376 results on '"Jean-Yves, Bottero"'
Search Results
2. Combusted-diesel additives containing CeO 2 nanomaterials shape methanogenic pathways during sludge digestion and enhance biogas production
- Author
-
Mélanie Auffan, Abdoul Karim Kabore, Anais Cuny, Oulfat Amin Ali, Mohammed Barakat, Bernard Angeletti, Olivier Proux, Jean-Yves Bottero, Nicolas Roche, Catherine Santaella, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Laboratoire d'Ecologie Microbienne de la Rhizosphère et d'Environnements Extrêmes (LEMIRE), Institut de Biosciences et Biotechnologies d'Aix-Marseille (ex-IBEB) (BIAM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Université Mohammed VI Polytechnique [Ben Guerir] (UM6P), Excellence Initiative of Aix-Marseille University - A*MIDEX, a French 'Investissements d’Avenir' program, through its associated Labex SERENADE project, and Duke University [Durham]
- Subjects
[SDE.IE]Environmental Sciences/Environmental Engineering ,Materials Science (miscellaneous) ,[SDV]Life Sciences [q-bio] ,[SDE]Environmental Sciences ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,General Environmental Science - Abstract
International audience; This study addressed the impact of nanomaterials on anaerobic digestion and biogas production (methanogenesis pathways) whencontaminanting aerobic sludge generated during wastewater treatment. Our experimental system was based on bioreactor operationalparameters aligned with the operating conditions used in wastewater treatment plants (WWTP), a contamination scenario considering thetreatment of nano-enabled products at the last stages of their life cycle, and nanomaterial concentrations close to those predicted in WWTP.The physico-chemical, microbiological and chemical engineering proxies studied all concluded that combusted nanoCeO2-enabled fuel additivestransiently increased EPS production and specific hydrolytic enzymatic activities without altering the aerobic sludge microbial communitystructure nor the C, P, N removal capacity (spiked concentrations of 130 µg.L-1 during aerobic sludge production). However, the presence in theaerobic sludge biosolids of 99.9 % of the total CeO2 injected (without any change in speciation) altered the production, structure, and activity ofthe anaerobic sludge during digestion (impacting the EPS, ATP, lipase and α–glucosidase activities). Interestingly, these modifications of theanaerobic sludge activity shaped the methanogenesis pathways from acetoclastic to hydrogenotrophic and enhanced the biogas productionwith a significant increase in generated H2. In the context of developing a sustainable energy supply, we observed a continuous improvementof the biogas production in the contaminated bioreactor, which could increase the energy recovery potential of WWTPs.
- Published
- 2022
- Full Text
- View/download PDF
3. Exposure to cerium dioxide nanoparticles differently affect swimming performance and survival in two daphnid species.
- Author
-
Ester Artells, Julien Issartel, Mélanie Auffan, Daniel Borschneck, Antoine Thill, Marie Tella, Lenka Brousset, Jérôme Rose, Jean-Yves Bottero, and Alain Thiéry
- Subjects
Medicine ,Science - Abstract
The CeO₂ NPs are increasingly used in industry but the environmental release of these NPs and their subsequent behavior and biological effects are currently unclear. This study evaluates for the first time the effects of CeO₂ NPs on the survival and the swimming performance of two cladoceran species, Daphnia similis and Daphnia pulex after 1, 10 and 100 mg.L⁻¹ CeO₂ exposures for 48 h. Acute toxicity bioassays were performed to determine EC₅₀ of exposed daphnids. Video-recorded swimming behavior of both daphnids was used to measure swimming speeds after various exposures to aggregated CeO₂ NPs. The acute ecotoxicity showed that D. similis is 350 times more sensitive to CeO₂ NPs than D. pulex, showing 48-h EC₅₀ of 0.26 mg.L⁻¹ and 91.79 mg.L⁻¹, respectively. Both species interacted with CeO₂ NPs (adsorption), but much more strongly in the case of D. similis. Swimming velocities (SV) were differently and significantly affected by CeO₂ NPs for both species. A 48-h exposure to 1 mg.L⁻¹ induced a decrease of 30% and 40% of the SV in D. pulex and D. similis, respectively. However at higher concentrations, the SV of D. similis was more impacted (60% off for 10 mg.L⁻¹ and 100 mg.L⁻¹) than the one of D. pulex. These interspecific toxic effects of CeO₂ NPs are explained by morphological variations such as the presence of reliefs on the cuticle and a longer distal spine in D. similis acting as traps for the CeO₂ aggregates. In addition, D. similis has a mean SV double that of D. pulex and thus initially collides with twice more NPs aggregates. The ecotoxicological consequences on the behavior and physiology of a CeO₂ NPs exposure in daphnids are discussed.
- Published
- 2013
- Full Text
- View/download PDF
4. The shape and speciation of Ag nanoparticles drive their impacts on organisms in a lotic ecosystem
- Author
-
Corinne Chanéac, Mélanie Auffan, Mark R. Wiesner, Bernard Angeletti, Jean-Yves Bottero, Lenka Brousset, Jérôme Rose, Alain Thiéry, E. Morel, Julien Issartel, Marie Tella, Clément Levard, Jean-Louis Hazemann, Catherine Santaella, Mohamed Barakat, Philippe Ortet, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Laboratoire d'Ecologie Microbienne de la Rhizosphère et d'Environnements Extrêmes (LEMIRE), Institut de Biosciences et Biotechnologies d'Aix-Marseille (ex-IBEB) (BIAM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE), Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS), Analyses des eaux, sols et végétaux (US Analyses), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Département Performances des systèmes de production et de transformation tropicaux (Cirad-PERSYST), Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU), Matériaux, Rayonnements, Structure (NEEL - MRS), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Duke University [Durham], Centre National de la Recherche Scientifique (CNRS)European Commission, ANR-10-NANO-0006,MESONNET,Utilisation de mésocosmes terrestres et aquatiques en réseau pour l'évaluation du risque associé à la dispersion de nanoparticules manufacturées(2010), European Project: 310584,EC:FP7:NMP,FP7-NMP-2012-LARGE-6,NANOREG(2013), Novel Advanced Nano-Objects (LCMCP-NANO), Matériaux Hybrides et Nanomatériaux (LCMCP-MHN), Collège de France (CdF (institution))-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Collège de France (CdF (institution))-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), and Matériaux, Rayonnements, Structure (MRS)
- Subjects
nanomaterials [EN] ,River ecosystem ,Materials Science (miscellaneous) ,media_common.quotation_subject ,Argent ,010501 environmental sciences ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,01 natural sciences ,Mesocosm ,Plancton ,03 medical and health sciences ,Milieu lotique ,Water column ,Ecosystem ,ComputingMilieux_MISCELLANEOUS ,030304 developmental biology ,0105 earth and related environmental sciences ,General Environmental Science ,media_common ,0303 health sciences ,Stress oxydatif ,Impact sur l'environnement ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Plankton ,Bioaccumulation ,[SDE.ES]Environmental Sciences/Environmental and Society ,Speciation ,13. Climate action ,Benthic zone ,Environmental chemistry ,M40 - Écologie aquatique ,[SDE]Environmental Sciences ,Environmental science ,P02 - Pollution - Abstract
International audience; Silver nanomaterials with different shapes (spheres, plates, wires, rods, cubes) are valued by industries and scientists for their shape-dependent properties which make them useful for diverse applications. In a saferby-design perspective, controlling the shape of Ag nanomaterials could be an option to increase their properties while lowering either their hazard or their exposure potentials. Nine indoor aquatic mesocosms reproducing a lotic ecosystem were contaminated with chronic low-level additions of Ag nanospheres (Sp-Ag) and nanoplates (Pl-Ag) for a month. A shape-dependent impact under such environmentally relevant exposure conditions was observed. Pl-Ag induced a moderate oxidative stress in adult Gammarus fossarum (after molting) and a hormesis effect on planktonic microbial communities, while Sp-Ag had no effect. In an environmental risk perspective, our results highlight which ecological niches of a lotic ecosystem would be more impacted by Pl-Ag: (i) >72% of the total Ag was found fully sulfidized in surficial sediment and had only a moderate impact on benthic macro-organisms, (ii) only 11% to 15% of the Ag remained in the water column after 1 month, but Ag was under a more reactive speciation that impacts the planktonic community.
- Published
- 2020
- Full Text
- View/download PDF
5. Impacts and Physico-Chemical Behavior of Inorganic Nanoparticles in the Environment
- Author
-
Melanie, Auffan, primary, Jerome, Rose, additional, Armand, Masion, additional, Jerome, Labille, additional, Corinne, Chaneac, additional, Wiesner, Mark R., additional, and Jean-Yves, Bottero, additional
- Published
- 2012
- Full Text
- View/download PDF
6. Design Defines the Effects of Nanoceria at a Low Dose on Soil Microbiota and the Potentiation of Impacts by the Canola Plant
- Author
-
Thierry Heulin, Philippe Ortet, Mohamed Hamidat, Catherine Santaella, Jérôme Rose, Jean-Yves Bottero, Mohamed Barakat, Wafa Achouak, Corinne Chanéac, Laboratoire d'Ecologie Microbienne de la Rhizosphère et d'Environnements Extrêmes (LEMIRE), Institut de Biosciences et Biotechnologies d'Aix-Marseille (ex-IBEB) (BIAM), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF)-Centre National de la Recherche Scientifique (CNRS), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC), and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)
- Subjects
0301 basic medicine ,food.ingredient ,[SDV]Life Sciences [q-bio] ,030106 microbiology ,010501 environmental sciences ,Plant Roots ,01 natural sciences ,Soil ,03 medical and health sciences ,food ,RNA, Ribosomal, 16S ,Botany ,Environmental Chemistry ,Canola ,Soil Microbiology ,0105 earth and related environmental sciences ,2. Zero hunger ,Rhizosphere ,biology ,Plant roots ,Microbiota ,Community structure ,General Chemistry ,biology.organism_classification ,Environmental chemistry ,[SDE]Environmental Sciences ,Soil water ,Cycling ,Soil microbiology ,Bacteria - Abstract
PMID: 27243334; International audience; Soils act as nanoceria sinks via agricultural spreading and surface waters. Canola plants were grown for one month in soil spiked with nanoceria (1 mg·kg–1). To define the role of nanomaterials design on environmental impacts, we studied nanoceria with different sizes (3.5 or 31 nm) and coating (citrate). We measured microbial activities involved in C, N, and P cycling in the rhizosphere and unplanted soil. Bacterial community structure was analyzed in unplanted soil, rhizosphere, and plant roots by 454-pyrosequencing of the 16S rRNA gene. This revealed an impact gradient dependent on nanomaterials design, ranging from decreased microbial enzymatic activities in planted soil to alterations in bacterial community structure in roots. Particle size/aggregation was a key parameter in modulating nanoceria effects on root communities. Citrate coating lowered the impact on microbial enzymatic activities but triggered variability in the bacterial community structure near the plant root. Some nanoceria favored taxa whose closest relatives are hydrocarbon-degrading bacteria and disadvantaged taxa frequently associated in consortia with disease-suppressive activity toward plant pathogens. This work provides a basis to determine outcomes of nanoceria in soil, at a dose close to predicted environmental concentrations, and to design them to minimize these impacts.
