41 results on '"Jean-Philippe Combier"'
Search Results
2. Drosophila primary microRNA-8 encodes a microRNA-encoded peptide acting in parallel of miR-8
- Author
-
Audrey Montigny, Patrizia Tavormina, Carine Duboe, Hélène San Clémente, Marielle Aguilar, Philippe Valenti, Dominique Lauressergues, Jean-Philippe Combier, and Serge Plaza
- Subjects
Drosophila ,sORF ,lncRNA ,miR-8 ,miPEP ,Small peptides ,Biology (General) ,QH301-705.5 ,Genetics ,QH426-470 - Abstract
Abstract Background Recent genome-wide studies of many species reveal the existence of a myriad of RNAs differing in size, coding potential and function. Among these are the long non-coding RNAs, some of them producing functional small peptides via the translation of short ORFs. It now appears that any kind of RNA presumably has a potential to encode small peptides. Accordingly, our team recently discovered that plant primary transcripts of microRNAs (pri-miRs) produce small regulatory peptides (miPEPs) involved in auto-regulatory feedback loops enhancing their cognate microRNA expression which in turn controls plant development. Here we investigate whether this regulatory feedback loop is present in Drosophila melanogaster. Results We perform a survey of ribosome profiling data and reveal that many pri-miRNAs exhibit ribosome translation marks. Focusing on miR-8, we show that pri-miR-8 can produce a miPEP-8. Functional assays performed in Drosophila reveal that miPEP-8 affects development when overexpressed or knocked down. Combining genetic and molecular approaches as well as genome-wide transcriptomic analyses, we show that miR-8 expression is independent of miPEP-8 activity and that miPEP-8 acts in parallel to miR-8 to regulate the expression of hundreds of genes. Conclusion Taken together, these results reveal that several Drosophila pri-miRs exhibit translation potential. Contrasting with the mechanism described in plants, these data shed light on the function of yet undescribed primary-microRNA-encoded peptides in Drosophila and their regulatory potential on genome expression.
- Published
- 2021
- Full Text
- View/download PDF
3. In Depth Exploration of the Alternative Proteome of Drosophila melanogaster
- Author
-
Bertrand Fabre, Sebastien A. Choteau, Carine Duboé, Carole Pichereaux, Audrey Montigny, Dagmara Korona, Michael J. Deery, Mylène Camus, Christine Brun, Odile Burlet-Schiltz, Steven Russell, Jean-Philippe Combier, Kathryn S. Lilley, and Serge Plaza
- Subjects
alternative proteins ,short open reading frame–encoded polypeptide ,microprotein ,peptidomics ,mass spectrometry ,Biology (General) ,QH301-705.5 - Abstract
Recent studies have shown that hundreds of small proteins were occulted when protein-coding genes were annotated. These proteins, called alternative proteins, have failed to be annotated notably due to the short length of their open reading frame (less than 100 codons) or the enforced rule establishing that messenger RNAs (mRNAs) are monocistronic. Several alternative proteins were shown to be biologically active molecules and seem to be involved in a wide range of biological functions. However, genome-wide exploration of the alternative proteome is still limited to a few species. In the present article, we describe a deep peptidomics workflow which enabled the identification of 401 alternative proteins in Drosophila melanogaster. Subcellular localization, protein domains, and short linear motifs were predicted for 235 of the alternative proteins identified and point toward specific functions of these small proteins. Several alternative proteins had approximated abundances higher than their canonical counterparts, suggesting that these alternative proteins are actually the main products of their corresponding genes. Finally, we observed 14 alternative proteins with developmentally regulated expression patterns and 10 induced upon the heat-shock treatment of embryos, demonstrating stage or stress-specific production of alternative proteins.
