21 results on '"Jeffrey S. Pigott"'
Search Results
2. Broad Applications of Scanning Electron Microscopy and Energy-Dispersive Spectroscopy in Art Conservation
- Author
-
Jeffrey S Pigott, Dean Yoder, Sarah Scaturro, Beth Edelstein, Elena Mars, Julianna Ly, Robin M Hanson, Colleen Snyder, Katelyn Rovito, Ina T Martin, Tugce Karakulak Uz, and Jennifer LW Carter
- Subjects
Instrumentation - Published
- 2022
- Full Text
- View/download PDF
3. Anomalous Conductivity in the Rutile Structure Driven by Local Disorder
- Author
-
Nathan Dasenbrock-Gammon, Keith V. Lawler, Ranga Dias, Elliot Snider, Jeffrey S. Pigott, Ashkan Salamat, G. Alexander Smith, Nenad Velisavljevic, Dean Smith, Changyong Park, Daniel Sneed, and Christian Childs
- Subjects
Phase transition ,Materials science ,02 engineering and technology ,Conductivity ,021001 nanoscience & nanotechnology ,01 natural sciences ,Ion ,Electrical resistance and conductance ,Rutile ,Ab initio quantum chemistry methods ,Chemical physics ,0103 physical sciences ,General Materials Science ,Physical and Theoretical Chemistry ,010306 general physics ,0210 nano-technology ,Spectroscopy ,Ambient pressure - Abstract
Many rutile-type materials are characterized by a softness in shear with pressure which is coupled to a Raman-active librational motion. Combining direct studies of anion positions in SnO2 with measurements of its electronic properties, we find a correlation between O sublattice disorder between 5 and 10 GPa and an anomalous decrease up to 4 orders of magnitude in electrical resistance. Hypotheses into the atomistic nature of the phenomenon are evaluated via ab initio calculations guided by extended X-ray absorption fine structure spectroscopy analysis, and the most likely mechanism is found to be the displacement of single anions resulting from the pressure-induced softening of the librational mode. On the basis of this mechanism, we propose that the same behavior should feature across all materials exhibiting a rutile → CaCl2 phase transition and that conductivity in other rutile-type materials could be facilitated at ambient pressure by appropriate design of devices to enhance defects of this nature.
- Published
- 2019
- Full Text
- View/download PDF
4. CO2 laser heating system for in situ radial x-ray absorption at 16-BM-D at the Advanced Photon Source
- Author
-
Christian Childs, Dean Smith, G. Alexander Smith, Paul Ellison, Daniel Sneed, Jasmine Hinton, Emily Siska, Jeffrey S. Pigott, Eric Rod, William O’Donnell, Ran Salem, Blake Sturtevant, R. Jason Scharff, Nenad Velisavljevic, Changyong Park, and Ashkan Salamat
- Subjects
Instrumentation - Abstract
We present a portable CO2 laser heating system for in situ x-ray absorption spectroscopy (XAS) studies at 16-BM-D (High Pressure Collaborative Access Team, Advanced Photon Source, Argonne National Laboratory). Back scattering optical measurements are made possible by the implementation of a Ge beamsplitter. Optical pyrometry is conducted in the near-infrared, and our temperature measurements are free of chromatic aberration due to the implementation of the peak-scaling method [A. Kavner and W. R. Panero, Phys. Earth Planet. Inter. 143–144, 527–539 (2004) and A. Kavner and C. Nugent, Rev. Sci. Instrum. 79, 024902 (2008)] and mode scrambling of the input signal. Laser power stabilization is established using electronic feedback, providing a steady power over second timescales [Childs et al., Rev. Sci. Instrum. 91, 103003 (2020)]—crucial for longer XAS collections. Examples of in situ high pressure–temperature extended x-ray absorption fine structure measurements of ZrO2 are presented to demonstrate this new capability.