- Published
- 2016
- Full Text
- View/download PDF
7. Contribution of mesocosm testing to a single-step and exposure-driven environmental risk assessment of engineered nanomaterials
- Author
-
Mélanie Auffan, Catherine Mouneyrac, Christine Ogilvie Hendren, Jérôme Rose, Catherine Santaella, Camille de Garidel-Thoron, Alain Thiéry, Jean-Yves Bottero, Armand Masion, Mark R. Wiesner, Laure Giamberini, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Mer, molécules et santé EA 2160 (MMS), Le Mans Université (UM)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Université de Nantes - UFR des Sciences Pharmaceutiques et Biologiques, Université de Nantes (UN)-Université de Nantes (UN), Department of Civil and Environmental Engineering, Duke University, Duke University [Durham], Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Institut de Biosciences et Biotechnologies d'Aix-Marseille (ex-IBEB) (BIAM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire d'Ecologie Microbienne de la Rhizosphère et d'Environnements Extrêmes (LEMIRE), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), ANR-11-IDEX-0001,Amidex,INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE(2011), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Le Mans Université (UM)-Université de Nantes - UFR des Sciences Pharmaceutiques et Biologiques, Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), ANR-11-IDEX-0001-02/11-LABX-0064,SERENADE,Vers une conception de nanomatériaux innovants, durables et sûrs(2011), and ANR-11-IDEX-0001-02/11-IDEX-0001,AMIDEX,AMIDEX(2011)
- Subjects
Materials Science (miscellaneous) ,Mesocosm experiment ,Engineered nanomaterials ,Public Health, Environmental and Occupational Health ,Single step ,02 engineering and technology ,010501 environmental sciences ,021001 nanoscience & nanotechnology ,01 natural sciences ,Hazard ,Environmental risk ,[SDE.ES]Environmental Sciences/Environmental and Society ,Mesocosm ,[SDE]Environmental Sciences ,Environmental science ,Biochemical engineering ,0210 nano-technology ,Safety, Risk, Reliability and Quality ,Risk assessment ,Safety Research ,Ecosystem ,0105 earth and related environmental sciences ,Environmental risk assessment - Abstract
International audience; Environmental risk assessment of nanomaterials generally relies on a decision-tree based strategy which provides guidance and protocols for the determination of a collection of hazard end-points. Mesocosm testing is based on a different approach. This method consists in monitoring the evolution of a recreated miniature ecosystem subsequent to a nanomaterial contamination. The only decision in this risk assessment strategy is the definition of an environmentally relevant exposure scenario (incl. dose), which, given current analytical capabilities, may unfavorably affect the nature and precision of parameters and end points to be determined. Despite these limitations, mesocosm testing bears clear advantages for the determination of both exposure and hazard in a single experiment, and for producing dependable and intercomparable data.
- Published
- 2019
- Full Text
- View/download PDF
8. Non-linear release dynamics for a CeO
- Author
-
Lorette, Scifo, Perrine, Chaurand, Nathan, Bossa, Astrid, Avellan, Mélanie, Auffan, Armand, Masion, Bernard, Angeletti, Isabelle, Kieffer, Jérôme, Labille, Jean-Yves, Bottero, and Jérôme, Rose
- Subjects
Nonlinear Dynamics ,Ultraviolet Rays ,Cerium ,Coloring Agents ,Weather ,Wood ,Nanocomposites - Abstract
The release of CeO
- Published
- 2018
9. Non-linear release dynamics for a CeO2 nanomaterial embedded in a protective wood stain, due to matrix photo-degradation
- Author
-
Mélanie Auffan, Perrine Chaurand, Jérôme Labille, Jérôme Rose, Nathan Bossa, Isabelle Kieffer, Bernard Angeletti, Jean-Yves Bottero, Lorette Scifo, Armand Masion, Astrid Avellan, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), BM30B/FAME, European Synchrotron Radiation Facility (ESRF), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), European Synchroton Radiation Facility [Grenoble] (ESRF), TECNALIA Foundation, 'Excellence Initiative' of Aix-Marseille University A*MIDEX, a French 'Investissements d'Avenir' program, through its associated Labex SERENADE [ANR-11-LABX-0064], European Project: 604305,EC:FP7:NMP,FP7-NMP-2013-LARGE-7,SUN(2013), and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)
- Subjects
Polymer nanocomposite ,Health, Toxicology and Mutagenesis ,Weathering ,02 engineering and technology ,010501 environmental sciences ,Toxicology ,01 natural sciences ,Stain ,Irradiation ,Photodegradation ,Photo-degradation ,0105 earth and related environmental sciences ,Nanocomposite ,Chemistry ,Polymer nanocomposites ,General Medicine ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Aging of nanomaterials ,Pollution ,Wood stain ,Engineered nanomaterials (ENM) release ,Chemical engineering ,13. Climate action ,Acrylic stain ,[SDE]Environmental Sciences ,Leaching (metallurgy) ,0210 nano-technology - Abstract
International audience; The release of CeO2-bearing residues during the weathering of an acrylic stain enriched with CeO2 nanomaterial designed for wood protection (Nanobyk brand additive) was studied under two different scenarios: (i) a standard 12-weeks weathering protocol in climate chamber, that combined condensation, water spraying and UV–visible irradiation and (ii) an alternative accelerated 2-weeks leaching batch assay relying on the same weathering factors (water and UV), but with a higher intensity of radiation and immersion phases. Similar Ce released amounts were evidenced for both scenarios following two phases: one related to the removal of loosely bound material with a relatively limited release, and the other resulting from the degradation of the stain, where major release occurred. A non-linear evolution of the release with the UV dose was evidenced for the second phase. No stabilization of Ce emissions was reached at the end of the experiments. The two weathering tests led to different estimates of long-term Ce releases, and different degradations of the stain. Finally, the photo-degradations of the nanocomposite, the pure acrylic stains and the Nanobyk additive were compared. The incorporation of Nanobyk into the acrylic matrix significantly modified the response of the acrylic stain to weathering.
- Published
- 2018
- Full Text
- View/download PDF
10. Reprotoxicité des nanoparticules
- Author
-
Jeanne Perrin, Thierry Orsière, Mélanie Auffan, Jean-Yves Bottero, I. Sari-Minodier, F. Greco, Blandine Courbiere, and Jérôme Rose
- Subjects
Chronic exposure ,Human fertility ,Reproductive Medicine ,business.industry ,Nanotoxicology ,Obstetrics and Gynecology ,Nanoparticle ,Nanotechnology ,General Medicine ,Business ,3. Good health ,Biotechnology - Abstract
Nanoparticles (NPs) are sized between 1 and 100 nm. Their size allows new nanoscale properties of particular interest for industrial and scientific purpose. Over the past twenty years, nanotechnology conquered many areas of use (electronic, cosmetic, textile...). While, human is exposed to an increasing number of nanoparticles sources, health impacts and, particularly on reproductive function, remains poorly evaluated. Indeed, traceability of nanoparticles use is lacking and nanotoxicology follows different rules than classical toxicology. This review focuses on the impact of NPs on health and particularly on fertility and addresses potential risks of chronic exposure to NPs on human fertility. (C) 2014 Elsevier Masson SAS. All rights reserved.
- Published
- 2015
- Full Text
- View/download PDF
11. Life Cycle of Nanoparticles in the Environment
- Author
-
Mark R. Wiesner, Jérôme Labille, Vladimir Vidal, Mélanie Auffan, Jean-Yves Bottero, and Catherine Santaella
- Subjects
Bioaccumulation ,Environmental science ,Nanoparticle ,Nanotechnology ,02 engineering and technology ,010501 environmental sciences ,021001 nanoscience & nanotechnology ,0210 nano-technology ,01 natural sciences ,0105 earth and related environmental sciences ,Nanomaterials - Published
- 2017
- Full Text
- View/download PDF
12. Theory and Methodology for Determining Nanoparticle Affinity for Heteroaggregation in Environmental Matrices Using Batch Measurements
- Author
-
Mathieu Therezien, Jean-Yves Bottero, Lauren E. Barton, Mélanie Auffan, Mark R. Wiesner, Duke University [Durham], Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), and Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
inorganic chemicals ,exposure assessment ,education ,Oxide ,Nanoparticle ,Suspension (chemistry) ,Metal ,chemistry.chemical_compound ,mental disorders ,medicine ,activated sludge ,Environmental Chemistry ,Waste Management and Disposal ,Dissolution ,health care economics and organizations ,surface and interfaces ,Chromatography ,Polyvinylpyrrolidone ,Chemistry ,technology, industry, and agriculture ,respiratory system ,Pollution ,Partition coefficient ,Activated sludge ,Chemical engineering ,visual_art ,[SDE]Environmental Sciences ,visual_art.visual_art_medium ,nanoparticles ,medicine.drug - Abstract
International audience; In this study, we present a method for determining the relative affinity of nanoparticles (NPs) for an ensemble of other particles in a complex, heterogeneous suspension. We evaluated this method for NPs heteroaggregating with suspended solids present in activated sludge. A relationship was derived between the heterogeneous affinity coefficient, alpha, and measurements over time of the distribution coefficient, gamma, of NPs measured in supernatant versus those removed by heteroaggregation and subsequent settling. Application of this method, which uses a mathematical relationship to determine alpha from experimentally measured gamma values, to a series of metal and metal oxide NPs heteroaggregated with activated sludge indicated a relative affinity in the order of pristine CeO2, TiO2 NPs, and ZnO NPs > Ag(0) NPs surface-modified with polyvinylpyrrolidone (PVP) > citrate-functionalized CeO2 NP > Ag(0) NPs surface-modified with gum arabic. This trend in relative affinity followed the observed trend in removal such that higher affinity corresponded to higher removals of NPs. Values of alpha were calculated from measured relative affinities using average diameter and concentration of the activated sludge particles. The value calculated for PVP-stabilized Ag(0) NPs was comparable to a value previously reported for the attachment of these same NPs to a biofilm. Calculations also yielded size dependence of alpha in the case of the two Ag(0) evaluated that may be linked to NP dissolution.
- Published
- 2014
- Full Text
- View/download PDF
13. Long-term aging of a CeO2 based nanocomposite used for wood protection
- Author
-
Mélanie Auffan, Jérôme Rose, Fabio Ziarelli, Jérôme Labille, Wei Liu, Jean-Yves Bottero, Christophe Geantet, Armand Masion, Marie-Ange Diot, Luca Olivi, Perrine Chaurand, Olivier Proux, RAFFINAGE (RAFFINAGE), Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Health, Toxicology and Mutagenesis ,UV filter ,02 engineering and technology ,010501 environmental sciences ,Toxicology ,01 natural sciences ,Citric Acid ,Nanocomposites ,Nanomaterials ,Desorption ,Weather ,0105 earth and related environmental sciences ,Nanocomposite ,Chemistry ,Cerium ,[CHIM.CATA]Chemical Sciences/Catalysis ,General Medicine ,Carbon-13 NMR ,021001 nanoscience & nanotechnology ,Wood ,[SDE.ES]Environmental Sciences/Environmental and Society ,Pollution ,XANES ,Chemical engineering ,13. Climate action ,Sunlight ,Degradation (geology) ,Chemical stability ,0210 nano-technology - Abstract
RAFFINAGE+CGE; A multi-scale methodology was used to characterize the long-term behavior and chemical stability of a CeO2-based nanocomposite used as UV filter in wood stains. ATR-FTIR and C-13 NMR demonstrated that the citrate coated chelates with Ce(IV) through its central carboxyl- and its alpha-hydroxyl- groups at the surface of the unaged nanocomposite. After 42 days under artificial daylight, the citrate completely disappeared and small amount of degradation products remained attached to the surface even after 112 days. Moreover, the release/desorption of the citrate layer led to a surface reorganization of the nano-sized CeO2 core observed by XANES (Ce L-3-edge). Such a surface and structural transformation of the commercialized nanocomposite could have implications in term of fate, transport, and potential impacts towards the environment. (C) 2014 Elsevier Ltd. All rights reserved.
