iijima, M. Nakao, S. M. Kim, Jolanta Brodzicka, S. Uehara, L. S. Peak, Heyoung Yang, I. Bizjak, W. A. Mitaroff, G. S. Varner, N. Gabyshev, P. Krokovny, H. Palka, J. MacNaughton, N. Katayama, H. Hayashii, S. Bahinipati, Daniel Robert Marlow, T. Hokuue, S. Uno, C. Schwanda, L. E. Piilonen, T. Schietinger, H. J. Kim, J. H. Kang, R. Itoh, Hiroyuki Sagawa, H. Kichimi, A. Garmash, A. Chen, Shaji Kumar, Tapas Sarangi, K. Kinoshita, Hitoshi Yamamoto, Kevin Varvell, Phillip Urquijo, A. Chuvikov, M. Starič, K. Miyabayashi, J. Dalseno, M. Yamauchi, Hirokazu Ishino, T. Aushev, T. Tsuboyama, T. Lesiak, Kazuo Abe, B. D. Yabsley, Y. Asano, P. Kapusta, J. Dragic, S. Okuno, H. Aihara, D. Mohapatra, H. Kawai, S. L. Olsen, W. S. Hou, C. H. Wang, Antonio Limosani, R. Pestotnik, G. R. Moloney, T. Sumiyoshi, Jia-ju Zhang, Noriaki K. Sato, Y. Yamashita, Y. Sakai, K. Senyo, T. Gershon, T. Kawasaki, G. Leder, Andrej Gorišek, S. Stanič, N. Parslow, Long Zhang, F. Mandl, S. R. Hou, T. Nagamine, U. Bitenc, T. Nozaki, Y. Teramoto, K. Tamai, M. E. Sevior, H. Nakazawa, G. Gokhroo, T. Okabe, H. Shibuya, M. Watanabe, M. Tanaka, A. J. Schwartz, M. Bračko, W. T. Chen, Y. Mikami, T. Shibata, P. Chang, X. C. Tian, Osamu Tajima, Q. L. Xie, J. Haba, O. Nitoh, A. Kuzmin, S. Ogawa, K. Sumisawa, Masashi Hazumi, Rainer Stamen, T. Uglov, L. Hinz, S. Nishida, T. E. Browder, M. Danilov, C. C. Kuo, K. Hara, S. Eidelman, P. Pakhlov, A. Bozek, J. B. Singh, S. K. Choi, J. Ying, Motoki Iwasaki, Y. Ushiroda, Y. Choi, J. S. Kang, and S. Banerjee
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Electron–positron annihilation ,Resonance ,law.invention ,Nuclear physics ,Pion ,KEKB ,law ,CP violation ,High Energy Physics::Experiment ,B meson ,Nuclear Experiment ,Collider - Abstract
We report measurements of time-dependent decay rates for B 0 → D ∗ ∓ π ± decays and extraction of CP violation parameters related to ϕ 3 . We use a partial reconstruction technique, whereby signal events are identified using information only from the primary pion and the charged pion from the decay of the D ∗ ∓ . The analysis uses 140 fb −1 of data accumulated at the ϒ ( 4 S ) resonance with the Belle detector at the KEKB asymmetric-energy e + e − collider. We measure the CP violation parameters S + = 0.035 ± 0.041 ( stat ) ± 0.018 ( syst ) and S − = 0.025 ± 0.041 ( stat ) ± 0.018 ( syst ) .
- Published
- 2005
- Full Text
- View/download PDF
47. Estimation of Pore Size Distribution and Permeability of Shaly Sands from Induced Polarization Time Spectra
- Author
-
Zhu Ding, L i Li, Jie Cui, Qing-Hua Fan, Weinan Wang, Yizhong Jiang, Jia-Ju Zhang, and Maosong Tong
- Subjects
Pore size ,Brine ,Materials science ,Singular value decomposition method ,Relaxation (NMR) ,Mineralogy ,General Medicine ,Porosity ,Induced polarization ,Molecular physics ,Decay curve ,Spectral line ,Physics::Geophysics - Abstract
The induced polarization decay curve contains much information, which can be decomposed to a multi-exponential decay component. The singular value decomposition method makes it possible to transform induced polarization decay data into relaxation time spectra. The appropriate number of relaxation arrangement points in relaxation data inversion ranges from 32 to 64. The induced polarization relaxation time spectrum can be used to quantitatively estimate the pore size distribution of the shaly sands saturated with the NaCl brine. Combining the average IP relaxation time constant with the porosity can markedly improve the accuracy of determining the permeability over the total porosity from core measurements.