- Published
- 2022
- Full Text
- View/download PDF
5. Novel experimental setup for megahertz X-ray diffraction in a diamond anvil cell at the High Energy Density (HED) instrument of the European X-ray Free-Electron Laser (EuXFEL)
- Author
-
M. A. Baron, Leora E. Dresselhaus-Marais, Guillaume Morard, A. L. Coleman, Vitali B. Prakapenka, Mungo Frost, Jaeyong Kim, Julien Chantel, Dana M. Dattelbaum, Jon Eggert, Carsten Baehtz, Clemens Prescher, J. Mainberger, Guillaume Fiquet, William J. Evans, Edward J. Pace, A. Pelka, Richard Briggs, C. Strohm, Choong-Shik Yoo, Malcolm McMahon, Orianna B. Ball, P. Talkovski, Sven Toleikis, R. J. Husband, Konstantin Glazyrin, Georg Spiekermann, E. F. O'Bannon, Maxim Bykov, Karen Appel, Hauke Marquardt, Lars Ehm, M. Roeper, A. Schropp, H. Damker, Huijeong Hwang, Ulf Zastrau, Sébastien Merkel, J. D. McHardy, Sergio Speziale, Hanns-Peter Liermann, Falko Langenhorst, Blake T. Sturtevant, Emma McBride, Elena Bykova, Charles Pépin, C. Otzen, Naresh Kujala, Yongjae Lee, Zs. Jenei, Max Wilke, R. S. McWilliams, Ronald Redmer, M. Makita, Alexander F. Goncharov, Nenad Velisavljevic, Carmen Sanchez-Valle, Valerio Cerantola, A. Berghäuser, Hyunchae Cynn, M. Foese, Z. Konopkova, Markus O. Schoelmerich, Jeffrey S. Pigott, Deutsches Elektronen-Synchrotron [Hamburg] (DESY), University of Edinburgh, DAM Île-de-France (DAM/DIF), Direction des Applications Militaires (DAM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université Paris-Saclay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Lawrence Livermore National Laboratory (LLNL), Unité Matériaux et Transformations - UMR 8207 (UMET), Centrale Lille-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Los Alamos National Laboratory (LANL), Stony Brook University [SUNY] (SBU), State University of New York (SUNY), Muséum national d'Histoire naturelle (MNHN)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Centre National de la Recherche Scientifique (CNRS), Yonsei University, Hanyang University, Friedrich-Schiller-Universität = Friedrich Schiller University Jena [Jena, Germany], University of Oxford, Institut des Sciences de la Terre (ISTerre), Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA), Case Western Reserve University [Cleveland], Consortium for Advanced Radiation Sources, University of Chicago, Institut für Physik [Rostock], Universität Rostock, Westfälische Wilhelms-Universität Münster = University of Münster (WWU), German Research Centre for Geosciences - Helmholtz-Centre Potsdam (GFZ), University of Potsdam = Universität Potsdam, Washington State University (WSU), European Project: 730872,CALIPSOplus, Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centrale Lille Institut (CLIL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS), University of Oxford [Oxford], University of Münster, Universität Potsdam, Université de Lille, CNRS, INRA, ENSCL, Deutsches Elektronen-Synchrotron [Hamburg] [DESY], DAM Île-de-France [DAM/DIF], Helmholtz-Zentrum Dresden-Rossendorf [HZDR], Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC], Lawrence Livermore National Laboratory [LLNL], Unité Matériaux et Transformations - UMR 8207 [UMET], Los Alamos National Laboratory [LANL], Stony Brook University [SUNY] [SBU], Institut des Sciences de la Terre [ISTerre], German Research Centre for Geosciences - Helmholtz-Centre Potsdam [GFZ], Washington State University [WSU], Liermann, H, Konôpková, Z, Appel, K, Prescher, C, Schropp, A, Cerantola, V, Husband, R, Mchardy, J, Mcmahon, M, Mcwilliams, R, Pépin, C, Mainberger, J, Roeper, M, Berghäuser, A, Damker, H, Talkovski, P, Foese, M, Kujala, N, Ball, O, Baron, M, Briggs, R, Bykov, M, Bykova, E, Chantel, J, Coleman, A, Cynn, H, Dattelbaum, D, Dresselhaus-Marais, L, Eggert, J, Ehm, L, Evans, W, Fiquet, G, Frost, M, Glazyrin, K, Goncharov, A, Hwang, H, Jenei, Z, Kim, J, Langenhorst, F, Lee, Y, Makita, M, Marquardt, H, Mcbride, E, Merkel, S, Morard, G, O'Bannon, E, Otzen, C, Pace, E, Pelka, A, Pigott, J, Prakapenka, V, Redmer, R, Sanchez-Valle, C, Schoelmerich, M, Speziale, S, Spiekermann, G, Sturtevant, B, Toleikis, S, Velisavljevic, N, Wilke, M, Yoo, C, Baehtz, C, Zastrau, U, Strohm, C, Konôpková, Z., 2European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869 Schenefeld, Germany, Appel, K., Prescher, C., 1Photon Sciences, Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, Hamburg, Germany, Schropp, A., Cerantola, V., Husband, R. J., McHardy, J. D., 3School of Physics and Astronomy, Centre for Science at Extreme Conditions, and SUPA, University of Edinburgh, Peter Guthrie Tait Road, EdinburghEH9 3FD, United Kingdom, McMahon, M. I., Pépin, C. M., 4CEA, DAM, DIF, F-91297 Arpajon, France, Mainberger, J., Roeper, M., Berghäuser, A., 6Helmholtz Zentrum Dresden Rossendorf e.V., 01328 Dresden, Germany, Damker, H., Talkovski, P., Foese, M., Kujala, N., Ball, O. B., Baron, M. A., 7Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, UMR CNRS 7590, Musée National d'Histoire Naturelle, 4 Place Jussieu, Paris, France, Briggs, R., 8Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA, Bykov, M., 9Carnegie Science, Earth and Planets Laboratory, 5241 Broad Branch Road NW, Washington, DC 20015, USA, Bykova, E., Chantel, J., 10Université de Lille, CNRS, INRAE, Centrale Lille, UMR 8207 – UMET – Unité Matériaux et Transformations, F-59000 Lille, France, Coleman, A. L., Cynn, H., Dattelbaum, D., 11Los Alamos National Laboratory, Los Alamos, NM 87545, USA, Dresselhaus-Marais, L. E., Eggert, J. H., Ehm, L., 12Mineral Physics Institute, Stony Brook University, Stony Brook, NY 11794, USA, Evans, W. J., Fiquet, G., Frost, M., 13SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA, Glazyrin, K., Goncharov, A. F., Hwang, H., 14Department of Earth System Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea, Jenei, Zs., Kim, J.-Y., 15Department of Physics, Research Institute for High Pressure, Hanyang University, 222 Wangsimni-ro, Seoul 04763, Republic of Korea, Langenhorst, F., 16Institute of Geosciences, Friedrich Schiller University Jena, Carl-Zeiss-Promenade 10, 07745 Jena, Germany, Lee, Y., Makita, M., Marquardt, H., 17Department of Earth Sciences, University of Oxford, South Parks Road, OxfordOX1 3AN, United Kingdom, McBride, E. E., Merkel, S., Morard, G., O'Bannon, E. F., Otzen, C., Pace, E. J., Pelka, A., Pigott, J. S., Prakapenka, V. B., 20Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, USA, Redmer, R., 21Institut für Physik, Universität Rostock, D-18051 Rostock, Germany, Sanchez-Valle, C., 22Institut für Mineralogie, University of Münster, Münster, Germany, Schoelmerich, M., Speziale, S., 23GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany, Spiekermann, G., 24Institut für Geowissenschaften, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany, Sturtevant, B. T., Toleikis, S., Velisavljevic, N., Wilke, M., Yoo, C.-S., 25Department of Chemistry, Institute of Shock Physics, and Materials Science and Engineering, Washington State University, Pullman, WA 99164, USA, Baehtz, C., Zastrau, U., and Strohm, C.