- Published
- 2014
- Full Text
- View/download PDF
14. Environmental Nanotechnology, Applications and Impacts of Nanomaterials, Second Edition
- Author
-
Mark Wiesner, Jean-Yves Bottero, Mark Wiesner, and Jean-Yves Bottero
- Abstract
Extensively revised and featuring new material, this timely, advanced resource covers the impacts of nanomaterials on organisms and ecosystems and their applications within industry. Cowritten by leaders of two of the most prominent research groups in the world considering the effects of nanomaterials on the environment, the second edition of Environmental Nanotechnology addresses the cutting-edge advances in this area. There is now much more known about the impacts of nanomaterials on organisms and ecosystems. Methods have been developed where there were few accepted procedures in the past. Thinking has evolved to consider the life cycle effects of nanomaterial production, and tools for risk forecasting are now under development. There has also been some experience among academics in using this book as the basis for new courses on Environmental Nanotechnology. Three new chapters cover the life cycle of nanomaterial fabrication and use and estimating nanomaterial exposure in the environment. A systematic discussion of the effects of nanomaterials on organisms and ecosystems is included, where the previous edition was largely limited to speculation. Features 75% new material New chapter on the life cycle aspects of nanomaterial fabrication and use Two new chapters on estimating nanomaterial exposure in the environment: implications that explore nanotoxicology; exposure estimation Contains end-of-chapter problems and questions
- Published
- 2016
15. Influence of Aqueous Inorganic Anions on the Reactivity of Nanoparticles in TiO
- Author
-
Jeffrey, Farner Budarz, Andrea, Turolla, Aleksander F, Piasecki, Jean-Yves, Bottero, Manuela, Antonelli, and Mark R, Wiesner
- Subjects
Anions ,Titanium ,technology, industry, and agriculture ,Nanoparticles ,Isoelectric Point ,Catalysis ,Article - Abstract
The influence of inorganic anions on the photoreactivity and aggregation of titanium dioxide nanoparticles (NPs) was assessed by dosing carbonate, chloride, nitrate, phosphate, and sulfate as potassium salts at multiple concentrations. NP stability was monitored in terms of aggregate morphology and electrophoretic mobility (EPM). Aggregate size and fractal dimension were measured over time by laser diffraction, and the isoelectric point (IEP) as a function of anion and concentration was obtained by measuring EPM versus pH. Phosphate, carbonate, and to a lesser extent, sulfate decreased the IEP of TiO(2) and stabilized NP suspensions owing to specific surface interactions, whereas this was not observed for nitrate and chloride. TiO(2) NPs were exposed to UV-A radiation, and the photoreactivity was assessed by monitoring the production of reactive species over time both at the NP surface (photogenerated holes) and in the bulk solution (hydroxyl radicals) by observing their reactions with the selective probe compounds iodide and terephthalic acid, respectively. The generation of photogenerated holes and hydroxyl radicals was influenced by each inorganic anion to varying degrees. Carbonate and phosphate inhibited the oxidation of iodide, and this interaction was successfully described by a Langmuir–Hinshelwood mechanism and related to the characteristics of TiO(2) aggregates. Chloride and nitrate do not specifically interact with TiO(2), and sulfate creates relatively weak interactions with the TiO(2) surface such that no decrease in photogenerated hole reactivity was observed. A decrease in hydroxyl radical generation was observed for all inorganic anions. Quenching rate constants for the reaction of hydroxyl radicals with each inorganic anion do not provide a comprehensive explanation for the magnitude of this decrease, which arises from the interplay of several physicochemical phenomena. This work shows that the reactivity of NPs will be strongly influenced by the makeup of the waters they are released into. The impact of anion species on hydroxyl radical inhibition was as follows: carbonate > chloride > phosphate > nitrate > sulfate.
- Published
- 2017
16. Integrated effect evaluation of metallic nanoparticles on a simplified freshwater food chain of microorganisms and bivalves, an overview
- Author
-
Laure Giamberini, Christophe Pagnout, Sandrine Pain-Devin, melanie auffan, Jean-Yves Bottero, Simon Devin, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Devin, Simon, Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDV.EE]Life Sciences [q-bio]/Ecology, environment ,[STAT]Statistics [stat] ,[SDV.EE] Life Sciences [q-bio]/Ecology, environment ,[SDV.TOX.ECO] Life Sciences [q-bio]/Toxicology/Ecotoxicology ,[SDV.EE.ECO]Life Sciences [q-bio]/Ecology, environment/Ecosystems ,[SDV.EE.ECO] Life Sciences [q-bio]/Ecology, environment/Ecosystems ,[SDV.TOX.ECO]Life Sciences [q-bio]/Toxicology/Ecotoxicology ,ComputingMilieux_MISCELLANEOUS ,[STAT] Statistics [stat] - Abstract
International audience
- Published
- 2017
17. Influence of Aqueous Inorganic Anions on the Reactivity of Nanoparticles in TiO2 Photocatalysis
- Author
-
Mark R. Wiesner, Jeffrey Farner Budarz, Jean-Yves Bottero, Manuela Antonelli, Andrea Turolla, Aleksander F. Piasecki, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), and Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
IONS ,ADSORPTION ,SURFACE COMPLEX ,Potassium ,Inorganic chemistry ,chemistry.chemical_element ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,TITANIUM-DIOXIDE NANOPARTICLES ,HETEROGENEOUS PHOTOCATALYSIS ,COLLOIDAL STABILITY ,ORGANIC-MATTER ,INNER-SPHERE ,AGGREGATION ,OXYGEN ,02 engineering and technology ,010501 environmental sciences ,01 natural sciences ,Chloride ,chemistry.chemical_compound ,Adsorption ,Electrochemistry ,medicine ,General Materials Science ,Sulfate ,Spectroscopy ,0105 earth and related environmental sciences ,Aqueous solution ,Surfaces and Interfaces ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Phosphate ,Isoelectric point ,chemistry ,13. Climate action ,Photocatalysis ,0210 nano-technology ,medicine.drug - Abstract
International audience; The influence of inorganic anions on the photo reactivity and aggregation of titanium dioxide nanoparticles (NPs) was assessed by dosing carbonate, chloride, nitrate, phosphate, and sulfate as potassium salts at multiple concentrations. NP stability was monitored in terms of aggregate morphology and electrophoretic mobility (EPM). Aggregate size and fractal dimension were measured over time by laser diffraction, and the isoelectric point (IEP) as a function of anion and concentration was obtained by measuring EPM versus pH. Phosphate, carbonate, and to a lesser extent, sulfate decreased the IEP of TiO2 and stabilized NP suspensions owing to specific surface interactions, whereas this was not observed for nitrate and chloride. TiO2 NPs were exposed to Induce Aggregation UV-A radiation, and the photoreactivity was assessed by monitoring the production of reactive species over time both at the NP surface (photogenerated holes) and in the bulk solution (hydroxyl radicals) by observing their reactions with the selective probe compounds iodide and terephthalic acid, respectively. The generation of photogenerated holes and hydroxyl radicals was influenced by each inorganic anion to varying degrees. Carbonate and phosphate inhibited the oxidation of iodide, and this interaction was successfully described by a Langmuir-Hinshelwood mechanism and related to the characteristics of TiO2 aggregates. Chloride and nitrate do not specifically interact with TiO2, and sulfate creates relatively weak interactions with the TiO2 surface such that no decrease in photogenerated hole reactivity was observed. A decrease in hydroxyl radical generation was observed for all inorganic anions. Quenching rate constants for the reaction of hydroxyl radicals with each inorganic anion do not provide a comprehensive explanation for the magnitude of this decrease, which arises from the interplay of several physicochemical phenomena. This work shows that the reactivity of NPs will be strongly influenced by the makeup of the waters they are released into. The impact of anion species on hydroxyl radical inhibition was as follows: carbonate > chloride > phosphate > nitrate > sulfate.
- Published
- 2017
- Full Text
- View/download PDF
18. Indoor mesocosms: an integrated approach to assess the environmental risks of nanomaterials
- Author
-
Melanie Auffan, Lenka Brousset, Alain Thiéry, Jerome ROSE, Jean-Yves Bottero, Auffan, Melanie, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), and Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDE] Environmental Sciences ,[SDE]Environmental Sciences ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2017
19. Enhanced transportability of zero valent iron nanoparticles in aquifer sediments: surface modifications, reactivity, and particle traveling distances
- Author
-
Jérôme Labille, Nathan Bossa, Mélanie Auffan, Naresh Kumar, Jérôme Rose, Jean-Yves Bottero, Pierre Doumenq, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Institut National de l'Environnement Industriel et des Risques (INERIS), Laboratoire Chimie de l'environnement (LCE), Aix Marseille Université (AMU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Health, Toxicology and Mutagenesis ,Iron ,Mineralogy ,Metal Nanoparticles ,Aquifer ,02 engineering and technology ,010501 environmental sciences ,01 natural sciences ,[CHIM]Chemical Sciences ,Environmental Chemistry ,Porosity ,Groundwater ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Zerovalent iron ,geography ,geography.geographical_feature_category ,technology, industry, and agriculture ,Sediment ,General Medicine ,021001 nanoscience & nanotechnology ,Silicon Dioxide ,Pollution ,Surface coating ,Chemical engineering ,[SDE]Environmental Sciences ,Particle ,Nanoparticles ,0210 nano-technology ,Porous medium - Abstract
In this study, we assessed the transportability of zero valent iron nanoparticles (nano-Fe0) coated with different organics (carboxy methyl cellulose (CMC), poly acrylic acid (PAA), and xanthan gum) in standard porous sand and in real aquifer sediments. Our results suggest that the organic surface coatings optimized for nano-Fe0 in porous sand media do not necessarily reflect the same transportability in real field aquifer sediment. Xanthan gum-coated nano-Fe0 showed highest transportability in standard porous sand, but the performance was much lower in real aquifer sediment, whereas the PAA-coated nano-Fe0 particle showed better transportability both in aquifer sediment and in porous sand media. Nano-Fe0 without organic surface coating exhibited very low transportability and was largely retained by the porous medium. Our results suggest that the molecular weight and surface charge density of the organic may play a role in transportability of these nanoparticles. To assess the impact of organic coating on the nanoparticle reactivity with contaminants, we also conducted batch tests to follow TCE degradation using different surface coatings and found no significant difference albeit a minor delay in kinetics. Using theoretical calculations, we also estimated the potential distance traveled by nanoparticles in porous sand as well as in aquifer sediment. Our results suggest that using xanthan gum and PAA as surface coating, nano-Fe0 could travel up to 9.8 and 4.1 m, respectively, in the porous sand media as compared to 0.2 and 0.9 m in real aquifer sediment, respectively. Graphical abstract Nanoparticle mobility in porous sand vs and aquifer sediment.
- Published
- 2016
- Full Text
- View/download PDF
20. Is There a Trojan-Horse Effect during Magnetic Nanoparticles and Metalloid Cocontamination of Human Dermal Fibroblasts?
- Author
-
Laila Benameur, Jérôme Rose, Olivier Proux, Jean-Yves Bottero, Mélanie Auffan, Corinne Chanéac, Wei Liu, Alain Botta, Armand Masion, Fabio Ziarelli, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), équipe FAME, Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut de Chimie Radicalaire (ICR), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE), Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie de la Matière Condensée de Paris (site Paris VI) (LCMCP (site Paris VI)), Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF)-Ecole Nationale Supérieure de Chimie de Paris- Chimie ParisTech-PSL (ENSCP)-Centre National de la Recherche Scientifique (CNRS), International Consortium for the Environmental Implications of Nanotechnology (iCEINT), Aix en Provence, France, Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF (institution))-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Stereochemistry ,Metal Nanoparticles ,Nanoparticle ,02 engineering and technology ,010501 environmental sciences ,01 natural sciences ,Arsenic ,Adsorption ,Desorption ,Zeta potential ,Humans ,Environmental Chemistry ,Surface charge ,Magnetite Nanoparticles ,Cytotoxicity ,Cells, Cultured ,Metalloids ,Skin ,0105 earth and related environmental sciences ,chemistry.chemical_classification ,Chemistry ,General Chemistry ,Fibroblasts ,021001 nanoscience & nanotechnology ,Culture Media ,[SDE]Environmental Sciences ,Biophysics ,Thiol ,Thermodynamics ,Magnetic nanoparticles ,0210 nano-technology - Abstract
International audience; This study investigates the issue of nanoparticles/pollutants cocontamination. By combining viability assays, physicochemical and structural analysis (to probe the As speciation and valence), we assessed how gamma Fe2O3 nanoparticles can affect the cytotoxicity, the intra- and extracellular speciation of As(III). Human dermal fibroblasts were contaminated with gamma Fe2O3 nanoparticles and As(III) considering two scenarios: (i) a simultaneous coinjection of the nanoparticles and As, and (ii) an injection of the I: nanoparticles after 24 h of As adsorption in water. In both scenarios, we did not notice significant changes on the nanoparticles surface charge (zeta potential similar to -10 mV) nor hydrodynamic diameters (similar to 9.50 nm) after 24 h. We demonstrated that the coinjection of gamma Fe2O3 nanoparticles and As in the cellular media strongly affects the complexation of the intracellular As with thiol groups. This significantly increases at low doses the cytotoxicity of the As nonadsorbed at the surface of the nanoparticles. However, once As is adsorbed at the surface the desorption is very weak in the culture medium. This fraction of As strongly adsorbed at the surface is significantly less cytotoxic than As itself. On the basis of our data and the thermodynamics, we demonstrated that any disturbance of the biotransformation mechanisms by the nanoparticles (i.e., surface complexation of thiol groups with the iron atoms) is likely to be responsible for the increase of the As adverse effects at low doses.