- Published
- 2022
- Full Text
- View/download PDF
4. Characterization of plant microRNA-encoded peptides (miPEPs) reveals molecular mechanisms from the translation to activity and specificity
- Author
-
Dominique Lauressergues, Mélanie Ormancey, Bruno Guillotin, Hélène San Clemente, Laurent Camborde, Carine Duboé, Sabine Tourneur, Pierre Charpentier, Amélie Barozet, Alain Jauneau, Aurélie Le Ru, Patrice Thuleau, Virginie Gervais, Serge Plaza, and Jean-Philippe Combier
- Subjects
miRNAs ,miPEPs ,peptides ,Arabidopsis ,Brassicacea ,Biology (General) ,QH301-705.5 - Abstract
Summary: MicroRNAs (miRNAs) are transcribed as long primary transcripts (pri-miRNAs) by RNA polymerase II. Plant pri-miRNAs encode regulatory peptides called miPEPs, which specifically enhance the transcription of the pri-miRNA from which they originate. However, paradoxically, whereas miPEPs have been identified in different plant species, they are poorly conserved, raising the question of the mechanisms underlying their specificity. To address this point, we identify and re-annotate multiple Arabidopsis thaliana pri-miRNAs in order to identify ORF encoding miPEPs. The study of several identified miPEPs in different species show that non-conserved miPEPs are only active in their plant of origin, whereas conserved ones are active in different species. Finally, we find that miPEP activity relies on the presence of its own miORF, explaining both the lack of selection pressure on miPEP sequence and the ability for non-conserved peptides to play a similar role, i.e., to activate the expression of their corresponding miRNA.
- Published
- 2022
- Full Text
- View/download PDF
5. The Essentials on microRNA-Encoded Peptides from Plants to Animals
- Author
-
Mélanie Ormancey, Patrice Thuleau, Jean-Philippe Combier, and Serge Plaza
- Subjects
microRNA ,sORF ,peptide ,plant miPEP ,animal miPEP ,Microbiology ,QR1-502 - Abstract
Primary transcripts of microRNAs (pri-miRNAs) were initially defined as long non-coding RNAs that host miRNAs further processed by the microRNA processor complex. A few years ago, however, it was discovered in plants that pri-miRNAs actually contain functional open reading frames (sORFs) that translate into small peptides called miPEPs, for microRNA-encoded peptides. Initially detected in Arabidopsis thaliana and Medicago truncatula, recent studies have revealed the presence of miPEPs in other pri-miRNAs as well as in other species ranging from various plant species to animals. This suggests that miPEP numbers remain largely underestimated and that they could be a common signature of pri-miRNAs. Here we present the most recent advances in miPEPs research and discuss how their discovery has broadened our vision of the regulation of gene expression by miRNAs, and how miPEPs could be interesting tools in sustainable agriculture or the treatment of certain human diseases.
- Published
- 2023
- Full Text
- View/download PDF
6. A Fungal Conserved Gene from the Basidiomycete Hebeloma cylindrosporum Is Essential for Efficient Ectomycorrhiza Formation
- Author
-
Jeanne Doré, Roland Marmeisse, Jean-Philippe Combier, and Gilles Gay
- Subjects
Microbiology ,QR1-502 ,Botany ,QK1-989 - Abstract
We used Agrobacterium-mediated insertional mutagenesis to identify genes in the ectomycorrhizal fungus Hebeloma cylindrosporum that are essential for efficient mycorrhiza formation. One of the mutants presented a dramatically reduced ability to form ectomycorrhizas when grown in the presence of Pinus pinaster. It failed to form mycorrhizas in the presence of glucose at 0.5 g liter–1, a condition favorable for mycorrhiza formation by the wild-type strain. However, it formed few mycorrhizas when glucose was replaced by fructose or when glucose concentration was increased to 1 g liter–1. Scanning electron microscopy examination of these mycorrhizas revealed that this mutant was unable to differentiate true fungal sheath and Hartig net. Molecular analyses showed that the single-copy disrupting T-DNA was integrated 6,884 bp downstream from the start codon, of an open reading frame potentially encoding a 3,096-amino-acid-long protein. This gene, which we named HcMycE1, has orthologs in numerous fungi as well as different other eukaryotic microorganisms. RNAi inactivation of HcMycE1 in the wild-type strain also led to a mycorrhizal defect, demonstrating that the nonmycorrhizal phenotype of the mutant was due to mutagenic T-DNA integration in HcMycE1. In the wild-type strain colonizing P. pinaster roots, HcMycE1 was transiently upregulated before symbiotic structure differentiation. Together with the inability of the mutant to differentiate these structures, this suggests that HcMycE1 plays a crucial role upstream of the fungal sheath and Hartig net differentiation. This study provides the first characterization of a fungal mutant altered in mycorrhizal ability.