- Subjects
Diffraction ,Nuclear and High Energy Physics ,Materials science ,diamond anvil cells ,X‐ray free‐electron lasers ,x-ray free electron lasers ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] ,02 engineering and technology ,01 natural sciences ,Diamond anvil cell ,law.invention ,Optics ,law ,0103 physical sciences ,ddc:550 ,010306 general physics ,Instrumentation ,high‐precision X‐ray diffraction ,Radiation ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,business.industry ,X-ray free-electron lasers ,high-precision X-ray diffraction ,finite element modeling ,Detector ,Free-electron laser ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Laser ,Research Papers ,Beamline ,high precision x-ray diffraction ,X-ray crystallography ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,X-ray free-electron laser ,Vacuum chamber ,0210 nano-technology ,business ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,[SDU.STU.MI]Sciences of the Universe [physics]/Earth Sciences/Mineralogy - Abstract
Journal of synchrotron radiation 28(3), 688 - 706 (2021). doi:10.1107/S1600577521002551, The high-precision X-ray diffraction setup for work with diamond anvil cells (DACs) in interaction chamber 2 (IC2) of the High Energy Density instrument of the European X-ray Free-Electron Laser is described. This includes beamline optics, sample positioning and detector systems located in the multipurpose vacuum chamber. Concepts for pump–probe X-ray diffraction experiments in the DAC are described and their implementation demonstrated during the First User Community Assisted Commissioning experiment. X-ray heating and diffraction of Bi under pressure, obtained using 20 fs X-ray pulses at 17.8 keV and 2.2 MHz repetition, is illustrated through splitting of diffraction peaks, and interpreted employing finite element modeling of the sample chamber in the DAC., Published by Wiley-Blackwell, [S.l.]
- Published
- 2021
- Full Text
- View/download PDF
6. X-ray Free Electron Laser-Induced Synthesis of ϵ-Iron Nitride at High Pressures
- Author
-
Dana Dattlebaum, Alexander F. Goncharov, Thomas Vogt, R. Stewart McWilliams, R. J. Husband, Guillaume Morard, Emma McBride, A. L. Coleman, Vitali B. Prakapenka, Jaeyong Kim, Jona Mainberger, Elena Bykova, Jeffrey S. Pigott, Julien Chantel, Zuzana Konôpková, Leora E. Dresselhaus-Marais, Yongjae Lee, E. F. O'Bannon, Georg Spiekermann, A. Pelka, Karen Appel, Jon Eggert, Nenad Velisavljevic, Christoph Otzen, Richard Briggs, Clemens Prescher, Konstantin Glazyrin, Guillaume Fiquet, Mungo Frost, M. A. Baron, Edward J. Pace, James D. McHardy, Ulf Zastrau, Hyunchae Cynn, Max Wilke, C. Strohm, Lars Ehm, Taehyun Kim, Hauke Marquardt, Hanns-Peter Liermann, Valerio Cerantola, Charles Pépin, Sébastien Merkel, Blake T. Sturtevant, Malcolm McMahon, Orianna B. Ball, Ronald Redmer, M. Makita, Choong-Shik Yoo, Zsolt Jenei, Maxim Bykov, Carsten Baehtz, Sergio Speziale, Huijeong Hwang, William J. Evans, Hwang, H, Kim, T, Cynn, H, Vogt, T, Husband, R, Appel, K, Baehtz, C, Ball, O, Baron, M, Briggs, R, Bykov, M, Bykova, E, Cerantola, V, Chantel, J, Coleman, A, Dattlebaum, D, Dresselhaus-Marais, L, Eggert, J, Ehm, L, Evans, W, Fiquet, G, Frost, M, Glazyrin, K, Goncharov, A, Jenei, Z, Kim, J, Konôpková, Z, Mainberger, J, Makita, M, Marquardt, H, Mcbride, E, Mchardy, J, Merkel, S, Morard, G, O'Bannon, E, Otzen, C, Pace, E, Pelka, A, Pépin, C, Pigott, J, Prakapenka, V, Prescher, C, Redmer, R, Speziale, S, Spiekermann, G, Strohm, C, Sturtevant, B, Velisavljevic, N, Wilke, M, Yoo, C, Zastrau, U, Liermann, H, Mcmahon, M, Mcwilliams, R, Lee, Y, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS), Yonsei University, Lawrence Livermore National Laboratory (LLNL), University of South Carolina [Columbia], Deutsches Elektronen-Synchrotron [Hamburg] (DESY), University of Edinburgh, Muséum national d'Histoire naturelle (MNHN)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Centre National de la Recherche Scientifique (CNRS), Carnegie Institution for Science, Unité Matériaux et Transformations - UMR 8207 (UMET), Centrale Lille-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Los Alamos National Laboratory (LANL), Stony Brook University [SUNY] (SBU), State University of New York (SUNY), Hanyang University, Department of Earth Sciences [Oxford], University of Oxford, Institut des Sciences de la Terre (ISTerre), Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA), DAM Île-de-France (DAM/DIF), Direction des Applications Militaires (DAM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université Paris-Saclay, Case Western Reserve University [Cleveland], University of Chicago, Institut für Physik [Rostock], Universität Rostock, GeoForschungsZentrum - Helmholtz-Zentrum Potsdam (GFZ), Institut für Geowissenschaften [Potsdam], University of Potsdam = Universität Potsdam, Washington State University (WSU), Carnegie Institution for Science [Washington], Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centrale Lille Institut (CLIL), University of Oxford [Oxford], Universität Potsdam, Université de Lille, CNRS, INRA, ENSCL, Lawrence Livermore National Laboratory [LLNL], Deutsches Elektronen-Synchrotron [Hamburg] [DESY], Institut de minéralogie, de physique des matériaux et de cosmochimie [IMPMC], Unité Matériaux et Transformations - UMR 8207 [UMET], Los Alamos National Laboratory [LANL], Stony Brook University [SUNY] [SBU], Institut des Sciences de la Terre [ISTerre], DAM Île-de-France [DAM/DIF], GeoForschungsZentrum - Helmholtz-Zentrum Potsdam [GFZ], and Washington State University [WSU]
- Subjects
Diffraction ,Materials science ,Solid-gas reaction ,X-ray free electron laser ,Diamond-anvil cell ,Iron ,Iron nitride ,synthesis ,Nitrogen ,x-ray heating ,Analytical chemistry ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] ,02 engineering and technology ,Activation energy ,010402 general chemistry ,01 natural sciences ,Diamond anvil cell ,high temperature ,chemistry.chemical_compound ,extreme condition ,Chemical reactions ,X-rays ,General Materials Science ,ddc:530 ,Irradiation ,Physical and Theoretical Chemistry ,iron nitride ,ComputingMilieux_MISCELLANEOUS ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,XFEL ,X-ray ,Free-electron laser ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,high pressure ,chemistry ,diamond anvil cell ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,0210 nano-technology ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Ultrashort pulse ,[SDU.STU.MI]Sciences of the Universe [physics]/Earth Sciences/Mineralogy - Abstract
The journal of physical chemistry letters 12(12), 3246 - 3252 (2021). doi:10.1021/acs.jpclett.1c00150, The ultrafast synthesis of ε-Fe$_3$N$_{1+x}$ in a diamond-anvil cell (DAC) from Feand N$_2$ under pressure was observed using serial exposures of an X-ray free electron laser (XFEL). When the sample at 5 GPa was irradiated by a pulse train separated by 443 ns, the estimated sample temperature at the delay time was above 1400 K, confirmed by in situ transformation of $α$- to $γ$-iron. Ultimately, the Fe and N$_2$ reacted uniformly throughout the beam path to form Fe$_3$N$_{1.33}$, as deduced from its established equation of state (EOS). We thus demonstrate that the activation energy provided by intense X-ray exposures in an XFEL can be coupled with the source time structure to enable exploration of the time-dependence of reactions under high-pressure conditions., Published by ACS, Washington, DC
- Published
- 2021
- Full Text
- View/download PDF
7. Experimental melting curve of zirconium metal to 37 GPa
- Author
-
Blake T. Sturtevant, Nikola Draganic, Yue Meng, Eric K. Moss, Jeffrey S. Pigott, Matthew Jacobsen, Rostislav Hrubiak, and Nenad Velisavljevic
- Subjects
Zirconium ,Materials science ,Boundary (topology) ,chemistry.chemical_element ,Thermodynamics ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Melting curve analysis ,Diamond anvil cell ,Metal ,chemistry ,visual_art ,0103 physical sciences ,X-ray crystallography ,visual_art.visual_art_medium ,General Materials Science ,Laser power scaling ,010306 general physics ,0210 nano-technology ,Line (formation) - Abstract
In this report, we present results of high-pressure experiments probing the melt line of zirconium (Zr) up to 37 GPa. This investigation has determined that temperature versus laser power curves provide an accurate method to determine melt temperatures. When this information is combined with the onset of diffuse scattering, which is associated with the melt process, we demonstrate the ability to accurately determine the melt boundary. This presents a reliable method for rapid determination of melt boundary and agrees well with other established techniques for such measurements, as reported in previous works on Zr.