- Published
- 2012
- Full Text
- View/download PDF
21. Combining Size Fractionation, Scanning Electron Microscopy, and X-ray Absorption Spectroscopy to Probe Zinc Speciation in Pig Slurry
- Author
-
Samuel Legros, Olivier Proux, H. Saint-Macary, Emmanuel Doelsch, Daniel Borschneck, Jérôme Rose, Jean-Yves Bottero, J. L. Hazemann, Armand Masion, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Département Performances des systèmes de production et de transformation tropicaux (Cirad-PERSYST), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Matériaux, Rayonnements, Structure (MRS), Institut Néel (NEEL), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), ADEME project no.0475C0013French Réunion Region, Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Matériaux, Rayonnements, Structure (NEEL - MRS), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), MRS - Matériaux, Rayonnements, Structure, Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), and Bottero, Jean Yves
- Subjects
Environmental Engineering ,Swine ,Scanning electron microscope ,Analytical chemistry ,chemistry.chemical_element ,Fractionation ,Zinc ,Chemical Fractionation ,010501 environmental sciences ,Management, Monitoring, Policy and Law ,engineering.material ,01 natural sciences ,Porcin ,Animals ,Organic matter ,Microscopie électronique ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Particle Size ,Technique analytique ,Waste Management and Disposal ,0105 earth and related environmental sciences ,Water Science and Technology ,chemistry.chemical_classification ,X-ray absorption spectroscopy ,Chemistry ,Spectrometry, X-Ray Emission ,Q70 - Traitement des déchets agricoles ,04 agricultural and veterinary sciences ,Lisier ,Pollution ,Manure ,X-Ray Absorption Spectroscopy ,Sphalerite ,Spectroscopie aux rayons x ,Microscopy, Electron, Scanning ,040103 agronomy & agriculture ,Slurry ,engineering ,0401 agriculture, forestry, and fisheries ,Particle size ,U30 - Méthodes de recherche ,P02 - Pollution - Abstract
International audience; Zinc occurs in high quantity in pig slurry since it is used as an essential micronutrient at high concentrations in animal feeds despite the low Zn assimilation by pigs. Zinc accumulation was measured in soil surface layers that had been amended with pig slurry, while also determining the phytotoxicity as well as the extent of groundwater quality degradation. To accurately predict the mobility and bioavailability of Zn derived from pig slurry spreading, the speciation of this element has to be assessed since the total concentration is not sufficient. This study involved a combination of techniques to investigate Zn speciation in pig slurry. Size fractionation was first performed to account for the complexity of pig slurry, and 75% of total Zn was detected in the 0.45- to 20-μm particle-size range. Then X-ray diffraction, scanning electron microscopy, coupled with energy dispersive spectrometer, and extended X-ray absorption fine structure analyses were combined to assess Zn speciation. The findings highlighted the presence of 49% Zn bound to organic matter, 37% amorphous Zn hydroxides [Zn(OH)2], and 14% sphalerite (ZnS).
- Published
- 2010
- Full Text
- View/download PDF
22. Fate of Manufactured Nanoparticles in Aqueous Environment
- Author
-
Jean-Yves Bottero, Armand Masion, Céline Botta, Natalia Pelinovskaya, and Jérôme Labille
- Subjects
Aqueous solution ,Materials science ,Chemical engineering ,Manufactured nanoparticles - Published
- 2016
- Full Text
- View/download PDF
23. Environmental Science: Nano
- Author
-
Armand Masion, Peter J. Vikesland, Jean-Yves Bottero, Jérôme Rose, R. L. Rebodos, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Civil and Environmental Engineering, Institute for Critical Technology and Applied Science (ICTAS), Duke University. Center for the Environmental Implications of Nanotechnology (CEINT), International Center for the Environmental Implications of Nanotechnology (iCEINT), and Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Tetramethylammonium hydroxide ,Materials science ,Small-angle X-ray scattering ,Scattering ,Materials Science (miscellaneous) ,Nanoparticle ,Nanotechnology ,02 engineering and technology ,010501 environmental sciences ,021001 nanoscience & nanotechnology ,01 natural sciences ,Fractal dimension ,chemistry.chemical_compound ,chemistry ,Dynamic light scattering ,Chemical engineering ,[SDE]Environmental Sciences ,Cluster (physics) ,0210 nano-technology ,0105 earth and related environmental sciences ,General Environmental Science ,Magnetite - Abstract
International audience; Magnetite nanoparticles are redox active constituents of subsurface and corrosive environments. In this study, we characterized the aggregation and sedimentation behavior of well characterized magnetite nanoparticle clusters using dynamic light scattering (DLS), UV-vis-NIR spectroscopy, and small angle X-ray scattering (SAXS). Both unfunctionalized (NaOH-magnetite) and tetramethylammonium hydroxide (TMAOH-magnetite) surface functionalized nanoparticle clusters were employed. TMAOH-magnetite has a slightly smaller primary nanoparticle radius as determined by TEM (4 +/- 0.7 nm vs. 5 +/- 0.8 for NaOH-magnetite) and a smaller initial DLS determined cluster radius (
- Published
- 2016
- Full Text
- View/download PDF
24. Environmental Risks of Nanotechnology: A New Challenge?
- Author
-
Jean-Yves Bottero
- Subjects
Biological organism ,Natural resource economics ,Industrial scale ,Natural environment ,Trophic cascade ,Breakthrough curve - Abstract
A major research effort is underway around the world to understand the impacts of nanomaterials on our environment. Some occur naturally or are produced by human activity, while others are manufactured on an industrial scale, and their presence in the environment cannot be disputed. The questions raised here concern their transformations in contact with water, the mechanisms and kinetic aspects of the exposure of biological organisms in water, sediments, or soils, and their possible harmful effects on living beings. What characterises some of these nanomaterials is the fact that they dissolve in water, then reprecipitate in the form of different minerals that are less toxic because they lose their initial properties. The effects on living beings, particularly within a trophic cascade, are still poorly understood, especially since the concentrations are very low. The challenge here is to obtain a sufficient understanding of the exposure and transformation phenomena, together with the effects on organisms within the relevant trophic cascades, to be able to model the risks and hence arrive at a predictive assessment when the nanomaterials are both chemically and structurally complex. Research in this area can only be cross-disciplinary.
- Published
- 2015
- Full Text
- View/download PDF
25. DNA damage and oxidative stress induced by CeO2 nanoparticles in human dermal fibroblasts: Evidence of a clastogenic effect as a mechanism of genotoxicity
- Author
-
Virginie Tassistro, Mélanie Auffan, Jérôme Rose, Sylvia Pietri, Laila Benameur, Wei Liu, Mathieu Cassien, Jean-Yves Bottero, Pierre Stocker, Marcel Culcasi, Hidayat Rahmouni, Alain Botta, Institut de Chimie Radicalaire (ICR), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE), Centre National de la Recherche Scientifique (CNRS)-Institut de recherche pour le développement [IRD] : UMR237-Aix Marseille Université (AMU)-Avignon Université (AU), Aix Marseille Université (AMU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Surface Properties ,DNA damage ,[SDV]Life Sciences [q-bio] ,Primary Cell Culture ,Biomedical Engineering ,free radicals ,Biology ,Toxicology ,medicine.disease_cause ,Lipid peroxidation ,chemistry.chemical_compound ,glutathione status ,medicine ,Humans ,[CHIM]Chemical Sciences ,Colloids ,Particle Size ,Hydrogen peroxide ,Cells, Cultured ,Skin ,Genetics ,Cerium ,Glutathione ,Fibroblasts ,nanoceria ,Oxidative Stress ,chemistry ,Catalase ,Micronucleus test ,Biophysics ,biology.protein ,Nanoparticles ,nanogenotoxicity ,Cytokinesis-blocked micronucleus assay ,Genotoxicity ,Oxidative stress ,DNA Damage ,Mutagens - Abstract
The broad range of applications of cerium oxide (CeO2) nanoparticles (nano-CeO2) has attracted industrial interest, resulting in greater exposures to humans and environmental systems in the coming years. Their health effects and potential biological impacts need to be determined for risk assessment. The aims of this study were to gain insights into the molecular mechanisms underlying the genotoxic effects of nano-CeO2 in relation with their physicochemical properties. Primary human dermal fibroblasts were exposed to environmentally relevant doses of nano-CeO2 (mean diameter, 7 nm; dose range, 6 x10-5–6x10-3 g/l corresponding to a concentration range of 0.22–22 mM) and DNA damages at the chromosome level were evaluated by genetic toxicology tests and compared to that induced in cells exposed to micro- CeO2 particles (mean diameter, 320 nm) under the same conditions. For this purpose, cytokinesis-blocked micronucleus assay in association with immunofluorescence staining of centromere protein A in micronuclei were used to distinguish between induction of structural or numerical chromosome changes (i.e. clastogenicity or aneuploidy). The results provide the first evidence of a genotoxic effect of nano-CeO2, (while not significant with micro-CeO2) by a clastogenic mechanism. The implication of oxidative mechanisms in this genotoxic effect was investigated by (i) assessing the impact of catalase, a hydrogen peroxide inhibitor, and (ii) by measuring lipid peroxidation and glutathione status and their reversal by application of N-acetylcysteine, a precusor of glutathione synthesis in cells. The data are consistent with the implication of free radical-related mechanisms in the nano-CeO2-induced clastogenic effect, that can be modulated by inhibition of cellular hydrogen peroxide release.
- Published
- 2015
- Full Text
- View/download PDF
26. Cerium dioxide nanoparticles affect in vitro fertilization in mice
- Author
-
Vincent Achard, Thierry Orsière, Mélanie Auffan, Jeanne Perrin, Blandine Courbiere, Jean-Yves Bottero, Jérôme Rose, Virginie Tassistro, Lise Preaubert, Fanny Greco, Hôpital Nord [CHU - APHM], Service de Gynécologie et Obstétrique [Marseille], Hôpital de la Conception [CHU - APHM] (LA CONCEPTION), Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE), Centre National de la Recherche Scientifique (CNRS)-Institut de recherche pour le développement [IRD] : UMR237-Aix Marseille Université (AMU)-Avignon Université (AU), Centre de Recherche des Cordeliers (CRC), Université Paris Diderot - Paris 7 (UPD7)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Laboratoire d’analyse des discours et pratiques en danse, Esthétique, musicologie, danse et création musicale (MUSIDANSE), Université Paris 8 Vincennes-Saint-Denis (UP8)-Université Paris 8 Vincennes-Saint-Denis (UP8), Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Hôpital de la Conception [CHU - APHM] (LA CONCEPTION ), Université Paris Diderot - Paris 7 (UPD7)-École pratique des hautes études (EPHE)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Esthétiques, musicologie, danse et créations musicales (MUSIDANSE), Hôpital de la Conception [CHU - APHM] ( LA CONCEPTION ), Institut méditerranéen de biodiversité et d'écologie marine et continentale ( IMBE ), Université d'Avignon et des Pays de Vaucluse ( UAPV ) -Aix Marseille Université ( AMU ) -Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique ( CNRS ), Centre de Recherche des Cordeliers ( CRC ), Université Paris Diderot - Paris 7 ( UPD7 ) -École pratique des hautes études ( EPHE ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Centre européen de recherche et d'enseignement de géosciences de l'environnement ( CEREGE ), Centre National de la Recherche Scientifique ( CNRS ) -Institut de Recherche pour le Développement ( IRD ) -Aix Marseille Université ( AMU ) -Collège de France ( CdF ) -Institut National de la Recherche Agronomique ( INRA ) -Institut national des sciences de l'Univers ( INSU - CNRS ), Analyse des discours et pratiques en danse, Esthétiques, musicologie, danse et créations musicales - MUSIDANSE, and Université Paris 8 Vincennes-Saint-Denis ( UP8 ) -Université Paris 8 Vincennes-Saint-Denis ( UP8 )
- Subjects
reproductive toxicity ,Male ,Biomedical Engineering ,Metal Nanoparticles ,Fertilization in Vitro ,010501 environmental sciences ,Biology ,Toxicology ,medicine.disease_cause ,01 natural sciences ,[ SDE ] Environmental Sciences ,Andrology ,03 medical and health sciences ,Mice ,Human fertilization ,medicine ,Animals ,Zona pellucida ,oocyte ,Comet assay ,030304 developmental biology ,0105 earth and related environmental sciences ,0303 health sciences ,Cerium ,Oocyte ,Spermatozoa ,3. Good health ,Oxidative Stress ,medicine.anatomical_structure ,13. Climate action ,Toxicity ,mouse spermatozoa ,[SDE]Environmental Sciences ,Oocytes ,Gamete ,Female ,Reproductive toxicity ,Genotoxicity ,DNA Damage - Abstract
International audience; Due to their catalytic and oxidative properties, cerium dioxide nanoparticles (CeO(2)NPs) are widely used as diesel additive or as promising therapy in cancerology; yet, scarce data are available on their toxicity, and none on their reproductive toxicity. We showed a significant decrease of fertilization rate, assessed on 1272 oocytes, during in vitro fertilization (IVF) carried out in culture medium containing CeO2NP at very low concentration (0.01mg.l(-1)). We also showed significant DNA damage induced in vitro by CeO2NP on mouse spermatozoa and oocytes at 0.01mg.l(-1) using Comet assay. Transmission Electron Microscopy did not detect any nanoparticles in the IVF samples at 0.01mg.l(-1), but showed, at high concentration (100mg.l(-1)), their endocytosis by the cumulus cells surrounding oocytes and their accumulation along spermatozoa plasma membranes and oocytes zona pellucida. We did not observe any nanoparticles in the cytoplasm of spermatozoa, oocytes or embryos. This study demonstrates for the first time the impact of CeO2NP on in vitro fertilization, as well as their genotoxicity on mouse spermatozoa and oocytes, at low nanoparticle concentration exposure. Decreased fertilization rates may result from: (1) CeO2NP's genotoxicity on gametes; (2) a mechanical effect, disrupting gamete interaction and (3) oxidative stress induced by CeO2NP. These results add new and important insights with regard to the reproductive toxicity of nanomaterials requesting urgent evaluation, and support several publications on metal nanoparticles reprotoxicity. Our data highlight the need for in vivo studies after low-dose exposure.