- Published
- 2014
- Full Text
- View/download PDF
7. NIN is involved in the regulation of Arbuscular Mycorrhizal symbiosis.
- Author
-
Bruno GUILLOTIN, Jean-Malo Couzigou, and Jean-Philippe Combier
- Subjects
Infection ,Medicago truncatula ,Symbiosis ,arbuscular mycorrhiza ,Rhizophagus irregularis ,common symbiotic signalling pathway (CSSP) ,Plant culture ,SB1-1110 - Abstract
Arbuscular mycorrhizal (AM) symbiosis is an intimate and ancient symbiosis found between most of terrestrial plants and fungi from the Glomeromycota family. Later during evolution, the establishment of the nodulation between legume plants and soil bacteria known as rhizobia, involved several genes of the signalling pathway previously implicated for AM symbiosis. For the past years, the identification of the genes belonging to this Common Symbiotic Signalling Pathway have been mostly done on nodulation. Among the different genes already well identified as required for nodulation, we focused our attention on the involvement of Nodule Inception (NIN) in AM symbiosis. We show here that NIN expression is induced during AM symbiosis, and that the Medicago truncatula nin mutant is less colonized than the wild type M. truncatula strain. Moreover, nin mutant displays a defect in the ability to be infected by the fungus Rhizophagus irregularis. This work brings a new evidence of the common genes involved in overlapping signalling pathways of both nodulation and in AM symbiosis.
- Published
- 2016
- Full Text
- View/download PDF
8. Evidence for the Involvement in Nodulation of the Two Small Putative Regulatory Peptide-Encoding Genes MtRALFL1 and MtDVL1
- Author
-
Jean-Philippe Combier, Helge Küster, Etienne-Pascal Journet, Natalija Hohnjec, Pascal Gamas, and Andreas Niebel
- Subjects
rhizobial infection ,Microbiology ,QR1-502 ,Botany ,QK1-989 - Abstract
Nod factors are key bacterial signaling molecules regulating the symbiotic interaction between bacteria known as rhizobia and leguminous plants. Studying plant host genes whose expression is affected by Nod factors has given insights into early symbiotic signaling and development. Here, we used a double supernodulating mutant line that shows increased sensitivity to Nod factors to study the Nod factor-regulated transcriptome. Using microarrays containing more than 16,000 70-mer oligonucleotide probes, we identified 643 Nod-factor-regulated genes, including 225 new Nod-factor-upregulated genes encoding many potential regulators. Among the genes found to be Nod factor upregulated, we identified and characterized MtRALFL1 and MtDVL1, which code for two small putative peptide regulators of 135 and 53 amino acids, respectively. Expression analysis confirmed that these genes are upregulated during initial phases of nodulation. Overexpression of MtRALFL1 and MtDVL1 in Medicago truncatula roots resulted in a marked reduction in the number of nodules formed and in a strong increase in the number of aborted infection threads. In addition, abnormal nodule development was observed when MtRALFL1 was overexpressed. This work provides evidence for the involvement of new putative small-peptide regulators during nodulation.
