11 results on '"Jeffrey Labuz"'
Search Results
2. New results using an integrated model and recursive algorithm for image motion estimation.
- Author
-
Jeffrey Labuz and Robert J. Schalkoff
- Published
- 1984
- Full Text
- View/download PDF
3. Stereotactic Craniotomy with the Exoscope
- Author
-
Jeffrey Labuz and Philip L. Gildenberg
- Subjects
medicine.medical_specialty ,Bone flap ,Stereotactic surgery ,medicine.medical_treatment ,Neurosurgery ,Brain tumor ,Video camera ,law.invention ,Stereotaxic Techniques ,law ,Computer Graphics ,medicine ,Humans ,Computer Simulation ,Craniotomy ,Endoscopes ,Brain Mapping ,Depth Perception ,Brain Neoplasms ,business.industry ,Computer image ,Videotape Recording ,medicine.disease ,Surgery ,medicine.anatomical_structure ,Therapy, Computer-Assisted ,Scalp ,Neurology (clinical) ,Radiology ,business ,Depth perception - Abstract
A three-dimensional computer graphic program has been developed to guide the surgeon through the resection of a brain tumor. It consists of a video camera mounted on a stereotactic frame which visualizes the operative field in real time. Superimposed on the video monitor is a computer generated model of the tumor or other resection target mass. The mass can be displayed in several modes. The computer image of the mass is adjusted to correspond to the surgeon's eye view, with appropriate settings for the stereotactic apparatus indicated. Prior to incision, the image of the mass is superimposed on the scalp to guide placement and size of the scalp and bone flaps. As the resection proceeds, a cross-section of the mass is illustrated on the video picture of the operative field. The distance from the camera to the surface is measured, and the cross-section at that depth is displayed. A small window indicates the surgeon's eye view and the tangential view of the mass with an indication of the cross-section currently being displayed. As resection proceeds, the distance to the bottom of the resection cavity is measured repeatedly. The image is updated to indicate only that level of the tumor under resection. As the far side of the tumor is encountered, the mass disappears from the monitor, signaling completion of the resection.
- Published
- 1997
- Full Text
- View/download PDF
4. Stereotactic and Image-Guided Surgery: Abstracts
- Author
-
Stefan Kunze, J.H. Song, Catherine Fischer, D. Hellwig, Andrey V. Oblyapin, H. Bertalanffy, Juriy Z. Polonskiy, M. Wallace, Dennis E. Bullard, In Ki Mun, Volker M. Tronnier, Grégoire Malandain, W.R. Niendorf, C. Vial, Matthew A. Howard, Mario M. Bonsanto, Franck Sturtz, Andrey D. Anichkov, François Mauguière, Friedrich K. Albert, Jacques Favre, J. Mukawa, Y. Muragaki, Igor O. Volkov, D.S. Casolino, R.R. Tasker, D. Heyman, E. Emery, Bernard Laurent, Jin Woo Chang, K. Yamashiro, Joseph A. Maldjian, B. Abdennebi, Peter McL. Black, R. Andrews, Audun Stubhaug, Michael L. Levy, E. Franchin, A. Perneczky, Jacques Feldmar, Thomas M. Moriarty, Luis Garcia-Larrea, K. Roessler, Roman Mirsky, A. Cavaggioni, C.W. Dempsey, Joon Hyong Cho, A. Ishida, J.R. Schvarcz, T. Taira, L. Benes, M. Iwahara, Wen-Ching Liu, Y. Yoshii, Frédéric Bonnefoi, T. Nedjahi, H.W.S. Schroeder, William T. O'Connor, M. Daniel Noh, Andreas Staubert, J.C. Acevedo, G. Antoniadis, Yong Gou Park, L. Mahfouf, Eben Alexander, M.R. Gaab, F. Lavenne, Märta Segerdahl, Arcady V. Korzenev, R. Papasin, Luc Picard, Vadim Yakhnitsa, Per Kristian Eide, Serge Bracard, Y. Masutani, Björn