Jeffrey Rawson, Keiko Omori, Meirigeng Qi, Shiela Bilbao, Mohamed El-Shahawy, Yoko Mullen, Luis Valiente, Kevin Ferreri, Donald C. Dafoe, Brian McFadden, Ismail H. Al-Abdullah, Jemily Juan, Fouad Kandeel, and Stephen Scott
Successful human islet isolation is essential for clinical and research applications,1-4 and is greatly influenced by selecting appropriate enzyme(s) for pancreas digestion.5-10 Hence, developing and using consistently high-quality enzymes is a key element for islet isolations. Advancements in obtaining non-good manufacturing practice liberase HI indeed made major progress to achieve successful islet isolation11,12 and allowed for an increase in the number of patients receiving islet transplants.13 However, in 2007, the use of liberase HI for human islet isolations was ceased due to safety concerns of possible prion contamination from bovine tissue-derived raw materials.14 Liberase HI was a mixture of collagenase and neutral protease (NP) and not of highly purified enzymes and hence, lot-to-lot variability was a major concern due to failure to consistently achieve successful islet isolation and long term storage was sporadic.9,12,15 Therefore, there is a great demand for manufacturing GMP-grade, highly pure, and low endotoxin digestion enzyme to replace liberase HI among islet isolation specialists and commercial manufacturers to consistently obtain high quality islets.6,16-18 Consequently, collagenase NB1 supplemented with NP was adopted by many centers globally as an alternative enzyme for pancreas digestion for islet isolation.6,19,20 Indeed, several patients have been transplanted with islets isolated using this enzyme, suggesting that this may be a promising product for islet isolation replacing liberase HI. However, the limitation of collagenase NB1 for its efficacy to isolate islets from younger donors influenced the ultimate islet isolation outcome from different donor populations. Furthermore, it has been reported that the collagenase NB1 enzyme contains degraded collagenase; therefore, higher doses are required to achieve successful isolations.8,21 Collagenase, and NP, and clostripain are produced from Clostridium histolyticum,15 whereas thermolysin is purified from Bacillus thermoproteolyticus rokko.12 Collagenase (class I and II isoforms) supplemented with either Thermolysin or NP is currently used for pancreas digestion. Hence, the combination of CIzyme collagenase HA (containing nondegradable class I [60%] and II [40%]) and NP was found to be effective in isolating islets for transplantation, but are not GMP products.21 Indeed, liberase mammalian tissue-free collagenase/thermolysin (MTF C/T) has been shown to be a promising enzyme for human islet isolation for clinical islet transplantation compared to collagenase NB1/NP.6,22 All types of aforementioned enzymes have been used in islet isolations for research and transplantation purposes. However, the advantage of using a particular enzyme from a specific supplier over another is debatable and often subjectively determined by an isolation team's experiences.21,23 It was reported that the overall isolation outcome of collagenase NB1/NP was comparable with that of liberase HI.5,19 In this retrospective analysis, islet isolations from 221 donor pancreata using 3 commercially available enzymes, liberase HI, collagenase NB1/NP, and liberase MTF C/T enzymes, were compared.