- Published
- 2008
- Full Text
- View/download PDF
9. Nonmycorrhizal (Myc¯) Mutants of Hebeloma cylindrosporum Obtained Through Insertional Mutagenesis
- Author
-
Jean-Philippe Combier, Delphine Melayah, Colette Raffier, Régis Pépin, Roland Marmeisse, and Gilles Gay
- Subjects
Microbiology ,QR1-502 ,Botany ,QK1-989 - Abstract
Polyethylene glycol-mediated transformation of protoplasts was used as a method for insertional mutagenesis to obtain mutants of the ectomycorrhizal fungus Hebeloma cylindrosporum impaired in symbiotic ability. Following restriction enzyme-mediated integration or conventional plasmid insertion, a library of 1,725 hygromycin-resistant monokaryotic transformants was generated and screened for the symbiotic defect, using Pinus pinaster seedlings as host plants. A total of 51 transformants displaying a dramatically reduced mycorrhizal ability were identified. Among them, 29 were nonmycorrhizal (myc¯), but only 10 of them had integrated one or several copies of the transforming plasmid in their genome. Light and scanning electron microscopy observations of pine roots inoculated with myc¯ mutants suggested that we selected mutants blocked at early stages of interaction between partners or at the stage of Hartig net formation. Myc¯ mutants with plasmid insertions were crossed with a compatible wild-type monokaryon and allowed to fruit. Monokaryotic progenies were obtained in three independent crosses and were analyzed for symbiotic activity and plasmid insertion. In all three progenies, a 1:1 myc¯:myc+ segregation ratio was observed, suggesting that each myc¯ phenotype resulted from a single gene mutation. However, for none of the three mutants, the myc¯ phenotype segregated with any of the plasmid insertions. Our results support the idea that master genes, the products of which are essential for symbiosis establishment, do exist in ectomycorrhizal fungi.
- Published
- 2004
- Full Text
- View/download PDF
10. Recent advances in mass spectrometry–based peptidomics workflows to identify short-open-reading-frame-encoded peptides and explore their functions
- Author
-
Jean-Philippe Combier, Serge Plaza, Bertrand Fabre, Laboratoire de Recherche en Sciences Végétales (LRSV), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université Fédérale Toulouse Midi-Pyrénées
- Subjects
Proteomics ,0301 basic medicine ,Computer science ,[SDV]Life Sciences [q-bio] ,Computational biology ,010402 general chemistry ,Mass spectrometry ,01 natural sciences ,Biochemistry ,Enrichment methods ,Mass Spectrometry ,Workflow ,0104 chemical sciences ,Analytical Chemistry ,Open Reading Frames ,03 medical and health sciences ,Open reading frame ,030104 developmental biology ,[CHIM]Chemical Sciences ,Ribosome profiling ,Peptides ,ComputingMilieux_MISCELLANEOUS - Abstract
Short open reading frame (sORF)-encoded polypeptides (SEPs) have recently emerged as key regulators of major cellular processes. Computational methods for the annotation of sORFs combined with transcriptomics and ribosome profiling approaches predicted the existence of tens of thousands of SEPs across the kingdom of life. Although, we still lack unambiguous evidence for most of them. The method of choice to validate the expression of SEPs is mass spectrometry (MS)-based peptidomics. Peptides are less abundant than proteins, which tends to hinder their detection. Therefore, optimization and enrichment methods are necessary to validate the existence of SEPs. In this article, we discuss the challenges for the detection of SEPs by MS and recent developments of biochemical approaches applied to the study of these peptides. We detail the advances made in the different key steps of a typical peptidomics workflow and highlight possible alternatives that have not been explored yet.