- Published
- 2020
8. Dehydration Melting Below the Undersaturated Transition Zone
- Author
-
Jeffrey S. Pigott, Christine Thomas, H. Bureau, Robert Myhill, Wendy R. Panero, C. Raepsaet, School of Earth Sciences, Ohio State University, Institut für Geophysik [Münster], Westfälische Wilhelms-Universität Münster (WWU), School of Earth Sciences [Bristol], University of Bristol [Bristol], Los Alamos National Laboratory (LANL), Systèmes Physiques Hors-équilibre, hYdrodynamique, éNergie et compleXes (SPHYNX), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and Westfälische Wilhelms-Universität Münster = University of Münster (WWU)
- Subjects
010504 meteorology & atmospheric sciences ,Silicate perovskite ,Water storage ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,010502 geochemistry & geophysics ,medicine.disease ,01 natural sciences ,Seismic wave ,Mantle (geology) ,Geophysics ,13. Climate action ,Geochemistry and Petrology ,Downwelling ,Transition zone ,Anhydrous ,medicine ,Dehydration ,Petrology ,Geology ,0105 earth and related environmental sciences - Abstract
International audience; A reflector 70-130 km below the base of the transition zone beneath Tibet is observed in receiver functions and underside seismic reflections, at depths consistent with the transition of garnet to bridgmanite. Contrast in water storage capacity between the minerals of the Earth's transition zone and lower mantle suggests the possibility for dehydration melting at the top of the lower mantle. First-principles calculations combined with laboratory synthesis experiments constrain the mantle water capacity across the base of the transition zone and into the top of the lower mantle. We interpret the observed seismic signal as consistent with 3-4 vol % hydrous melt resulting from dehydration melting in the garnet to bridgmanite transition. Should seismic signals evident in downwelling region result from water contents representative of upper mantle water globally, this constrains the water stored in nominally anhydrous minerals in the mantle to
- Published
- 2020
- Full Text
- View/download PDF
9. Strength of tantalum to 276 GPa determined by two x-ray diffraction techniques using diamond anvil cells
- Author
-
Christopher Perreault, Larissa Q. Huston, Kaleb Burrage, Samantha C. Couper, Lowell Miyagi, Eric K. Moss, Jeffrey S. Pigott, Jesse S. Smith, Nenad Velisavljevic, Yogesh Vohra, and Blake T. Sturtevant
- Subjects
General Physics and Astronomy - Published
- 2022
- Full Text
- View/download PDF
10. Equations of state and phase boundary for stishovite and CaCl2-type SiO2
- Author
-
E. C. Thompson, D. M. Reaman, Jesse S. Smith, B. Chidester, Andrew J. Campbell, Jeffrey S. Pigott, Rebecca A. Fischer, and Vitali B. Prakapenka
- Subjects
Equation of state ,Phase transition ,Phase boundary ,Materials science ,010504 meteorology & atmospheric sciences ,Thermodynamics ,Type (model theory) ,010502 geochemistry & geophysics ,01 natural sciences ,Geophysics ,Geochemistry and Petrology ,X-ray crystallography ,0105 earth and related environmental sciences ,Stishovite ,Phase diagram - Published
- 2018
- Full Text
- View/download PDF
11. Ab initio calculations of uranium and thorium storage in CaSiO3-perovskite in the Earth’s lower mantle
- Author
-
Wendy R. Panero, Jeffrey S. Pigott, and Samuel N. Perry
- Subjects
010504 meteorology & atmospheric sciences ,Partial melting ,Analytical chemistry ,chemistry.chemical_element ,Mineralogy ,Thorium ,Actinide ,Uranium ,010502 geochemistry & geophysics ,01 natural sciences ,Mantle (geology) ,Geophysics ,chemistry ,Mantle convection ,Geochemistry and Petrology ,Transition zone ,0105 earth and related environmental sciences ,Solid solution - Abstract
Earth’s mantle convection is powered in part by the radiogenic heat released by the decay of 238 U, 235 U, 232 Th, and 40 K. We present ab initio calculations of uranium and thorium incorporation in CaSiO 3 -perovskite with and without aluminum, and propose that aluminous calcium silicate perovskite is the likely host of uranium and thorium in the lower mantle. At 15 GPa, the enthalpies of solution into aluminum-free CaSiO 3 -perovskite are 10.34 kJ/mol for U 4+ and 12.52 kJ/mol for Th 4+ in SiO 2 saturated systems, while the enthalpies are 17.09 kJ/mol and 19.27 kJ/mol, respectively, in CaO saturated systems. Coupled substitution of U 4+ and Th 4+ with aluminum is thermodynamically favored, with the enthalpies of solution negative for U 4+ and near 0 kJ/mol for Th 4+ throughout the stability field of CaSiO 3 -perovskite. Therefore, U incorporation into CaSiO 3 -perovskite is spontaneous in the presence of aluminum while Th forms a near ideal solid solution, implying these elements are potentially compatible with respect to partial melting in the transition zone and lower mantle. Furthermore, the solid solution reactions of U 4+ and Th 4+ are broadly similar to each other, suggesting a restriction on the fractionation of these actinides between the upper and lower mantle. U and Th compatibility in the presence of Al has implications regarding actinide transport into the deep mantle within subducting slabs and the geochemical content of seismic anomalies at the core-mantle boundary.