- Published
- 2005
- Full Text
- View/download PDF
48. Note on non-vacuum conformal family contributions to Rényi entropy in two-dimensional CFT
- Author
-
Jia-ju Zhang
- Subjects
High Energy Physics - Theory ,Physics ,Nuclear and High Energy Physics ,Conformal family ,010308 nuclear & particles physics ,Conformal field theory ,Astronomy and Astrophysics ,Torus ,Scaling dimension ,01 natural sciences ,Rényi entropy ,Gravitation ,0103 physical sciences ,010306 general physics ,Central charge ,Instrumentation ,Complex plane ,Mathematical physics - Abstract
We calculate the contributions of a general non-vacuum conformal family to R\'enyi entropy in two-dimensional conformal field theory (CFT). The primary operator of the conformal family can be either non-chiral or chiral, and we denote its scaling dimension by $\Delta$. For the case of two short intervals on complex plane, we expand the R\'enyi mutual information by the cross ratio $x$ to order $x^{2\Delta+2}$. For the case of one interval on torus with the temperature being low, we expand the R\'enyi entropy by $q=\exp(-2\pi\beta/L)$, with $\beta$ being the inverse temperature and $L$ being the spatial period, to order $q^{\Delta+2}$. To make the result meaningful, we require that the scaling dimension $\Delta$ cannot be too small. For two intervals on complex plane we need $\Delta>1$, and for one interval on torus we need $\Delta>2$. We work in small Newton constant limit in gravity side and so large central charge limit in CFT side, and find matches of gravity and CFT results., Comment: V1, 14 pages; V2, 15 pages, typos corrected, published version
- Published
- 2017
- Full Text
- View/download PDF
49. Search for the rare decaysJ/ψ→Ds−ρ+andJ/ψ→D¯0K¯*0
- Author
-
J. G. Lu, Kai Liu, C. S. Ji, L. Fava, F. E. Maas, B. Spruck, E. H. Thorndike, Y. Nefedov, T. Hu, I. Tapan, Y. H. Yan, I. B. Nikolaev, H. B. Li, A. G. Denig, S. Ma, Q. P. Ji, D. Li, M. Bertani, J. W. Zhao, C. L. Luo, L. Q. Qin, D. Toth, Y. Ding, D. Cronin-Hennessy, Michael Werner, L. Yang, C. C. Zhang, X. Y. Zhou, S. L. Olsen, R. A. Briere, Y. J. Sun, B. Zhong, L. B. Guo, X. F. Wang, Q. M. Ma, B. Kloss, Shan Wang, B. J. Liu, Y. Yuan, Y. S. Zhu, Q. Liu, Tao Luo, X. C. Chen, Lei Li, Lei Zhao, Guangming Huang, H. Muramatsu, Ulrich Wiedner, Y. X. Yang, X. S. Jiang, Jianhao Zhang, L. G. Xia, Zhigang Wang, J. V. Bennett, G. R. Lu, J. S. Huang, Q. L. Xiu, L. W. Jiang, P. L. Wang, C. X. Liu, T. Held, M. Kornicer, X. L. Luo, O. Bondarenko, W. Gradl, Z. A. Zhu, B. X. Yu, X. L. Ji, T. Ma, Zhiqing Zhang, L. H. Wu, M. Ripka, C. Geng, Y. C. Zhu, J. F. Sun, Y. H. Guan, W. P. Wang, M. R. Shepherd, B. Y. Zhang, Zhiqing Liu, D. Y. Wang, S. Spataro, O. Fuks, O. Cakir, J. C. Li, Yaquan