- Published
- 2015
- Full Text
- View/download PDF
27. Evolution of iron speciation during hydration of C4AF
- Author
-
A. Benard, Armand Masion, S. El Mrabet, Isabelle Moulin, Jean-Yves Bottero, Jérôme Rose, Valérie Briois, Luca Olivi, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Ardevie, Institut National de l'Environnement Industriel et des Risques (INERIS), LERM, Laboratoire pour l'Utilisation du Rayonnement Electromagnétique, ELETTRA Sincrotrone, Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)
- Subjects
Ettringite ,Iron ,Aluminate ,Inorganic chemistry ,0211 other engineering and technologies ,Context (language use) ,02 engineering and technology ,Ferric Compounds ,Metal ,chemistry.chemical_compound ,Phase (matter) ,FERRO-CALCIUM ALUMINATE ,021105 building & construction ,HEAVY METAL FIXATION ,Aluminum Compounds ,Waste Management and Disposal ,Mineral hydration ,Alkaline earth metal ,Chemistry ,Spectrum Analysis ,X-Rays ,Water ,Calcium Compounds ,021001 nanoscience & nanotechnology ,EXAFS ,Kinetics ,Microscopy, Electron ,IRON OXYHYDROXIDES ,visual_art ,[SDE]Environmental Sciences ,Calcium silicate ,visual_art.visual_art_medium ,0210 nano-technology - Abstract
International audience; It is now well accepted and demonstrated that calcium silicate, calcium aluminate and calcium sulfo aluminate (ettringite, AFm) phases exhibit a good capability to fix metals and metalloids. Unfortunately the role of minor phases and especially calcium-ferric aluminate phase, shorthand C(4)AF is not well defined. In other systems like in soils or sediments iron phases play a key role in the fixation of pollutant. In cement sorption isotherms, indicated that various metals can be retained by the C(4)AF hydrated products. Therefore the capabilities of those phase to retain heavy metal should not be neglected. Previous investigations have shown that the minerals formed during the hydration of C(4)AF are similar to those formed from C3A (pure tri-calcium aluminate) under comparable conditions. Nevertheless no investigation was conducted at the molecular level and there is still a controversy whether Fe substitutes for Al in the hydrated minerals in whole or in part, or if it forms FeOOH clusters scattered throughout the matrix. In this context we have conducted XAS experiments using synchrotron radiation. It was found that the hydration of C(4)AF forms C(3)AH(6) (hydrogarnet) in which Fe randomly substitutes for Al as well as an amorphous FeOOH phase. Intermediate products like AFm (i.e., an ill organized lamellar phase) are also formed but rapidly evolve to C(3)AH(6); iron does not seem to be incorporated in the AFm structure.
- Published
- 2006
- Full Text
- View/download PDF
28. Laboratory Assessment of the Mobility of Nanomaterials in Porous Media
- Author
-
Hélène Lecoanet, Jean-Yves Bottero, and Mark R. Wiesner
- Subjects
Environmental engineering ,Nanoparticle ,Nanochemistry ,Nanotechnology ,General Chemistry ,Water Purification ,Nanomaterials ,Water Movements ,Environmental Chemistry ,Environmental science ,Water treatment ,Colloids ,Particle Size ,Porosity ,Porous medium ,Water pollution ,Groundwater ,Environmental Monitoring - Abstract
The production of significant quantities of engineered nanomaterials will inevitably result in the introduction of these materials to the environment. Mobility in a well-defined porous medium was evaluated for eight particulate products of nanochemistry to assess their potential for migration in porous media such as groundwater aquifers and water treatment plant filters. Contrary to the assertion that nanomaterials present monolithic environmental risks, here we show that these nanomaterials exhibit widely differing transport behaviors. Fullerene-based nanomaterials that had been functionalized to facilitate dispersal in water displayed the highest mobilities, with a calculated potential to migrate approximately 10 m in unfractured sand aquifers. Colloidal aggregates of C60, which have been the focus of recent toxicity studies, were among the least mobile of the nanomaterials evaluated.
- Published
- 2004
- Full Text
- View/download PDF
29. Nickel speciation in Sebertia acuminata, a plant growing on a lateritic soil of New Caledonia
- Author
-
Nicolas Perrier, Jean-Yves Bottero, Jean-Paul Ambrosi, Fabrice Colin, Tanguy Jaffré, and Jérôme Rose
- Subjects
inorganic chemicals ,CHIMIE DU SOL ,Goethite ,media_common.quotation_subject ,NICKEL ,chemistry.chemical_element ,Mineralogy ,PLANTE ,Metal ,BIODISPONIBILITE ,SOL LATERITIQUE ,otorhinolaryngologic diseases ,Organic matter ,SPECIATION ,SILICE ,media_common ,CONCENTRATION ,chemistry.chemical_classification ,Global and Planetary Change ,PHYTOCHIMIE ,Hematite ,Sebertia acuminata ,PLANTE ACCUMULATRICE ,Nickel ,Speciation ,chemistry ,Environmental chemistry ,visual_art ,Litter ,visual_art.visual_art_medium ,General Earth and Planetary Sciences ,FEUILLE - Abstract
Nickel speciation in a nickel hyperaccumulating plant ( Sebertia acuminata ) and its associated soil of southern New Caledonia was studied using various analytical methods. The soil is formed of iron oxides (goethite, hematite), which contain almost all the nickel. The available nickel is probably linked to the organic matter in the litter. Sebertia acuminata , acts as a nickel pump, and concentrates the metal in its leaves. It partitions nickel and silica; nickel is concentrated in the cells (probably in the vacuoles) as organometallic complexes, whereas silica forms the framework of the cells, and the phytolithes. A thorough study of these plants seems essential in order to define the soil–plant relations, and to propose appropriate ways for ecological restoration. To cite this article: N. Perrier et al., C. R. Geoscience 336 (2004).
- Published
- 2004
- Full Text
- View/download PDF
30. Groundwater redox conditions and conductivity in a contaminant plume from geoelectrical investigations
- Author
-
André Revil, Enzo Rizzo, P. Bégassat, Jean-Yves Bottero, V. Naudet, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Agence de l'Environnement et de la Maîtrise de l'Energie (ADEME), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), and EGU, Publication
- Subjects
010504 meteorology & atmospheric sciences ,Groundwater flow ,[SDE.MCG]Environmental Sciences/Global Changes ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Aquifer ,Soil science ,010502 geochemistry & geophysics ,01 natural sciences ,Groundwater discharge ,Electrical resistivity tomography ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,0105 earth and related environmental sciences ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Hydrology ,geography ,geography.geographical_feature_category ,[SDU.OCEAN] Sciences of the Universe [physics]/Ocean, Atmosphere ,Ambientale ,[SDU.ENVI] Sciences of the Universe [physics]/Continental interfaces, environment ,6. Clean water ,Plume ,[SDE.MCG] Environmental Sciences/Global Changes ,13. Climate action ,[SDU.STU] Sciences of the Universe [physics]/Earth Sciences ,Groundwater model ,Geology ,Groundwater ,Water well - Abstract
Accurate mapping of the electrical conductivity and of the redox potential of the groundwater is important in delineating the shape of a contaminant plume. A map of redox potential in an aquifer is indicative of biodegradation of organic matter and of concentrations of redox-active components; a map of electrical conductivity provides information on the mineralisation of the groundwater. Both maps can be used to optimise the position of pumping wells for remediation. The self-potential method (SP) and electrical resistivity tomography (ERT) have been applied to the contaminant plume associated with the Entressen landfill in south-east France. The self-potential depends on groundwater flow (electrokinetic contribution) and redox conditions ("electro-redox" contribution). Using the variation of the piezometric head in the aquifer, the electrokinetic contribution is removed from the SP signals. A good linear correlation (R2=0.85) is obtained between the residual SP data and the redox potential values measured in monitoring wells. This relationship is used to draw a redox potential map of the overall contaminated site. The electrical conductivity of the subsoil is obtained from 3D-ERT analysis. A good linear correlation (R2=0.91) is observed between the electrical conductivity of the aquifer determined from the 3D-ERT image and the conductivity of the groundwater measured in boreholes. This indicates that the formation factor is nearly homogeneous in the shallow aquifer at the scale of the ERT. From this correlation, a map of the pore water conductivity of the aquifer is obtained. Keywords: self-potential, redox potential, electrical resistivity tomography, fluid conductivity, contaminant plume
- Published
- 2004
- Full Text
- View/download PDF
31. Analysis of the structure of very large bacterial aggregates by small-angle multiple light scattering and confocal image analysis
- Author
-
Ph. Dussouillez, Stéphanie Lambert, Jean-Yves Bottero, M. Barakat, S. Moustier, J. Le Petit, and P. Ginestet
- Subjects
Physics ,Microscopy, Confocal ,Bacteria ,Light ,Scattering ,business.industry ,Mie scattering ,Fractal dimension ,Bacterial Adhesion ,Light scattering ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Biomaterials ,symbols.namesake ,Colloid and Surface Chemistry ,Optics ,Fractal ,Escherichia coli ,symbols ,Scattering, Radiation ,Static light scattering ,Statistical physics ,Rayleigh scattering ,business ,Structure factor - Abstract
This work aims at developing a more accurate measurement of the physical parameters of fractal dimension and the size distribution of large fractal aggregates by small-angle light scattering. The theory of multiple scattering has been of particular interest in the case of fractal aggregates for which Rayleigh theory is no longer valid. The introduction of multiple scattering theory into the interpretation of scattering by large bacterial aggregates has been used to calculate the fractal dimension and size distribution. The fractal dimension is calculated from the form factor F(q) at large scattering angles. At large angles the fractal dimension can also be computed by considering only the influence of the very local environment on the optical contrast around a subunit. The fractal dimensions of E. coli strains flocculated with two different cationic polymers have been computed by two techniques: static light scattering and confocal image analysis. The fractal dimensions calculated with both techniques at different flocculation times are very similar: between 1.90 and 2.19. The comparison between two completely independent techniques confirms the theoretical approach of multiple scattering of large flocs using the Mie theory. Size distributions have been calculated from light-scattering data taking into account the linear independence of the structure factor S(q) relative to each size class and using the fractal dimension measured from F(q) in the large-angle range or from confocal image analysis. The results are very different from calculations made using hard-sphere particle models. The size distribution is displaced toward the larger sizes when multiple scattering is considered. Using this new approach to the analysis of very large fractal aggregates by static light multiple scattering, the fractal dimension and size distribution can be calculated using two independent parts of the scattering curve.