- Published
- 2017
- Full Text
- View/download PDF
12. Constraints on the rheology and texture development of Earth’s inner core from high-pressure diffusion experiments
- Author
-
Zhicheng Jing, Jeffrey S. Pigott, J. Han, Jianhua Wang, H. P. Scott, Julien Chantel, J. A. Van Orman, and E. H. Hauri
- Subjects
Materials science ,Rheology ,High pressure ,Inner core ,Mineralogy ,Development (differential geometry) ,Texture (crystalline) ,Diffusion (business) ,Earth (classical element) ,Mineral physics - Published
- 2018
- Full Text
- View/download PDF
13. Room-temperature compression and equation of state of body-centered cubic zirconium
- Author
-
James A. Van Orman, Eric K. Moss, Blake T. Sturtevant, Yogesh K. Vohra, Changyong Park, Jeffrey S. Pigott, Nenad Velisavljevic, Dmitry Popov, and Nikola Draganic
- Subjects
Bulk modulus ,Zirconium ,Equation of state ,Materials science ,Monte Carlo method ,chemistry.chemical_element ,Thermodynamics ,02 engineering and technology ,Cubic crystal system ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Diamond anvil cell ,Grain growth ,chemistry ,Phase (matter) ,0103 physical sciences ,General Materials Science ,010306 general physics ,0210 nano-technology - Abstract
Zirconium (Zr) has properties conducive to nuclear applications and exhibits complex behavior at high pressure with respect to the effects of impurities, deviatoric stress, kinetics, and grain growth which makes it scientifically interesting. Here, we present experimental results on the 300 K equation of state of ultra-high purity Zr obtained using the diamond-anvil cell coupled with synchrotron-based x-ray diffraction and electrical resistance measurements. Based on quasi-hydrostatic room-temperature compression in helium to pressure P = 69.4(2) GPa, we constrain the bulk modulus and its pressure derivative of body-centered cubic (bcc) β-Zr to be K = 224(2) GPa and K′ = 2.6(1) at P = 37.0(1) GPa. A Monte Carlo approach was developed to accurately quantify the uncertainties in K and K′. In the Monte Carlo simulations, both the unit-cell volume and pressure vary according to their experimental uncertainty. Our high-pressure studies do not indicate additional isostructural volume collapse in the bcc phase of Zr in the 56–58 GPa pressure range.
- Published
- 2019
- Full Text
- View/download PDF
14. Calculation of the energetics of water incorporation in majorite garnet
- Author
-
Wendy R. Panero, Jeffrey S. Pigott, Julian D. Gale, and Kate Wright
- Subjects
Majorite ,Hydrogen ,Analytical chemistry ,Mineralogy ,chemistry.chemical_element ,engineering.material ,Ringwoodite ,Tetragonal crystal system ,Geophysics ,chemistry ,Octahedron ,Geochemistry and Petrology ,Transition zone ,engineering ,Density functional theory ,Elasticity (economics) ,Geology - Abstract
Interpretation of lateral variations in upper mantle seismic wave speeds requires constraints on the relationship between elasticity and water concentration at high pressure for all major mantle minerals, including the garnet component. We have calculated the structure and energetics of charge-balanced hydrogen substitution into tetragonal MgSiO3 majorite up to P = 25 GPa using both classical atomistic simulations and complementary first-principles calculations. At the pressure conditions of Earth’s tran sition zone, hydroxyl groups are predicted to be bound to Si vacancies (o) as the hydrogarnet defect, [oSi+4OHO] X , at the Si2 tetrahedral site or as the [oMg+2OHO] X defect at the octahedral Mg3 site. The hydrogarnet defect is more favorable than the [oMg+2OHO] X defect by 0.8–1.4 eV/H at 20 GPa. The presence of 0.4 wt% Al2O3 substituted into the octahedral sites further increases the likelihood of the hydrogarnet defect by 2.2–2.4 eV/H relative to the [oMg+2OHO] X defect at the Mg3 site. OH defects affect the seismic ratio, R = dlnvs/dlnvp, in MgSiO3 majorite (ΔR = 0.9–1.2 at 20 GPa for 1400 ppm wt H2O) differently than ringwoodite at high pressure, yet may be indistinguishable from the thermal dlnvs/dlnvp for ringwoodite. The incorporation of 3.2 wt% Al2O3 also decreases R(H2O) by ~0.2–0.4. Therefore, to accurately estimate transition zone compositional and thermal anomalies, hydrous majorite needs to be considered when interpreting seismic body wave anomalies in the transition zone.