A. Meyerson, K. Ericson, N.L. Dorward, Y. Terada, Peter W. Carmel, C. Manelfe, Jeffrey Labuz, Ch. Matula, Nicholas Ayache, P. Shamsgovara, I. Berry, Ron Kikinis, D. Albe-Fessard, Kazuhiro Katada, T. Dohi, P. Charles Garell, N.D. Kitchen, A.T. Bergenheim, Kim J. Burchiel, Xiaozhuo Chen, Olof Flodmark, D.E. Richardson, Marshall Devor, Th. Czech, M. Aichholzer, N. Hopf, Vladimir B. Nizkovolos, Janine Shulok, Chul-Won Park, L. Casentini, Laurent Launay, J. Sabatier, Marc Sindou, G. Palù, Ruth Govrin-Lippmann, W. Wagner, Sang Sup Chung, Karen Waddell, P. Calvi, P. Grunert, Y. Lajat, Kirk Moffitt, Vladimir A. Shoustin, A. Galvagni, Ferenc M. Jolesz, Patrick Mertens, C.R. Wirtz, W.Th. Koos, H.-P. Richter, W. Dietrich, Michael Knauth, Yong Ko, Margareta B. Møller, P.-Å. Ridderheim, H. Ralph Snodgrass, Mark A. Granner, Bengt Linderoth, R. Deinsberger, J.F. Kahamba, Carl-Olav Stiller, Jamal M. Taha, N. Tomiyama, Joseph C.T. Chen, Kazuhiko Nonomura, Philip L. Gildenberg, K. Boulanouar, K. Ungersboeck, M. Tremoulet, S.A. Rath, G. Lanner, H. Goerzer, Blaine S. Nashold, R. Mah, Marie-Claude Gregoire, Krupa Shanker, Eric Maurincomme, Kyung Hoe Lee, J. Winters, Z. Harry Rappaport, F.E. Roux, E. Blondet, Michael Söderman, Doros Platika, M.C. Spendel, C. Giorgi, Michael Schulder, B.L. Bauer, T. Tanikawa, René Anxionnat, D.G.T. Thomas, M. Guerrero, M. Zanusso, K. Seitz, W. Tschiltschke, O. Alberti, Alf Sollevi, H. Iseki, F. Colombo, Erwan Kerrien, N. Soliman, K. Takakura, Jian-Guo Cui, Tetsuo Kanno, J.P. Ranjeva, Roland Peyron, and D. Menegalli-Boggelli
- Subjects
medicine.medical_specialty ,Image-guided surgery ,business.industry ,medicine ,Surgery ,Medical physics ,Neurology (clinical) ,business - Published
- 1997
- Full Text
- View/download PDF
5. Use of a volumetric target for image-guided surgery
- Author
-
Philip L. Gildenberg and Jeffrey Labuz
- Subjects
medicine.medical_specialty ,Neuronavigation ,medicine.medical_treatment ,Video camera ,Virtual reality ,Rendering (computer graphics) ,law.invention ,Stereotaxic Techniques ,User-Computer Interface ,law ,medicine ,Humans ,Computer Simulation ,Craniotomy ,business.industry ,Brain Neoplasms ,Video image ,Surgery ,Image-guided surgery ,Surgery, Computer-Assisted ,Stereotaxic technique ,Neurology (clinical) ,Radiology ,business - Abstract
A VIRTUAL REALITY system has been devised to superimpose a computer-generated rendering of a volumetric target to be surgically approached or resected on a real-time video image of the surgical field. A stereotactic frame is used to register the image from the video camera with the image of the target volume for accurate localization. The volumetric target is obtained from preoperative imaging studies and can be modified to adjust the intended line of resection or to avoid eloquent vascular or neural tissue. The computer-generated image is updated throughout surgery to visualize only that part of the tumor under resection so the surgeon may guide the resection along the border of the mass or intended preplanned line of resection. To date, 74 intracranial tumor resections have been performed under video virtual reality guidance. Postoperative scanning corresponds in every case with preoperative planning. This system is also designed to be adapted to frameless guidance, which can be further enhanced by the incorporation of an audible tone to signal the relationship of the tip of the resection instrument to the line of resection.