- Published
- 2021
- Full Text
- View/download PDF
11. Small ORFs as New Regulators of Pri-miRNAs and miRNAs Expression in Human and Drosophila
- Author
-
Christine Dozier, Audrey Montigny, Mireia Viladrich, Raphael Culerrier, Jean-Philippe Combier, Arnaud Besson, and Serge Plaza
- Subjects
Inorganic Chemistry ,smORFs ,pri-miRNA ,miRNA ,Organic Chemistry ,General Medicine ,Physical and Theoretical Chemistry ,Molecular Biology ,Spectroscopy ,Catalysis ,Computer Science Applications - Abstract
MicroRNAs (miRNAs) are small regulatory non-coding RNAs, resulting from the cleavage of long primary transcripts (pri-miRNAs) in the nucleus by the Microprocessor complex generating precursors (pre-miRNAs) that are then exported to the cytoplasm and processed into mature miRNAs. Some miRNAs are hosted in pri-miRNAs annotated as long non-coding RNAs (lncRNAs) and defined as MIRHGs (for miRNA Host Genes). However, several lnc pri-miRNAs contain translatable small open reading frames (smORFs). If smORFs present within lncRNAs can encode functional small peptides, they can also constitute cis-regulatory elements involved in lncRNA decay. Here, we investigated the possible involvement of smORFs in the regulation of lnc pri-miRNAs in Human and Drosophila, focusing on pri-miRNAs previously shown to contain translatable smORFs. We show that smORFs regulate the expression levels of human pri-miR-155 and pri-miR-497, and Drosophila pri-miR-8 and pri-miR-14, and also affect the expression and activity of their associated miRNAs. This smORF-dependent regulation is independent of the nucleotidic and amino acidic sequences of the smORFs and is sensitive to the ribosome-stalling drug cycloheximide, suggesting the involvement of translational events. This study identifies smORFs as new cis-acting elements involved in the regulation of pri-miRNAs and miRNAs expression, in both Human and Drosophila melanogaster.
- Published
- 2022
- Full Text
- View/download PDF
12. Evidence That Regulation of Pri-miRNA/miRNA Expression Is Not a General Rule of miPEPs Function in Humans
- Author
-
Jean-Philippe Combier, Anne Prel, Christine Dozier, Arnaud Besson, Serge Plaza, Peptides et petits ARN, Laboratoire de Recherche en Sciences Végétales (LRSV), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Unité de biologie moléculaire, cellulaire et du développement (MCD), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre de Biologie Intégrative (CBI), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), This research was funded by the Fondation ARC pour la Recherche sur le Cancer (Programme ARC PGA1 RF20180206987), the Centre National de la Recherche Scientifique (CNRS), and the University Paul Sabatier Toulouse III, ANR-16-CE12-0018,biomiPEPs,Vers une compréhension globale des miPEPs(2016), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université Fédérale Toulouse Midi-Pyrénées
- Subjects
0106 biological sciences ,0301 basic medicine ,Proteomics ,[SDV]Life Sciences [q-bio] ,pri-miRNA ,Computational biology ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,Biology ,ENCODE ,01 natural sciences ,Catalysis ,Article ,Inorganic Chemistry ,lcsh:Chemistry ,03 medical and health sciences ,Open Reading Frames ,Transcription (biology) ,Gene Expression Regulation, Plant ,microRNA ,RNA Precursors ,Humans ,Ribosome profiling ,Physical and Theoretical Chemistry ,ORFS ,RNA Processing, Post-Transcriptional ,Molecular Biology ,Gene ,lcsh:QH301-705.5 ,Spectroscopy ,miRNA ,micropeptides ,Organic Chemistry ,miPEP ,General Medicine ,Computer Science Applications ,Gene Expression Regulation, Neoplastic ,Open reading frame ,MicroRNAs ,030104 developmental biology ,Gene Expression Regulation ,lcsh:Biology (General) ,lcsh:QD1-999 ,short ORFs ,PC-3 Cells ,Peptides ,Function (biology) ,010606 plant biology & botany ,HeLa Cells - Abstract
International audience; Some miRNAs are located in RNA precursors (pri-miRNAs) annotated as long non-coding (lncRNAs) due to absence of long open reading frames (ORFs). However, recent studies have shown that some lnc pri-miRNAs encode peptides called miPEPs (miRNA-encoded peptides). Initially discovered in plants, three miPEPs have also been identified in humans. Herein, we found that a dozen human pri-miRNAs potentially encode miPEPs, as revealed by ribosome profiling and proteomic databases survey. So far, the only known function of plant miPEPs is to enhance the transcription of their own pri-miRNAs, thereby increasing the level and activity of their associated miRNAs and downregulating the expression of their target genes. To date, in humans, only miPEP133 was shown to promote a positive autoregulatory loop. We investigated whether other human miPEPs are also involved in regulating the expression of their miRNAs by studying miPEP155, encoded by the lnc MIR155HG, miPEP497, a sORF-encoded peptide within lnc MIR497HG, and miPEP200a, encoded by the pri-miRNA of miR-200a/miR-200b. We show that overexpression of these miPEPs is unable to impact the expression/activity of their own pri-miRNA/miRNAs in humans, indicating that the positive feedback regulation observed with plant miPEPs and human miPEP133 is not a general rule of human miPEP function.