- Published
- 2015
- Full Text
- View/download PDF
15. Dry (Mg,Fe)SiO 3 perovskite in the Earth's lower mantle
- Author
-
Wendy R. Panero, Daniel M. Reaman, Zhenxian Liu, Jeffrey S. Pigott, and Jason E. Kabbes
- Subjects
Hydrogen ,Enthalpy ,Analytical chemistry ,chemistry.chemical_element ,Mineralogy ,engineering.material ,Mantle (geology) ,Diamond anvil cell ,Geophysics ,chemistry ,Space and Planetary Science ,Geochemistry and Petrology ,Transmission electron microscopy ,Earth and Planetary Sciences (miscellaneous) ,Enstatite ,engineering ,Fourier transform infrared spectroscopy ,Geology ,Stishovite - Abstract
Combined synthesis experiments and first-principles calculations show that MgSiO3-perovskite with minor Al or Fe does not incorporate significant OH under lower mantle conditions. Perovskite, stishovite, and residual melt were synthesized from natural Bamble enstatite samples (Mg/(Fe + Mg) = 0.89 and 0.93; Al2O3
- Published
- 2015
- Full Text
- View/download PDF
16. Hydrous ringwoodite to 5 K and 35 GPa: Multiple hydrogen bonding sites resolved with FTIR spectroscopy
- Author
-
Jeffrey S. Pigott, Zhenxian Liu, Joseph R. Smyth, Daniel J. Frost, and Wendy R. Panero
- Subjects
Proton ,Hydrogen ,Hydrogen bond ,chemistry.chemical_element ,Conductivity ,engineering.material ,Wadsleyite ,Synchrotron ,law.invention ,Crystallography ,Ringwoodite ,Geophysics ,chemistry ,Geochemistry and Petrology ,law ,engineering ,Fourier transform infrared spectroscopy - Abstract
Multiple substitution mechanisms for hydrogen in γ-(Mg,Fe)2SiO4, ringwoodite, lead to broad, overlapping, and difficult-to-interpret FTIR spectra. Through combined low-temperature, high-pressure synchrotron-based FTIR spectroscopy, the multiple bonding sites become evident, and can be traced as a function of temperature and compression. Multiple OH stretching bands can be resolved in iron-bearing and iron-free samples with 0.79–2.5(3) wt% H2O below 200 K at ambient pressure, with cooling to 5 K at 35 and 23 GPa resulting in the resolution of possibly as many as 5 OH stretching bands traceable at room temperature from 23 GPa down to 8 GPa. A distribution of defect mechanisms between □Mg″ +2(H·) at 3100, 3270, and possibly 2654 cm−1, □Si‴′+4(H·) at 3640 cm−1, and MgSi″+2(H·) at 2800 cm−1 can then be resolved. These multiple defect mechanisms can therefore explain the higher electrical and proton conductivity in ringwoodite when compared to wadsleyite, and therefore may be applied to resolve spatial variations in water storage in the Earth’s transition zone.
- Published
- 2013
- Full Text
- View/download PDF
17. High‐pressure, high‐temperature equations of state using nanofabricated controlled‐geometry Ni/SiO 2 /Ni double hot‐plate samples
- Author
-
R. J. Davis, Yue Meng, Wendy R. Panero, D. M. Reaman, Derek A. Ditmer, Jeffrey S. Pigott, Rebecca A. Fischer, and Rostislav Hrubiak
- Subjects
Plasma etching ,Materials science ,Opacity ,Inner core ,Oxide ,Mineralogy ,chemistry.chemical_element ,Diamond anvil cell ,Nickel ,chemistry.chemical_compound ,Geophysics ,chemistry ,Physical vapor deposition ,General Earth and Planetary Sciences ,Composite material ,Stishovite - Abstract
We have fabricated novel controlled-geometry samples for the laser-heated diamond-anvil cell (LHDAC) in which a transparent oxide layer (SiO2) is sandwiched between two laser-absorbing layers (Ni) in a single, cohesive sample. The samples were mass manufactured (>104 samples) using a combination of physical vapor deposition, photolithography, and wet and plasma etching. The double hot-plate arrangement of the samples, coupled with the chemical and spatial homogeneity of the laser-absorbing layers, addresses problems of spatial temperature heterogeneities encountered in previous studies where simple mechanical mixtures of transparent and opaque materials were used. Here we report thermal equations of state (EOS) for nickel to 100 GPa and 3000 K and stishovite to 50 GPa and 2400 K obtained using the LHDAC and in situ synchrotron X-ray microdiffraction. We discuss the inner core composition and the stagnation of subducted slabs in the mantle based on our refined thermal EOS.
- Published
- 2015
- Full Text
- View/download PDF
18. Stream geochemistry, chemical weathering and CO2 consumption potential of andesitic terrains, Dominica, Lesser Antilles
- Author
-
William H. McDowell, Brent M. Johnson, Jeffrey S. Pigott, W. Berry Lyons, Steven T. Goldsmith, Anne E. Carey, and Susan A. Welch
- Subjects
Basalt ,Andesite ,Geochemistry ,Weathering ,STREAMS ,Seasonality ,Total dissolved solids ,medicine.disease ,Silicate ,chemistry.chemical_compound ,chemistry ,Geochemistry and Petrology ,Carbon dioxide ,medicine ,Geology - Abstract
Recent studies of chemical weathering of andesitic–dacitic material on high-standing islands (HSIs) have shown these terrains have some of the highest observed rates of chemical weathering and associated CO 2 consumption yet reported. However, the paucity of stream gauge data in many of these terrains has limited determination of chemical weathering product fluxes. In July 2006 and March 2008, stream water samples were collected and manual stream gauging was performed in watersheds throughout the volcanic island of Dominica in the Lesser Antilles. Distinct wet and dry season solute concentrations reveal the importance of seasonal variations on the weathering signal. A cluster analysis of the stream geochemical data shows the importance of parent material age on the overall delivery of solutes. Observed Ca:Na, HCO 3 :Na and Mg:Na ratios suggest crystallinity of the parent material may also play an important role in determining weathering fluxes. From total dissolved solids concentrations and mean annual discharge calculations we calculate chemical weathering yields of (6–106 t km −2 a −1 ), which are similar to those previously determined for basalt terrains. Silicate fluxes (3.1–55.4 t km −2 a −1 ) and associated CO 2 consumption (190–1575 × 10 3 mol km −2 a −1 ) determined from our study are among the highest determined to date. The calculated chemical fluxes from our study confirm the weathering potential of andesitic–dacitic terrains and that additional studies of these terrains are warranted.