- Published
- 2006
6. The Exoscope - A Frame-Based Video/Graphics System for Intraoperative Guidance of Surgical Resection
- Author
-
Eric R. Cosman, R. J. Ledoux, Philip L. Gildenberg, and Jeffrey Labuz
- Subjects
business.product_category ,Computer science ,medicine.medical_treatment ,Video Recording ,Video camera ,Radiosurgery ,computer.software_genre ,Surgical planning ,law.invention ,Computer graphics ,law ,Computer Graphics ,medicine ,Humans ,Computer vision ,Graphics ,Focus (computing) ,business.industry ,Graphics software ,Therapy, Computer-Assisted ,Surgery ,Neurology (clinical) ,Artificial intelligence ,Computer monitor ,business ,computer - Abstract
A system has been devised to focus a video camera mounted on a CRW stereotactic frame onto the surgical field and to integrate the video picture with a computer-generated three-dimensional view of structures or targets deep within the brain. The surgical resection can then be done with the surgeon looking either at the composite picture on the video/computer monitor (as in almost all endoscopic surgery) or at the surgical field, to perform the resection using the conventional techniques most comfortable to the surgeon and most effective for the resection. The graphics platform on which the Exoscope program is built is the same as used for the RSA X-Knife stereotactic radiosurgery system. The X-Knife graphics program allows the reconstruction of a target mass (such as intracranial tumor) and desired objects (such as surrounding vessels) with accurate registration to stereotactic coordinates derived from the CRW localizing system. By mounting a video system through an externally mounted endoscope on the CRW arc, it is possible to orient the video image with great accuracy to this same stereotactic space. The two images are superimposed on a computer/video console in the operating room. The surgeon visualizes a real-time video image of the operating field upon which is a graphical representation of the computer-generated image of the target mass beneath the surface. In the corners are triplane orthogonal views through the center of target and a view parallel to the trajectory, so the surgeon may gauge his or her progress toward the target.(ABSTRACT TRUNCATED AT 250 WORDS)
- Published
- 1994
- Full Text
- View/download PDF
7. Transplantation and Gene Therapy: Abstract
- Author
-
Jacques Favre, D. Albe-Fessard, Frédéric Bonnefoi, T. Nedjahi, D.S. Casolino, Märta Segerdahl, Michael Schulder, Arcady V. Korzenev, R. Papasin, Dennis E. Bullard, E. Emery, William T. O'Connor, A. Galvagni, H. Goerzer, Th. Czech, Janine Shulok, K. Boulanouar, L. Mahfouf, Chul-Won Park, P. Grunert, Nicholas Ayache, P. Charles Garell, Ferenc M. Jolesz, F. Lavenne, F. Colombo, Erwan Kerrien, N. Hopf, J. Winters, Bernard Laurent, C.R. Wirtz, F.E. Roux, Yong Ko, Margareta B. Møller, Xiaozhuo Chen, Bengt Linderoth, N.D. Kitchen, A.T. Bergenheim, T. Dohi, D.E. Richardson, M. Aichholzer, H. Iseki, H. Ralph Snodgrass, Marshall Devor, W.R. Niendorf, M.C. Spendel, Marc Sindou, Y. Muragaki, N.L. Dorward, Y. Terada, N. Soliman, K. Takakura, Kyung Hoe Lee, Thomas M. Moriarty, Andrey D. Anichkov, Blaine S. Nashold, Roman Mirsky, Jeffrey Labuz, François Mauguière, H.