Fang, G. S. Varner, D. J. Ambrose, J. Min, M. N. Achasov, C. P. Shen, J. Zhuang, Y. Z. Sun, X. R. Zhou, Y. F. Wang, W. C. Yan, K. Goetzen, J P Dai, W. Kuehn, X. P. Xu, M. X. Luo, Jian Wei, F. Y. Li, T. Johansson, J. F. Chang, S. Pacetti, Y. Zeng, H. S. Chen, Yucheng Huang, D. V. Dedovich, B. Kopf, Xiang Zhou, W. B. Yan, Y. H. Zheng, T. Hussain, Cong-Feng Qiao, O. Albayrak, Magnus Wolke, L. S. Wang, Y. T. Liang, K. L. He, Gang Zhao, H. L. Dai, Igor Boyko, X. Y. Ma, H. Moeini, W. X. Gong, K. Schoenning, B. S. Zou, Y. J. Mo, Q. A. Malik, Y. F. Liang, M. Albrecht, N. Yu. Muchnoi, C. Dong, M. Z. Wang, D. P. Jin, D. H. Zhang, Zujian Wang, L. Zhou, Ke Li, J. Y. Liu, X. S. Kang, Heng-Yun Ye, Zhiqiang Liu, Miao He, Z. G. Zhao, S. Braun, W. D. Li, Jifeng Hu, Y. H. Zhang, M. Maggiora, H. L. Lu, Fang Liu, Y. B. Chen, R. Baldini Ferroli, Q. Gao, Y. N. Gao, Cui Li, Q. Ouyang, X. Cai, Ling Zhao, X. H. Zhao, Dayong Wang, P. L. Liu, G. F. Cao, S. S. Fang, Xiaofeng Zhu, J. Z. Zhang, I. Denysenko, C. H. Li, Z. Xue, J. Z. Fan, Krisztian Peters, G. F. Xu, Z. Y. Wang, M. Qi, H. P. Cheng, J. Fang, Tao Li, S. P. Wen, Z. Y. He, Yang Yang, Y. B. Zhao, Y. B. Liu, A. Calcaterra, Z. L. Hou, W. Shan, A. Q. Guo, G. Rong, C. F. Redmer, Xiao-Tong Lu, Z. Wu, X. N. Li, H. Y. Sheng, L. Huang, H. H. Zhang, Liqing Xu, S. H. Zhang, Y. Q. Wang, Z. J. Sun, H. Loehner, X. Y. Shen, X. Q. Li, Xiaocong Ai, J. Q. Zhang, Cheng Li, C. Hu, M. Greco, X. C. Lou, Andrzej Kupsc, Yulei Han, Qiang Zhao, S. Nisar, H. L. Ma, X. Tang, A. Zhemchugov, X. T. Huang, D. M. Li, X. Y. Song, C. Z. Yuan, W. L. Yuan, C. J. Tang, M. L. Chen, M. Kavatsyuk, M. Ablikim, H. P. Huang, M. Pelizaeus, Z. A. Liu, Jia-ju Zhang, M. Y. Dong, Z. Ning, B. Wang, Ke Wang, S. P. Yu, G. A. Chelkov, M. Leyhe, Z. H. Qin, S. Jin, K. Y. Liu, D. Xiao, H. B. Liu, A. A. Zafar, S. B. Liu, I. Uman, Chi Zhang, K. J. Zhu, Chuan Liu, Z. B. Li, Xuantong Zhang, Y. J. Mao, J. H. Zou, Z. P. Mao, H. Liang, G. Li, K. Moriya, K. H. Rashid, H. W. Yu, T. C. Zhao, H. X. Yang, S. S. Sun, M. Ullrich, Z. J. Xiao, Zhenghao Zhang, B. X. Zhang, S. J. Chen, G. X. Sun, Li Yan, F. F. An, H. P. Peng, G. S. Huang, N. Wu, Y. G. Xie, Huihui Liu, J. P. Liu, R. E. Mitchell, Z. Jiao, Fu-Hu Liu, C. Q. Feng, C. D. Fu, R. Poling, Jianping Zheng, X. R. Chen, J. G. Messchendorp, M. Lv, Li Zhou, Z. Y. Deng, S. X. Du, Qiunan Xu, W. M. Song, M. Destefanis, S. Schumann, Xingguo Li, J. Z. Bai, L. L. Jiang, S. L. Zang, Feng Liu, Y. P. Chu, X. B. Ji, X. Y. Niu, Jie Yu, F. A. Harris, T. J. Min, F. C. Ma, J. F. Qiu, M. Ye, J. B. Jiao, Jianmin Dong, Q. An, S. Qian, Jialun Ping, X. Y. Zhang, M. Lara, E. Boger, Y. P. Lu, Kejun Zhu, X. K. Chu, Y. D. Wang, X. Liu, Wei Li, Y. K. Heng, Y. P. Guo, T. Guo, C. B. Zhang, Serkant Ali Cetin, D. X. Lin, H. M. Hu, Z. G. Wang, H. Y. Zhang, Haiwen Liu, G. F. Chen, J. Y. Zhang, Qun-Yao Wang, Zhiyong