- Published
- 2010
- Full Text
- View/download PDF
19. A spin on lower mantle mineralogy
- Author
-
Jeffrey S. Pigott
- Subjects
010504 meteorology & atmospheric sciences ,Spin states ,Silicate perovskite ,Spin transition ,Mineralogy ,010502 geochemistry & geophysics ,01 natural sciences ,Synchrotron ,law.invention ,Geophysics ,Geochemistry and Petrology ,law ,Emission spectrum ,Spin moment ,Geology ,Earth (classical element) ,0105 earth and related environmental sciences ,Spin-½ - Abstract
Constraining the spin state of Fe in Earth’s lower mantle is critical to understanding the chemistry and dynamics of Earth’s interior. In the October 2015 issue of American Mineralogist , Dorfman et al. present an experimental study of the effect of iron concentration on the spin transition in bridgmanite. Their experiments involved two different bridgmanite compositions (38 and 74% FeSiO 3 ). Based on the total spin moment determined by synchrotron-based X-ray emission spectroscopy, they show that Fe 2+ in bridgmanite is in the high-spin state in the lower mantle but transition pressure decreases within highly enriched iron concentrations.
- Published
- 2016
- Full Text
- View/download PDF
20. Microfabrication of controlled-geometry samples for the laser-heated diamond-anvil cell using focused ion beam technology
- Author
-
Jeffrey S. Pigott, D. M. Reaman, and Wendy R. Panero
- Subjects
Materials science ,business.industry ,Diamond ,Advanced Photon Source ,engineering.material ,Laser ,Focused ion beam ,Synchrotron ,law.invention ,Optics ,Beamline ,law ,Electron optics ,engineering ,business ,Instrumentation ,Microfabrication - Abstract
The pioneering of x-ray diffraction with in situ laser heating in the diamond-anvil cell has revolutionized the field of high-pressure mineral physics, expanding the ability to determine high-pressure, high-temperature phase boundaries and equations of state. Accurate determination of high-pressure, high-temperature phases and densities in the diamond-anvil cell rely upon collinearity of the x-ray beam with the center of the laser-heated spot. We present the development of microfabricated samples that, by nature of their design, will have the sample of interest in the hottest portion of the sample. We report initial successes with a simplified design using a Pt sample with dimensions smaller than the synchrotron-based x-ray spot such that it is the only part of the sample that absorbs the heating laser ensuring that the x-rayed volume is at the peak hotspot temperature. Microfabricated samples, synthesized using methods developed at The Ohio State University's Mineral Physics Laboratory and Campus Electron Optics Facility, were tested at high P-T conditions in the laser-heated diamond-anvil cell at beamline 16 ID-B of the Advanced Photon Source. Pt layer thicknesses of ≤0.8 μm absorb the laser and produce accurate measurements on the relative equations of state of Pt and PtC. These methods combined with high-purity nanofabrication techniques will allow for extension by the diamond-anvil cell community to multiple materials for high-precision high-pressure, high-temperature phase relations, equations of state, melting curves, and transport properties.
- Published
- 2011
21. THE ROLE OF CARBON IN EXTRASOLAR PLANETARY GEODYNAMICS AND HABITABILITY
- Author
-
Daniel M. Reaman, Cayman T. Unterborn, Wendy R. Panero, Jason E. Kabbes, and Jeffrey S. Pigott
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,FOS: Physical sciences ,Diamond ,Astronomy and Astrophysics ,Geodynamics ,engineering.material ,Diamond anvil cell ,Mantle (geology) ,Abundance of the chemical elements ,Exoplanet ,Carbon cycle ,Astrobiology ,Space and Planetary Science ,Planet ,engineering ,Astrophysics - Earth and Planetary Astrophysics - Abstract
The proportions of oxygen, carbon and major rock-forming elements (e.g. Mg, Fe, Si) determine a planet's dominant mineralogy. Variation in a planet's mineralogy subsequently affects planetary mantle dynamics as well as any deep water or carbon cycle. Through thermodynamic models and high pressure diamond anvil cell experiments, we demonstrate the oxidation potential of C is above that of Fe at all pressures and temperatures indicative of 0.1 - 2 Earth-mass planets. This means that for a planet with (Mg+2Si+Fe+2C)/O > 1, excess C in the mantle will be in the form of diamond. We model the general dynamic state of planets as a function of interior temperature, carbon composition, and size, showing that above a critical threshold of $\sim$3 atom% C, limited to no mantle convection will be present assuming an Earth-like geotherm. We assert then that in the C-(Mg+2Si+Fe)-O system, only a very small compositional range produce habitable planets. Planets outside of this habitable range will be dynamically sluggish or stagnant, thus having limited carbon or water cycles leading to surface conditions inhospitable to life as we know it., 9 pages, 9 figures; Formatting fixed for figure 1
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.