-P. Richter, R.R. Tasker, D. Heyman, B.L. Bauer, T. Tanikawa, R. Mah, Z. Harry Rappaport, D.G.T. Thomas, Joseph C.T. Chen, Michael J. Levy, K. Ungersboeck, Andrey V. Oblyapin, Audun Stubhaug, L. Casentini, B. Abdennebi, Krupa Shanker, E. Franchin, Jacques Feldmar, René Anxionnat, Catherine Fischer, Kirk Moffitt, Wen-Ching Liu, M. Zanusso, In Ki Mun, Volker M. Tronnier, K. Roessler, K. Seitz, Luc Picard, Eric Maurincomme, Grégoire Malandain, Vadim Yakhnitsa, Andreas Staubert, Peter W. Carmel, C. Manelfe, E. Blondet, T. Taira, M. Guerrero, Mario M. Bonsanto, Kazuhiro Katada, Y. Masutani, Kim J. Burchiel, Tetsuo Kanno, G. Palù, Michael Söderman, J.C. Acevedo, Matthew A. Howard, Laurent Launay, G. Antoniadis, Karen Waddell, Y. Lajat, Patrick Mertens, Jin Woo Chang, Ch. Matula, Franck Sturtz, Luis Garcia-Larrea, K. Yamashiro, Igor O. Volkov, Carl-Olav Stiller, Y. Yoshii, D. Hellwig, Olof Flodmark, Jian-Guo Cui, Ruth Govrin-Lippmann, Mark A. Granner, Philip L. Gildenberg, W. Wagner, Joon Hyong Cho, G. Lanner, A. Cavaggioni, L. Benes, P. Calvi, I. Berry, A. Perneczky, R. Andrews, Michael Knauth, M.R. Gaab, H. Bertalanffy, M. Iwahara, J.R. Schvarcz, P. Shamsgovara, W.Th. Koos, W. Dietrich, Peter McL. Black, Juriy Z. Polonskiy, M. Wallace, C. Vial, Friedrich K. Albert, Serge Bracard, Björn A. Meyerson, Joseph A. Maldjian, Vladimir A. Shoustin, J.P. Ranjeva, P.-Å. Ridderheim, N. Tomiyama, M. Tremoulet, S.A. Rath, Roland Peyron, D. Menegalli-Boggelli, Sang Sup Chung, Jamal M. Taha, Kazuhiko Nonomura, C. Giorgi, Marie-Claude Gregoire, Stefan Kunze, Doros Platika, A. Ishida, M. Daniel Noh, Yong Gou Park, J.H. Song, Vladimir B. Nizkovolos, J. Mukawa, H.W.S. Schroeder, K. Ericson, J. Sabatier, J.F. Kahamba, W. Tschiltschke, O. Alberti, Alf Sollevi, Per Kristian Eide, C.W. Dempsey, Eben Alexander, Ron Kikinis, and R. Deinsberger
- Subjects
Transplantation ,Pathology ,medicine.medical_specialty ,business.industry ,Genetic enhancement ,Medicine ,Surgery ,Neurology (clinical) ,business ,Bioinformatics - Published
- 1997
- Full Text
- View/download PDF
8. Subject Index Vol. 68, 1997
- Author
-
Nicholas Ayache, Thomas M. Moriarty, G. Antoniadis, Bengt Linderoth, F. Lavenne, Roman Mirsky, Jacques Feldmar, C. Giorgi, Y. Muragaki, Ch. Matula, Michael J. Levy, J.R. Schvarcz, H. Goerzer, T. Taira, K. Ungersboeck, Serge Bracard, Björn A. Meyerson, D.E. Richardson, P. Charles Garell, Marc Sindou, Andrey V. Oblyapin, Audun Stubhaug, N. Hopf, F.E. Roux, E. Blondet, K. Roessler, Sang Sup Chung, Jamal M. Taha, Kazuhiko Nonomura, Igor O. Volkov, C.W. Dempsey, L. Mahfouf, Olof Flodmark, In Ki Mun, Tetsuo Kanno, C.R. Wirtz, Volker M. Tronnier, N. Tomiyama, Grégoire Malandain, W. Tschiltschke, N.L. Dorward, Jin Woo Chang, O. Alberti, Y. Terada, Matthew A. Howard, A. Ishida, D. Hellwig, Alf Sollevi, Per Kristian Eide, Andrey D. Anichkov, François