- Published
- 2003
- Full Text
- View/download PDF
32. Characterization of activated sludge flocs by confocal laser scanning microscopy and image analysis
- Author
-
Marion Walcher, Philippe Ginestet, Markus Schmid, Ulrike Purkhold, Michael Wagner, Jean-Yves Bottero, Antoine Thill, Per Halkjær Nielsen, and Stefan Wuertz
- Subjects
DNA, Bacterial ,Flocculation ,Environmental Engineering ,Materials science ,Confocal ,Population Dynamics ,Analytical chemistry ,Fractal dimension ,law.invention ,Settling ,Confocal microscopy ,law ,Microscopy ,Waste Management and Disposal ,In Situ Hybridization, Fluorescence ,Water Science and Technology ,Civil and Structural Engineering ,Microscopy, Confocal ,Bacteria ,Sewage ,Ecological Modeling ,Miljøteknologi ,Pollution ,Activated sludge ,Volume (thermodynamics) ,Environmental Monitoring - Abstract
In this study we present a new approach to determine volumes, heterogeneity factors, and compositions of the bacterial population of activated sludge flocs by 3D confocal imaging. After staining the fresh flocs with fluorescein-isothiocyanate, 75 stacks of images (containing approx. 3000 flocs) were acquired with a confocal laser scanning microscope. The self-developed macro 3D volume and surface determination for the KS 400 software package combined the images of one stack to a 3D image and calculated the real floc volume and surface. We determined heterogeneity factors like the ratio of real floc surface to the surface of a sphere with the respective volume and the fractal dimension (D(f)). According to their significant influence on floc integrity and quality, we also investigated the chemical composition of flocs and quantified their bacterial population structure by using group-specific rRNA-targeted probes for fluorescence in situ hybridization. By a settling experiment we enriched flocs with poor settling properties and determined the above-mentioned parameters. This approach revealed shifts in floc volume, heterogeneity, and bacterial and chemical composition according to the settling quality of the flocs.
- Published
- 2003
- Full Text
- View/download PDF
33. Heteroaggregation of Titanium Dioxide Nanoparticles with Natural Clay Colloids
- Author
-
Jean-Yves Bottero, Carrie Harns, Jonathan A. Brant, Jérôme Labille, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Department of Civil and Environmental Engineering, Duke University [Durham], Department of Civil & Architectural Engineering, University of Wyoming (UW), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), and Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
inorganic chemicals ,Nanoparticle ,Nanotechnology ,Sodium Chloride ,Concentration ratio ,complex mixtures ,Colloid ,Environmental Chemistry ,Surface charge ,Colloids ,Titanium ,Chemistry ,Silicates ,Osmolar Concentration ,Water ,General Chemistry ,Models, Theoretical ,Electrostatics ,Chemical engineering ,Ionic strength ,[SDE]Environmental Sciences ,Clay ,Nanoparticles ,Aluminum Silicates ,Dispersion (chemistry) ,Clay minerals - Abstract
International audience; To better understand and predict the fate of engineered nanoparticles in the water column, we assessed the heteroaggregation of TiO2 nanoparticles with a smectite clay as analogues for natural colloids. Heteroaggregation was evaluated as a function of water salinity (10(-3) and 10(-1) M NaCl), pH (5 and 8), and selected nanoparticle concentration (0-4 mg/L). Time-resolved laser diffraction was used, coupled to an aggregation model, to identify the key mechanisms and variables that drive the heteroaggregation of the nanoparticles with colloids. Our data show that, at a relevant concentration, nanoparticle behavior is mainly driven by heteroaggregation with colloids, while homoaggregation remains negligible. The affinity of TiO2 nanoparticles for clay is driven by electrostatic interactions. Opposite surface charges and/or high ionic strength favored the formation of primary heteroaggregates via the attachment of nanoparticles to the clay. The initial shape and dispersion state of the clay as well as the nanoparticle/clay concentration ratio also affected the nature of the heteroaggregation mechanism. With dispersed clay platelets (10(-3) M NaCl), secondary heteroaggregation driven by bridging nanoparticles occurred at a nanoparticle/clay number ratio of greater than 0.5. In 10(-1) M NaCl, the clay was preaggregated into larger and more spherical units. This favored secondary heteroaggregation at lower nanoparticle concentration that correlated to the nanoparticle/clay surface area ratio. In this latter case, a nanoparticle to clay sticking efficiency could be determined.
- Published
- 2015
- Full Text
- View/download PDF
34. Decontamination of nanoparticles from aqueous samples using supramolecular gels
- Author
-
Alain Thiéry, Jérôme Labille, Amit Patwa, Jean-Yves Bottero, Philippe Barthélémy, ARN : régulations naturelle et artificielle, Université Bordeaux Segalen - Bordeaux 2-Institut Européen de Chimie et de Biologie-Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Bordeaux (UB), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE), Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS)-Institut de recherche pour le développement [IRD] : UMR237-Aix Marseille Université (AMU)-Avignon Université (AU), and Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Macromolecular Substances ,Supramolecular chemistry ,Nanoparticle ,Nanotechnology ,Catalysis ,law.invention ,Nanomaterials ,law ,Materials Chemistry ,Filtration ,Titanium ,Aqueous solution ,technology, industry, and agriculture ,Metals and Alloys ,Water ,General Chemistry ,Human decontamination ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Colloidal gold ,Quantum dot ,[SDE]Environmental Sciences ,Ceramics and Composites ,Nanoparticles ,Gold ,Gels - Abstract
International audience; The growing use of nanomaterials and their associated risks necessitate the emergence of efficient decontamination systems. The main objective of this study is to develop a new prototype based on artificial supramolecular hydrogel capable of removing nanoparticle (NP) waste and nanomaterial by-products from aqueous suspensions. We demonstrate the high trapping efficacy of the low-molecular-weight gelators (LMWG) for very small particles (quantum dots (QDs), gold nanoparticles (AuNPs), TiO2 nanoparticles (TiO2-NPs), below 50 nm in diameter) from aqueous suspensions. The performance levels of removing nanoparticles from contaminated effluents could lead to a competitive alternative to filtration and dialysis devices.
- Published
- 2015
- Full Text
- View/download PDF
35. Monte Carlo simulations of the transformation and removal of Ag, TiO2, and ZnO nanoparticles in wastewater treatment and land application of biosolids
- Author
-
Lauren E. Barton, Mark Durenkamp, Jean-Yves Bottero, Mark R. Wiesner, Mélanie Auffan, Steve P. McGrath, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Duke University [Durham], Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), and Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Silver ,Environmental Engineering ,Biosolids ,Metal Nanoparticles ,Nanoparticle ,Wastewater treatment ,Wastewater ,Waste Disposal, Fluid ,Nanomaterials ,Exposure ,Environmental Chemistry ,Monte Carlo modeling ,Waste Management and Disposal ,Effluent ,Titanium ,Chemistry ,Nanopartides ,Agriculture ,Pollution ,6. Clean water ,Waste treatment ,Models, Chemical ,Environmental chemistry ,[SDE]Environmental Sciences ,Nanoparticles ,Water treatment ,Sewage treatment ,Zinc Oxide ,Monte Carlo Method - Abstract
International audience; The use of nano-enabled materials in industry and consumer products is increasing rapidly and with it, the more imperative it becomes to understand the consequences of such materials entering the environment during production, use or disposal. The novel properties of engineered nanomaterials (ENMs) that make them desirable for commercial applications also present the possibility of impacting aquatic and terrestrial environments in ways that may differ from materials in bulk format. Modeling techniques are needed to proactively predict the environmental fate and transport of nanomaterials. A model for nanopartide (NP) separation and transformation in water treatment was parameterized for three metal and metal-oxide NPs. Functional assays to determine NP specific distribution and transformation were used to parameterize the model and obtain environmentally relevant concentrations of NPs and transformation byproducts leaving WWTPs in effluent and biosolids. All three NPs were predicted to associate >90% with the solid phase indicating significant accumulation in the biosolids. High rates of transformation for ZnO and Ag NPs resulted in similar to 97% transformation of the NPs that enter the plant despite differences in transformation rate in aerobic versus anaerobic environments. Due to high insolubility and negligible redox transformation, the only process predicted to impact TiO2 NP fate and transport in WWTPs was distribution between the solid and liquid phases. Subsequent investigation of ZnO NP species fate and transport when land applied in biosolids indicated that steady state concentrations of ZnO phases would likely be achieved after approximately 150 days under loading conditions of biosolids typical in current practice. (C) 2014 Elsevier B.V. All rights reserved.
- Published
- 2015
- Full Text
- View/download PDF
36. Nanotechnology, global development in the frame of environmental risk forecasting. A necessity of interdisciplinary researches
- Author
-
Clément Levard, Jérôme Rose, Mark R. Wiesner, Jérôme Labille, Jean-Yves Bottero, Daniel Borschnek, Armand Masion, Mélanie Auffan, Perrine Chaurand, Marie Tella, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), International Consortium for the Environmental Implications of Nanotechnology (iCEINT), Aix en Provence, France, Duke University [Durham], Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), and Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Global and Planetary Change ,Liquid water ,New materials ,Environmental media ,Nanotechnology ,Environment ,Hazard ,Environmental risk ,Interdisciplinary ,13. Climate action ,[SDE]Environmental Sciences ,General Earth and Planetary Sciences ,Environmental science ,Risks ,International development ,Surface water ,Volume concentration ,Nanomaterials - Abstract
International audience; Interdisciplinarity is of first importance to evaluate the risks associated with nanotechnology. The reasons are that nanomaterials are very new materials that combine nano-sizes and new reactivities. The complexity comes from the very low concentrations of nanomaterials in the environmental medium, the transformations of the nanomaterials due to the reactivity of the surface, the transfer in the environmental media, particularly in the presence of liquid water (soils, sediments, surface water), which implies an association with natural colloids (organic or minerals) and blockage in some compartments. These properties govern the hazard that strongly depends on exposure and speciation. (C) 2014 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
- Published
- 2015
- Full Text
- View/download PDF
37. Chronic dosing of a simulated pond ecosystem in indoor aquatic mesocosms: fate and transport of CeO2 nanoparticles
- Author
-
Olivier Proux, Ester Artells, Marie Tella, E. Morel, Christine Paillès, Alain Thiéry, Jérôme Rose, Mélanie Auffan, Bernard Angeletti, Jean-Yves Bottero, Corinne Chanéac, Catherine Santaella, Lenka Brousset, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Avignon Université (AU), Aix Marseille Université (AMU), Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE), Centre National de la Recherche Scientifique (CNRS)-Institut de recherche pour le développement [IRD] : UMR237-Aix Marseille Université (AMU)-Avignon Université (AU), Institut de Recherche pour le Développement (IRD), Fédération Nationale des Agriculteurs Multiplicateurs de Semences (FNAMS), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF)-Centre National de la Recherche Scientifique (CNRS), International Institute of Earthquake Engineering and Seismology, inconnu, Inconnu, CNRS, French ANR [ANR-10-NANO-0006/MESONNET], ``Investissements d'Avenir' French Government program of the French National Research Agency (ANR) through the A*MIDEX project [ANR-11-LABX-0064, ANR-11-IDEX-0001-02], Labex OSUG [ANR-10-LABX-0056], FP7 project NANoREG (a common European approach to the regulatory testing of manufactured nanomaterials, European Commission) [310584], OSU-Institut pytheas, ANR-11-IDEX-0001-02/11-IDEX-0001,AMIDEX,AMIDEX(2011), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC), ANR-11-IDEX-0001,Amidex,INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE(2011), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Planorbarius corneus ,biology ,Chemistry ,Materials Science (miscellaneous) ,Aquatic ecosystem ,Eudiaptomus ,fungi ,technology, industry, and agriculture ,Sediment ,02 engineering and technology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010501 environmental sciences ,Plankton ,021001 nanoscience & nanotechnology ,biology.organism_classification ,01 natural sciences ,Mesocosm ,Water column ,Benthic zone ,Environmental chemistry ,0210 nano-technology ,0105 earth and related environmental sciences ,General Environmental Science - Abstract
International audience; Indoor aquatic mesocosms were designed to mimic pond ecosystems contaminated by a continuous point-source discharge of cerium oxide nanoparticles (CeO2-NPs). Bare and citrate-coated CeO2-NPs exhibited different chemical and colloidal behaviors in the aquatic mesocosms. Bare CeO2-NPs were chemically stable but quickly homo-aggregated and settled out of the water column. Citrate-coated NPs both homo-and hetero-aggregated but only after the several days required to degrade the citrate coating. While they were more stable as a colloidal suspension, coated CeO2-NPs dissolved faster due to surface complexation with citrate, which resulted in the release of dissolved Ce into the water column. The different distributions over time between water/sediment or dissolved/particulate forms of Ce controlled the availability of Ce to benthic grazers (mollusk Planorbarius corneus) and planktonic filter feeders (copepod Eudiaptomus vulgaris).