Zhang, A. Zallo, Xichao Ruan, Yang Qin, M. G. Zhao, M. H. Gu, Y. X. Xia, X. K. Zhou, A. Yuncu, M. Shao, J. M. Bian, S. J. Zhao, W. Lai, X. H. Mo, Q. J. Xu, C. X. Yu, J. C. Chen, Nasser Kalantar-Nayestanaki, Z. T. Sun, C. Morales Morales, L. L. Wang, H. Cai, P. Larin, B. Zheng, R. G. Ping, M. H. Ye, Yun-Zhi Zhang, Y. Ban, P. Weidenkaff, L. Y. Dong, X. S. Qin, W. M. Ding, Y. T. Gu, Q. J. Li, X. L. Kang, A. Sarantsev, D. H. Wei, P. R. Li, J. S. Lange, Q. W. Zhao, and H. J. Lu
- Subjects
Nuclear physics ,Physics ,Nuclear and High Energy Physics ,Branching fraction ,Electron–positron annihilation ,High Energy Physics::Experiment ,Astrophysics ,Bar (unit) - Abstract
A search for the rare decays of J/psi -> D-S(-) rho(+) + c.c. and J/psi -> D-S(-)rho(+) + c.c.)
- Published
- 2014
- Full Text
- View/download PDF
50. Holographic Rényi entropy in AdS3/LCFT2 correspondence
- Author
-
Bin Chen, Feng-yan Song, and Jia-ju Zhang
- Subjects
High Energy Physics - Theory ,Physics ,High Energy Physics::Theory ,Nuclear and High Energy Physics ,Massive gravity ,Conformal field theory ,Graviton ,Entropy (information theory) ,Disjoint sets ,Quantum entanglement ,Central charge ,Logarithmic conformal field theory ,Mathematical physics - Abstract
The recent study in AdS$_3$/CFT$_2$ correspondence shows that the tree level contribution and 1-loop correction of holographic R\'enyi entanglement entropy (HRE) exactly match the direct CFT computation in the large central charge limit. This allows the R\'enyi entanglement entropy to be a new window to study the AdS/CFT correspondence. In this paper we generalize the study of R\'enyi entanglement entropy in pure AdS$_3$ gravity to the massive gravity theories at the critical points. For the cosmological topological massive gravity (CTMG), the dual conformal field theory (CFT) could be a chiral conformal field theory or a logarithmic conformal field theory (LCFT), depending on the asymptotic boundary conditions imposed. In both cases, by studying the short interval expansion of the R\'enyi entanglement entropy of two disjoint intervals with small cross ratio $x$, we find that the classical and 1-loop HRE are in exact match with the CFT results, up to order $x^6$. To this order, the difference between the massless graviton and logarithmic mode can be seen clearly. Moreover, for the cosmological new massive gravity (CNMG) at critical point, which could be dual to a logarithmic CFT as well, we find the similar agreement in the CNMG/LCFT correspondence. Furthermore we read the 2-loop correction of graviton and logarithmic mode to HRE from CFT computation. It has distinct feature from the one in pure AdS$_3$ gravity., Comment: 28 pages. Typos corrected, published version
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.