Mauguière, Karen Waddell, M. Tremoulet, R. Andrews, Jeffrey Labuz, N.D. Kitchen, Eben Alexander, N. Soliman, A.T. Bergenheim, K. Takakura, Kirk Moffitt, J.H. Song, L. Casentini, M. Daniel Noh, Yong Gou Park, Catherine Fischer, Jacques Favre, Xiaozhuo Chen, Juriy Z. Polonskiy, M. Wallace, C. Vial, Yong Ko, Marshall Devor, Margareta B. Møller, G. Lanner, Blaine S. Nashold, R. Mah, Joseph A. Maldjian, J. Mukawa, D. Albe-Fessard, Kyung Hoe Lee, B. Abdennebi, Ron Kikinis, D.S. Casolino, E. Emery, Peter W. Carmel, C. Manelfe, Ruth Govrin-Lippmann, W. Wagner, Z. Harry Rappaport, P. Calvi, Luis Garcia-Larrea, Krupa Shanker, Eric Maurincomme, H.W.S. Schroeder, A. Perneczky, Y. Yoshii, J. Winters, K. Ericson, Joseph C.T. Chen, Luc Picard, Vadim Yakhnitsa, Mario M. Bonsanto, Michael Söderman, Vladimir B. Nizkovolos, Bernard Laurent, Vladimir A. Shoustin, J. Sabatier, I. Berry, Michael Schulder, H. Iseki, P.-Å. Ridderheim, Andreas Staubert, J.F. Kahamba, M.C. Spendel, Wen-Ching Liu, Erwan Kerrien, F. Colombo, K. Yamashiro, S.A. Rath, H. Bertalanffy, D.G.T. Thomas, A. Cavaggioni, R. Deinsberger, W.Th. Koos, P. Shamsgovara, J.P. Ranjeva, K. Seitz, Michael Knauth, Y. Lajat, Franck Sturtz, M. Zanusso, W. Dietrich, Friedrich K. Albert, L. Benes, Marie-Claude Gregoire, Stefan Kunze, William T. O'Connor, Peter McL. Black, René Anxionnat, Roland Peyron, D. Menegalli-Boggelli, Kazuhiro Katada, Joon Hyong Cho, Märta Segerdahl, M. Iwahara, Arcady V. Korzenev, M. Guerrero, Dennis E. Bullard, Doros Platika, Ferenc M. Jolesz, Laurent Launay, Kim J. Burchiel, H.-P. Richter, Th. Czech, Janine Shulok, Chul-Won Park, P. Grunert, Y. Masutani, Carl-Olav Stiller, A. Galvagni, Philip L. Gildenberg, M.R. Gaab, Mark A. Granner, K. Boulanouar, T. Dohi, M. Aichholzer, B.L. Bauer, T. Tanikawa, Jian-Guo Cui, Frédéric Bonnefoi, T. Nedjahi, W.R. Niendorf, R.R. Tasker, D. Heyman, J.C. Acevedo, E. Franchin, G. Palù, H. Ralph Snodgrass, Patrick Mertens, and R. Papasin
- Subjects
medicine.medical_specialty ,Index (economics) ,business.industry ,Medicine ,Surgery ,Subject (documents) ,Medical physics ,Neurology (clinical) ,business - Published
- 1997
- Full Text
- View/download PDF
9. Subject Index Vol. 63,1994
- Author
-
L. Lopez-Gomez, J. Michiels, M.P. Mehta, D. Munoz, Lutz Nolte, A. Takahashi, Y. Piguet, L. Cardentey, R. J. Ledoux, Ross Davis, P.W. Hitchon, T.J.M. Hulsebos, Patrick Mertens, T. Yamamoto, Mustapha Chiha, Philip L. Gildenberg, M. Peter Heilbrun, Ian A. Cunningham, Bruce A. Kail, J. Brotchi, Hiroshi Tokimura, K. Wiese, Ch.B. Ostertag, J.M. Brucher, I. Ortega, I. Kaetsu, J. Muñoz, Kintomo Takakura, V. Jankovič, Barry Berner, R.A. Meuli, T. Uchiyama, S. Leenstra, B.C. Wen, P. Flury, Patrick J. Kelly, Stephan J. Goerss, André Olivier, L. Alvarez, K. Watanabe, P. Suetens, F. Andermann, Cesare Giorgi, M. Šramka, B.S. Rhode, H. Kohga, Kazuho Hirahara, Ferenc A. Jolesz, Katharina Pellegrin, J.P. Farias, J. L. Barcia-Salorio, Eric R. Cosman, Majeed Kadi, Takaomi Taira, Walter Grant, Shiao Woo, J. Piedra, D. Troost, G. López, J. Thomas, Hiroko