- Published
- 2015
- Full Text
- View/download PDF
38. Heteroaggregation, transformation and fate of CeO2 nanoparticles in wastewater treatment
- Author
-
Mélanie Auffan, Luca Olivi, Jean-Yves Bottero, Mark R. Wiesner, Lauren E. Barton, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Elettra Sincrotrone Trieste, Duke University [Durham], Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA)
- Subjects
inorganic chemicals ,Biosolids ,Health, Toxicology and Mutagenesis ,education ,Nanoparticle ,CeO2 nanoparticles ,02 engineering and technology ,Wastewater treatment ,010501 environmental sciences ,Toxicology ,01 natural sciences ,Exposure modeling ,Transformation ,Effluent ,health care economics and organizations ,0105 earth and related environmental sciences ,Chemistry ,technology, industry, and agriculture ,General Medicine ,021001 nanoscience & nanotechnology ,Pollution ,6. Clean water ,Partition coefficient ,Waste treatment ,Wastewater ,13. Climate action ,Environmental chemistry ,[SDE]Environmental Sciences ,Sewage treatment ,Water treatment ,0210 nano-technology - Abstract
International audience; Wastewater Treatment Plants (WWTPs) are a key pathway by which nanoparticles (NPs) enter the environment following release from NP-enabled products. This work considers the fate and exposure of CeO2 NPs in WWTPs in a two-step process of heteroaggregation with bacteria followed by the subsequent reduction of Ce(IV) to Ce(III). Measurements of NP association with solids in sludge were combined with experimental estimates of reduction rate constants for CeO2 NPs in Monte Carlo simulations to predict the concentrations and speciation of Ce in WWTP effluents and biosolids. Experiments indicated preferential accumulation of CeO2 NPs in biosolids where reductive transformation would occur. Surface functionalization was observed to impact both the distribution coefficient and the rates of transformation. The relative affinity of CeO2 NPs for bacterial suspensions in sludge appears to explain differences in the observed rates of Ce reduction for the two types of CeO2 NPs studied. (C) 2015 Elsevier Ltd. All rights reserved.
- Published
- 2015
- Full Text
- View/download PDF
39. Morphology of Deposits Formed from Chemically Heterogeneous Suspensions: Application to Membrane Filtration
- Author
-
Mark R. Wiesner, Claude Parron, Françoise Pierrisnard, Jean-Yves Bottero, and Volodymyr V. Tarabara
- Subjects
Fouling ,Chemistry ,Analytical chemistry ,Permeation ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,law.invention ,Suspension (chemistry) ,Biomaterials ,Colloid and Surface Chemistry ,Membrane ,Chemical engineering ,law ,Transmission electron microscopy ,Deposition (phase transition) ,Filtration ,Particle deposition - Abstract
The morphology of fouling layers is an important factor in modeling permeate flux behavior in membrane filtration. In the present paper, the relationship between the chemical composition of suspension and the morphological properties of the deposit formed from the suspension was studied. The deposition from binary suspensions of particles with different collision efficiencies as a prototype for naturally occurring heterogeneous suspensions was simulated using the 2D on-lattice deposition model. Simulation results were qualitatively compared with transmission electron microscopy and energy-dispersive X-ray analysis of fouling layers produced in a series of pilot filtration experiments. For the case of deposition from binary suspensions, different degrees of segregation of chemically distinct particulate fractions in the fouling layer were observed. Similar deposition patterns were observed in the pilot filtration experiments; the fouling layers consisted of an organic matrix with dendritic inclusions of metallic nature. These findings prompt reevaluation of the model of resistances connected in series for the fouling layer resistance usually employed to describe permeate flow. Chemical heterogeneity of suspension may result in the formation of fouling layers with substructures of different specific resistances to permeate flow. The total resistance can be expected to be less than predicted in the assumption of a chemically homogeneous suspension.
- Published
- 2002
- Full Text
- View/download PDF
40. Accumulation of nanoparticles in 'jellyfish' mucus: a bio-inspired route to decontamination of nano-waste
- Author
-
Amit, Patwa, Alain, Thiéry, Fabien, Lombard, Martin K S, Lilley, Claire, Boisset, Jean-François, Bramard, Jean-Yves, Bottero, and Philippe, Barthélémy
- Subjects
Scyphozoa ,Sewage ,technology, industry, and agriculture ,Metal Nanoparticles ,Article ,Water Purification ,Mucus ,Quantum Dots ,Animals ,Humans ,Gold ,Medical Waste Disposal ,Decontamination ,Ecosystem ,Water Pollutants, Chemical - Abstract
The economic and societal impacts of nano-materials are enormous. However, releasing such materials in the environment could be detrimental to human health and the ecological biosphere. Here we demonstrate that gold and quantum dots nanoparticles bio-accumulate into mucus materials coming from natural species such as jellyfish. One strategy that emerges from this finding would be to take advantage of these trapping properties to remove nanoparticles from contaminated water.
- Published
- 2014
41. Heteroaggregation, transformation and fate of CeO₂ nanoparticles in wastewater treatment
- Author
-
Lauren E, Barton, Melanie, Auffan, Luca, Olivi, Jean-Yves, Bottero, and Mark R, Wiesner
- Subjects
Bacteria ,Sewage ,Nanoparticles ,Cerium ,Monte Carlo Method ,Waste Disposal, Fluid - Abstract
Wastewater Treatment Plants (WWTPs) are a key pathway by which nanoparticles (NPs) enter the environment following release from NP-enabled products. This work considers the fate and exposure of CeO2 NPs in WWTPs in a two-step process of heteroaggregation with bacteria followed by the subsequent reduction of Ce(IV) to Ce(III). Measurements of NP association with solids in sludge were combined with experimental estimates of reduction rate constants for CeO2 NPs in Monte Carlo simulations to predict the concentrations and speciation of Ce in WWTP effluents and biosolids. Experiments indicated preferential accumulation of CeO2 NPs in biosolids where reductive transformation would occur. Surface functionalization was observed to impact both the distribution coefficient and the rates of transformation. The relative affinity of CeO2 NPs for bacterial suspensions in sludge appears to explain differences in the observed rates of Ce reduction for the two types of CeO2 NPs studied.
- Published
- 2014
42. Insight into mechanisms leading to the release of ceo2 nanoparticles embedded in an acrylic wood coating
- Author
-
Lorette Scifo, Perrine Chaurand, Astrid Avellan, Nathan Bossa, Armand Masion, Melanie Auffan, Daniel Borschnek, Jérôme Labille, Jean-Yves Bottero, Jérôme Rose, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Institut National de l'Environnement Industriel et des Risques (INERIS), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), and Civs, Gestionnaire
- Subjects
[SDE] Environmental Sciences ,[SDE]Environmental Sciences - Abstract
The study of nanomaterials release from solid matrices is an emerging field of research. Until now most efforts have focused on quantifying and identifying the released objects, providing valuable inputs to risk assessment models. However the mechanisms lying behind release are still largely unknown and rarely investigated. Understanding release mechanisms of nano-objects is critical under two aspects. First of all it may allow predicting NOAA (Nano-objects, their aggregates and agglomerates) release based on a few material properties and may then reduce the need for costly and time-consuming testing. In a second time, unveiling release mechanism is key to implement a safe-by-design approach of nanotechnology. Once elucidated, physico-chemical processes leading to nanomaterial leaching can indeed be counterbalanced, to gain a better control on NOAA emissions. Nanomaterials have wide applications in paint and coating industry. They can improve rheological and mechanical properties of the products, confer them self-cleaning or antimicrobial capacity, or act as UV-absorber, stabilizing agents, pigments, etc. Along their life cycle paint and coatings will however experience processes that may lead to NOAA release. This is especially true for outdoor products, as sunlight and rain can induce very strong degradations. A weathering protocol in climatic chamber was developed at CEREGE, to evaluate NOAA releases from coatings under laboratory conditions. Alternating irradiation under Xe lamp (60W.m-2 in the 300nm-400nm range) and “rain” (=water spraying) phases were applied to an acrylic protective wood coating, enriched with CeO2 nanoparticles. Over a 3-months assay, significant emissions (> 1mg.m-2) of particulate CeO2 into water could be evidenced. A thorough characterization of wood samples was performed in order to understand the mechanisms leading to CeO2 release. Optical microscopy revealed the presence of cracks and blistering on weathered samples. It also showed an increase in paint porosity. In parallel, infrared spectroscopy and nuclear magnetic resonance were used to analyse chemical degradation of the acrylic polymer matrix. The overall distribution of CeO2 nanoparticles in the coating was assessed from results of X-ray fluorescence microscopy and laser-ablation-ICP-MS. Complementarily, direct size measurements on CeO2 aggregates incorporated in the wood coating were performed by micro and nano X-ray computed-tomography. They proved that aggregation of nanomaterials took place upon aging. Further transformation of ceria nanoparticles within the coating was evidenced by XANES, which showed partial reduction Ce(IV) to Ce(III) along the experiment. Based on this data, hypothesis on both the processes lying behind release and the form under which CeO2 is released is presented.into mechanisms leading to the release of ceo2 nanoparticles embedded in an acrylic wood coating
- Published
- 2014
43. Heteroaggregation of titanium dioxide nanoparticles with model natural colloids under environmentally relevant conditions
- Author
-
Jean-Yves Bottero, Konrad Hungerbühler, Martin Scheringer, Antonia Praetorius, Jérôme Labille, Antoine Thill, Institute for Biomedical Engineering [ETH Zürich] (IBT), Universität Zürich [Zürich] = University of Zurich (UZH)-Department of Information Technology and Electrical Engineering [Zürich] (D-ITET), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)- Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interdisciplinaire sur l'Organisation Nanométrique et Supramoléculaire (LIONS), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (ex SIS2M) (NIMBE UMR 3685), Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Department of Information Technology and Electrical Engineering [Zürich] (D-ITET), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich)-Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich)-Universität Zürich [Zürich] (UZH), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Universität Zürich [Zürich] (UZH)-Department of Information Technology and Electrical Engineering [Zürich] (D-ITET), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich)-Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Silicon dioxide ,Nanotechnology ,02 engineering and technology ,Environment ,010501 environmental sciences ,01 natural sciences ,Colloid ,symbols.namesake ,chemistry.chemical_compound ,Rivers ,Environmental Chemistry ,Humic acid ,Colloids ,Humic Substances ,0105 earth and related environmental sciences ,Titanium ,chemistry.chemical_classification ,Smoluchowski coagulation equation ,Natural surface ,Water ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Hydrogen-Ion Concentration ,Models, Theoretical ,Silicon Dioxide ,021001 nanoscience & nanotechnology ,Engineered nanoparticles ,Low ionic strength ,Solutions ,Kinetics ,Chemistry ,Chemical engineering ,chemistry ,13. Climate action ,Titanium dioxide nanoparticles ,symbols ,Nanoparticles ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,0210 nano-technology - Abstract
The heteroaggregation of engineered nanoparticles (ENPs) with natural colloids (NCs), which are ubiquitous in natural surface waters, is a crucial process affecting the environmental transport and fate of ENPs. Attachment efficiencies for heteroaggregation, αhetero, are required as input parameters in environmental fate models to predict ENP concentrations and contribute to ENP risk assessment. Here, we present a novel method for determining αhetero values by using a combination of laser diffraction measurements and aggregation modeling based on the Smoluchowski equation. Titanium dioxide nanoparticles (TiO2 NPs, 15 nm) were used to demonstrate this new approach together with larger silicon dioxide particles (SiO2, 0.5 μm) representing NCs. Heteroaggregation experiments were performed at different environmentally relevant solution conditions. At pH 5 the TiO2 NPs and the SiO2 particles are of opposite charge, resulting in αhetero values close to 1. At pH 8, where all particles are negatively charged, αhetero was strongly affected by the solution conditions, with αhetero ranging from 2 concentrations. The presence of humic acid stabilized the system against heteroaggregation.