Kawabatake, M. Ioku, Michael Stanley, Ronald P. Lesser, D. Glauser, G. Savard, H. Fankhauser, F. Soler, J. Miguéns, Luzia Zamorano, G. Redekop, Sandra Emmons, L. Assis, Tatsuya Tanikawa, F.. Quesney, William Peters, B. Fisher, J.C. VanGilder, J. Levy Melancia, Peter McL. Black, Eben Alexander, Paul R. McDonald, R. Kuroda, J.S. Gerdes, S. Goldman, D. Andries Bosch, A. Majeed Kadi, E. Ružický, David Altobelli, D. Baleriaux, M. Hirato, P. Mack, A.G. Gonçalves-Ferreira, A. Alaminos, James A. Taren, C. Drake, Hirotsune Kawamura, R. Verbeeck, A.B. Levin, Scott Stiving, Yosy Zohar, Alan Hirschfeld, Patricia O. Franklin, Terry M. Peters, M. Nakamura, J. Favre, W. Neerangun, W. Soler, Bryan Butler, P.L. Gleason, Ron Kikinis, B. Nuttin, Scott O. Stiving, F. Morales, M. Epitaux, Ahmed Rawanduzy, Richard Day, G. Marchal, Hiroshi Iseki, Patrick Herregodts, Sumio Uematsu, Jeffrey Labuz, M. Levivier, H. Iwasaki, D. Vandermeulen, Jean D'Haens, Linda Schicker, S. Jani, George C. Curtis, T. Tsubokawa, Tohru Hoshida, Roberto Spiegelmann, M. Andrade, G. Zomosa, Tadeusz Stadnik, Tetsuhiko Asakura, F. Akai, Stephen S. Gebarski, Kost Elisevich, William D. Tobler, Nobuhiko Hata, H.K. Inoue, Jeffrey A. Winfield, William M. Wells, R.Q. Quiñones-Molina, Fernando Diaz, Gerald A. King, William C. MacFarland, H. Molina, Richard A. Stea, P.K. Pillay, Marc Sindou, M. Knauth, J.E. Masciopinto, J. Espinosa, G. Hernández, C. Ohye, Meir Faibel, J.C. Torner, Y. Katayama, J. Gybels, A. Torres, N. Hayase, Bruce A. Kall, Juan A. Barcia, Spencer Koehler, Zhaowei Jiang, T.C. Ryken, B. Pirotte, Lucia Zamorano, J. Nakatani, Takeyoshi Dohi, François Dubeau, Koichi Baba, and Vlodak Siemionow
- Subjects
Index (economics) ,business.industry ,Surgery ,Subject (documents) ,Neurology (clinical) ,Nuclear medicine ,business ,Psychology ,Cognitive psychology - Published
- 1994
- Full Text
- View/download PDF
10. Camera And Projector Motion For Range Mapping
- Author
-
Jeffrey Labuz and Eugene S. McVey
- Subjects
business.industry ,Machine vision ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,Ray ,law.invention ,Geography ,Projector ,Motion field ,law ,Camera auto-calibration ,Computer graphics (images) ,Pinhole camera model ,Computer vision ,Triangulation ,Artificial intelligence ,business ,ComputingMethodologies_COMPUTERGRAPHICS ,Camera resectioning - Abstract
One method for measuring the shape of a three-dimensional (3-D) object is to project light rays onto its surface, image the resulting scene with a camera, and triangulate the illuminated object points. The locations of the projected rays, and their correspondences with the camera image of their incidences with the object surface, must be known for the triangulation procedure. This paper describes how the pattern illumination technique can be refined for range mapping without the usual correspondence information, and in fact without knowledge of the projected ray locations themselves. This is done by displacing the camera and/or projector between image captures.
- Published
- 1987
- Full Text
- View/download PDF
11. Coordinated Tracking Of Multiple Point Targets With Multiple Cameras
- Author
-
Jeffrey Labuz
- Subjects
business.industry ,Linear system ,Tracking system ,Kalman filter ,Invariant extended Kalman filter ,symbols.namesake ,Extended Kalman filter ,Jacobian matrix and determinant ,symbols ,Computer vision ,Recursive filter ,Artificial intelligence ,Point target ,business ,Mathematics - Abstract
Coordinated tracking of multiple point targets with multiple camerasJeffrey LabuzCenter for Machine IntelligenceUniversity of South Carolina, Department of Electrical and Computer EngineeringColumbia, South Carolina 29208ABSTRACTPresented in this paper are the system and measurement models, and the recursive filter equations, for an extended Kalmanfilter (EKF) to be used in tracking video point targets. The filter is designed to maintain estimates of a target's position,velocity, and acceleration in three dimensions (3D) based on two -dimensional (2D) measurements of the target's bearings asobserved by several cameras. The geometric mapping from object points in 3D world coordinates to image points in 2Dimage coordinates is modeled by the central projection for pinhole cameras. The recursive equations of the EKF incorporatethe Jacobian of this nonlinear camera transformation.1. INTRODUCTIONThe general problem addressed here is the tracking of numerous point targets as they move along three -dimensional (3D)trajectories in world coordinates. Several calibrated, pinhole -modeled cameras are assumed to be viewing the targets fromdifferent perspectives. A point target is defined as a 3D object, or object portion, whose camera image is large enough to bedetected above background noise yet not so large that distinguishing features of the object (portion) can be resolved. Twoexamples of typical point targets that might require tracking are distant maneuvering aircraft and the corners of a machinedpart on a conveyor belt. The tracking filter described here assumes that the point targets are moving independently. However,if the tracked points are found to remain fixed distances apart in 3D space, indicating that they are features of a rigid object ora 3D scene, then it should be possible to estimate the structure of the object or scene and the relative motion between thecameras and the object or scene.It is common practice in tracking applications to utilize a Kalman filter to maintain estimates of the current state of eachtarget (its position, velocity, and acceleration in world coordinates), and to predict future states, regardless of the degree ofmeasurement corruption. The design of any Kalman filter begins with a state -space model, possibly nonlinear and time -varying, of both the target dynamics (system model) and the observations (measurement model), complete with modelingerror terms and their covariances. The measurements are recursively filtered to obtain the desired state estimates. The Kalmanfilter is the optimum observer for dynamic systems with linear system and measurement models, and modeling error termswhich are Gaussian, white noise processes.This paper presents system and measurement models, and the corresponding Kalman filter equations, for applicationsinvolving 3D video point target tracking. The targets are assumed to be maneuvering with "constant" acceleration, to theextent that the acceleration derivative is modeled as a zero -mean Gaussian random variable. This results in a simple systemmodel that is both linear and time -invariant. In contrast, the observations are the two -dimensional (2D) positions of thecentral projections of the targets onto the image planes of the pinhole -modeled cameras. This results in a nonlinearmeasurement model, which requires the use of an extended Kalman filter (EKF). The filter equations incorporate the Jacobianof the camera's nonlinear projective mapping. This Jacobian arises from Taylor series expansion of the nonlinear mappingfunction and truncation of all second -order and higher -order terms. If the cameras are allowed to move with respect to theworld coordinate frame, or if they are allowed to zoom (i.e. alter their focal length), then the measurement model will be time -varying as well as nonlinear. Note that the research reported here can also be applied to any of several higher -order variationsof the standard EKF, including the iterated EKF, the second -order EKF, and the adaptive EKF.The tracking filter described here relies on the detection of valid target images and the matching of those target imagesbetween cameras. A complete tracking system based on this tracking filter would be required to recognize target appearances,or births, and disappearances, or deaths, in the camera images in order to initialize and terminate individual target tracks. Thispaper does not directly address the problems of detection, matching, and birth and death recognition. However, it should benoted that the use of a tracking filter would simplify these problems somewhat. This is because predicted target positions
- Published
- 1989
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.