- Published
- 2014
- Full Text
- View/download PDF
44. Salinity-dependent silver nanoparticle uptake and transformation by Atlantic killifish (Fundulus heteroclitus) embryos
- Author
-
Jérôme Rose, Richard T. Di Giulio, Olivier Proux, Wei Liu, M. C. Arnold, Mélanie Auffan, Jean-Yves Bottero, Perrine Chaurand, Barbara Fayard, Cole W. Matson, Mark R. Wiesner, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), International Consortium for the Environmental Implications of Nanotechnology iCEINT, Europôle de l'Arbois, 13545 Aix en Provence, Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), European Synchrotron Radiation Facility (ESRF), Duke University [Durham], Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
In situ ,Silver ,media_common.quotation_subject ,Sodium ,Biomedical Engineering ,chemistry.chemical_element ,Sodium Chloride ,010501 environmental sciences ,Toxicology ,01 natural sciences ,Silver nanoparticle ,salinity ,03 medical and health sciences ,Adsorption ,Fundulidae ,Animals ,030304 developmental biology ,0105 earth and related environmental sciences ,media_common ,0303 health sciences ,biology ,Ecology ,Chorion ,biology.organism_classification ,Fundulus ,Salinity ,Speciation ,Membrane ,chemistry ,speciation ,embryonic structures ,[SDE]Environmental Sciences ,estuarine ,Nanoparticles ,nanomaterial ,Nuclear chemistry - Abstract
International audience; We assessed the biodistribution and in situ speciation of sub-lethal concentrations of citrate-coated silver nanoparticles and dissolved silver within Fundulus heteroclitus embryos. Using a thorough physico-chemical characterization, we studied the role of salinity on both uptake and in situ speciation. The Ag uptake or adsorption on the chorion was reduced by 2.3-fold for Ag NPs, and 2.9-fold for AgNO3 in estuarine water (10 parts per thousand ASW) compared to deionized water (0 parts per thousand ASW). Between 58% and 85% of the silver was localized on/in the chorion and formed patches between 20 and 80 mu m. More than a physical barrier, the chorion was found to be a chemically reactive membrane controlling the in situ speciation of silver. A strong complexation of the Cit-Ag NPs with the thiolated groups of proteins or enzymes of the chorion was responsible for the oxidation of 48 +/- 5% of the Ag-0 into Ag-(I)-S species at 0 parts per thousand ASW. However, at 10 parts per thousand ASW, the presence of Cl- ions at the surface of Ag NPs slow down this oxidation. For the dissolved silver, we observed that in deionized water 69 +/- 7% of Ag+ taken up by the chorion was complexed by the thiolated molecules while the others 30 +/- 3% were reduced into Ag-0 likely via interaction with the hemiacetal-reducing ends of polysaccharides of the chorion.
- Published
- 2014
- Full Text
- View/download PDF
45. An adaptable mesocosm platform for performing integrated assessments of nanomaterial risk in complex environmental systems
- Author
-
Benjamin Espinasse, Catherine Santaella, Julien Issartel, Jean-Yves Bottero, Wafa Achouak, Mohamed Barakat, Lenka Brousset, Mark R. Wiesner, Christine Paillès, Jérôme Rose, Mélanie Auffan, Marie Tella, Ester Artells, Alain Thiéry, Armand Masion, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Biologie végétale et microbiologie environnementale - UMR7265 (BVME), Institut de Biosciences et Biotechnologies d'Aix-Marseille (ex-IBEB) (BIAM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE), Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU), Institut de Recherche pour le Développement (IRD), Avignon Université (AU), International Consortium for the Environmental Implications of Nanotechnology iCEINT, Europôle de l'Arbois, 13545 Aix en Provence, Duke University [Durham], Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), and Centre National de la Recherche Scientifique (CNRS)-Institut de recherche pour le développement [IRD] : UMR237-Aix Marseille Université (AMU)-Avignon Université (AU)
- Subjects
Cell Survival ,Engineered nanomaterials ,02 engineering and technology ,010501 environmental sciences ,01 natural sciences ,Article ,Mesocosm ,Bioreactors ,Environmental risk ,Materials Testing ,Toxicity Tests ,Nanotechnology ,Environmental systems ,Temporal scales ,Volume concentration ,Ecosystem ,0105 earth and related environmental sciences ,Multidisciplinary ,Ecology ,Equipment Design ,021001 nanoscience & nanotechnology ,Environment, Controlled ,Equipment Failure Analysis ,Systems Integration ,13. Climate action ,[SDE]Environmental Sciences ,Phytoplankton ,Environmental science ,Nanoparticles ,Biological Assay ,Biochemical engineering ,0210 nano-technology - Abstract
International audience; Physical-chemists, (micro) biologists, and ecologists need to conduct meaningful experiments to study the environmental risk of engineered nanomaterials with access to relevant mechanistic data across several spatial and temporal scales. Indoor aquatic mesocosms (60L) that can be tailored to virtually mimic any ecosystem appear as a particularly well-suited device. Here, this concept is illustrated by a pilot study aimed at assessing the distribution of a CeO2-based nanomaterial within our system at low concentration (1.5 mg/L). Physico-chemical as well as microbiological parameters took two weeks to equilibrate. These parameters were found to be reproducible across the 9-mesocosm setup over a 45-day period of time. Recovery mass balances of 115 +/- 18% and 60 +/- 30% of the Ce were obtained for the pulse dosing and the chronic dosing, respectively. This demonstrated the relevance of our experimental approach that allows for adequately monitoring the fate and impact of a given nanomaterial.
- Published
- 2014
- Full Text
- View/download PDF
46. The Transformation of Pristine and Citrate-Functionalized CeO2 Nanoparticles in a Laboratory Scale Aerobic Activated Sludge Reactor
- Author
-
Jean-Yves Bottero, Daniel Borschneck, Marie Bertrand, Mélanie Auffan, Catherine Santaella, Luca Olivi, Mark R. Wiesner, Nicolas Roche, Mohamed Barakat, Lauren E. Barton, Armand Masion, Department of Civil and Environmental Engineering [Durham] (CEE), Duke University [Durham], Center for the Environmental Implications of Nanotechnology, Duke University, International Consortium for the Environmental Implications of Nanotechnology (ICEINT), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Laboratoire d'Ecologie Microbienne de la Rhizosphère et d'Environnements Extrêmes (LEMIRE), Institut de Biosciences et Biotechnologies d'Aix-Marseille (ex-IBEB) (BIAM), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Elettra Sincrotrone Trieste, Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2), Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
- Subjects
Biosolids ,Engineered nanomaterials ,Wastewater ,Laboratory scale ,Citric Acid ,Water Purification ,Bioreactors ,Phase (matter) ,Environmental Chemistry ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,Effluent ,Biotransformation ,Bacteria ,Sewage ,Waste management ,Chemistry ,[SDE.IE]Environmental Sciences/Environmental Engineering ,Cerium ,General Chemistry ,6. Clean water ,Kinetics ,X-Ray Absorption Spectroscopy ,Activated sludge ,Environmental chemistry ,Nanoparticles ,Sewage treatment ,Ceo2 nanoparticles ,Laboratories - Abstract
International audience; Engineered nanomaterials (ENMs) are used to enhance the properties of many manufactured products and technologies. Increased use of ENMs will inevitably lead to their release into the environment. An important route of exposure is through the waste stream, where ENMs will enter wastewater treatment plants (WWTPs), undergo transformations, and be discharged with treated effluent or biosolids. To better understand the fate of a common ENM in WWTPs, experiments with laboratory-scale activated sludge reactors and pristine and citrate-functionalized CeO2 nanoparticles (NPs) were conducted. Greater than 90% of the CeO2 introduced was observed to associate with biosolids. This association was accompanied by reduction of the Ce(IV) NPs to Ce(III). After 5 weeks in the reactor, 44 ± 4% reduction was observed for the pristine NPs and 31 ± 3% for the citrate-functionalized NPs, illustrating surface functionality dependence. Thermodynamic arguments suggest that the likely Ce(III) phase generated would be Ce2S3. This study indicates that the majority of CeO2 NPs (>90% by mass) entering WWTPs will be associated with the solid phase, and a significant portion will be present as Ce(III). At maximum, 10% of the CeO2 will remain in the effluent and be discharged as a Ce(IV) phase, governed by cerianite (CeO2).
- Published
- 2014
- Full Text
- View/download PDF
47. Evolution of particle size and concentration in the Rhône river mixing zone
- Author
-
Jean-Marie Garnier, Antoine Thill, Jean-Yves Bottero, Stéphane Moustier, Jean-Jacques Naudin, and Claude Estournel
- Subjects
Hydrology ,Flocculation ,Suspended solids ,010504 meteorology & atmospheric sciences ,Sedimentation (water treatment) ,Geology ,Soil science ,010501 environmental sciences ,Aquatic Science ,Particulates ,Oceanography ,01 natural sciences ,6. Clean water ,Dilution ,Deposition (aerosol physics) ,Settling ,Environmental science ,Particle ,0105 earth and related environmental sciences - Abstract
The salt induced flocculation phenomenon is often proposed as a major mechanism influencing the deposition of the suspended matter near the mouth of major rivers. However, depending on the particular mixing conditions between fresh water and marine water and on suspended solids (SS) reactivity, salt induced aggregation may be a minor factor controlling fast deposition of SS. This work combines field studies and laboratory experiments in order to assess the importance of salt induced flocculation in the case of the saltwedge estuary of the Rhone river. Sampling of the mixing zone has been performed in contrasted hydrodynamic conditions from a low water discharge period (500 m 3 s −1 ) to a small flood event (2400 m 3 s −1 ) for particle counting and salinity measurements. Through laboratory experiments, it is shown that the Rhone river particulate matter has a poor average reactivity regarding salt induced flocculation. Considering the hydrodynamics of the estuary, we show that the evolution of the concentration of larger particles (>5 μm) can be explained by settling and dilution. In contrast, the smallest measured fraction (2–5 μm) shows a more complex behavior and settling processes alone cannot explain the observed particle concentrations during the field studies. Four hypotheses are discussed for explaining the 2–5 μm particle concentration evolutions.
- Published
- 2001
- Full Text
- View/download PDF
48. Adsorption of a Cationic Polyelectrolyte on Escherichia coli Bacteria: 1. Adsorption of the Polymer
- Author
-
Xavier Châtellier, Jean Le Petit, and † and Jean-Yves Bottero
- Subjects
chemistry.chemical_classification ,technology, industry, and agriculture ,Cationic polymerization ,Surfaces and Interfaces ,Polymer ,Polymer adsorption ,Condensed Matter Physics ,medicine.disease_cause ,Polyelectrolyte ,Electrophoresis ,Adsorption ,Chemical engineering ,chemistry ,Polyelectrolyte adsorption ,Polymer chemistry ,Electrochemistry ,medicine ,General Materials Science ,Escherichia coli ,Spectroscopy - Abstract
Adsorption isotherms of quaternized polyvinylpyridine on the surface of Escherichia coli bacterial cells were performed using a spectrophotometer. Results show that about 1 mg of polymer can adsorb per m2 of bacterial surface. Electrophoretic mobility measurements of the cells for various quantities of adsorbed polymer indicate that the charge of the cells can be inverted by the cationic polyelectrolyte. Combining the adsorption isotherm and the electrophoretic mobility measurements, we argue that the polymer chains are adsorbed in a very flat configuration on the surface and that they form a strongly entangled network with a mesh size which decreases to a molecular size when the quantity of adsorbed polymer increases to the plateau value of the adsorption isotherm.
- Published
- 2001
- Full Text
- View/download PDF
49. Adsorption of a Cationic Polyelectrolyte on Escherichia coli Bacteria: 2. Interactions between the Bacterial Surfaces Covered with the Polymer
- Author
-
Jean Le Petit, † and Jean-Yves Bottero, and Xavier Châtellier
- Subjects
chemistry.chemical_classification ,biology ,Chemistry ,Cationic polymerization ,Fraction (chemistry) ,Surfaces and Interfaces ,Polymer ,Condensed Matter Physics ,biology.organism_classification ,medicine.disease_cause ,Polyelectrolyte ,Adsorption ,Chemical engineering ,Electrochemistry ,medicine ,General Materials Science ,Suspension (vehicle) ,Escherichia coli ,Spectroscopy ,Bacteria - Abstract
Quaternized polyvinylpyridine (PVPQ) was used as a cationic polymer to destabilize an Escherichia coli bacterial suspension. The optical density and the fraction of free cells, obtained by light sc...
- Published
- 2001
- Full Text
- View/download PDF
50. X-ray Absorption Spectroscopy Study of Immobilization Processes for Heavy Metals in Calcium Silicate Hydrates: 1. Case of Lead
- Author
-
Armand Masion, and Francis Mosnier, Jérôme Rose, Jean-Yves Bottero, Paul M. Bertsch, Jean-Louis Hazemann, Isabelle Moulin, and Claude Haehnel
- Subjects
Cement ,X-ray absorption spectroscopy ,Trace Amounts ,Chemistry ,Radiochemistry ,Inorganic chemistry ,Heavy metals ,Surfaces and Interfaces ,Raw material ,Condensed Matter Physics ,chemistry.chemical_compound ,Lead (geology) ,Calcium silicate ,Electrochemistry ,General Materials Science ,Spectroscopy - Abstract
Trace amounts of heavy metals can be detected in cement. The major source is due to heavy metals naturally present in some of the raw materials used for clinkers manufacture. One way to predict the...
- Published
- 2000
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.