- Published
- 2021
- Full Text
- View/download PDF
13. Drosophila primary microRNA-8 encodes a microRNA encoded peptide acting in parallel of miR-8
- Author
-
Serge Plaza, Carine Duboé, Philippe Valenti, Dominique Lauressergues, Audrey Montigny, Hélène San Clemente, Marielle Aguilar, Patrizia Tavormina, and Jean-Philippe Combier
- Subjects
Transcriptome ,biology ,microRNA ,RNA ,Translation (biology) ,Computational biology ,Ribosome profiling ,Drosophila melanogaster ,biology.organism_classification ,Genome ,Gene - Abstract
SummaryBackgroundRecent genome-wide studies of many species reveal the existence of a myriad of RNAs differing in size, coding potential and function. Among these are the long non-coding RNAs, some of them producing functional small peptides via the translation of short ORFs. It now appears that any kind of RNA presumably has a potential to encode small peptides. Accordingly, our team recently discovered that plant primary transcripts of microRNAs (pri-miRNAs) produce small regulatory peptides (miPEPs) involved in auto-regulatory feedback loops enhancing their cognate microRNA expression which in turn controls plant development. Here we investigate whether this regulatory feedback loop is present in Drosophila melanogaster.ResultsWe perform a survey of ribosome profiling data and reveal that many pri-miRNAs exhibit ribosome translation marks. Focusing on miR-8, we show that pri-miR-8 can produce a miPEP-8. Functional assays performed in Drosophila reveal that miPEP-8 affects development when overexpressed or knocked down. Combining genetic and molecular approaches as well as genome-wide transcriptomic analyses, we show that miR-8 expression is independent of miPEP-8 activity and that miPEP-8 acts in parallel to miR-8 to regulate the expression of hundreds of genes.ConclusionTaken together, these results reveal that several Drosophila pri-miRNAs exhibit translation potential. Contrasting with the mechanism described in plants, these data shed light on the function of yet un-described pri-microRNA encoded peptides in Drosophila and their regulatory potential on genome expression.
- Published
- 2021
- Full Text
- View/download PDF
14. Additional file 1 of Drosophila primary microRNA-8 encodes a microRNA-encoded peptide acting in parallel of miR-8
- Author
-
Montigny, Audrey, Tavormina, Patrizia, Duboe, Carine, Clémente, Hélène San, Aguilar, Marielle, Valenti, Philippe, Lauressergues, Dominique, Jean-Philippe Combier, and Plaza, Serge
- Abstract
Additional file 1. Supplementary Figures S1 to S13.
- Published
- 2021
- Full Text
- View/download PDF
15. Rhizospheric Plant–Microbe Interactions: miRNAs as a Key Mediator
- Author
-
Cécile Monard, Etienne Yergeau, Jean-Philippe Combier, Abdelhak El Amrani, Harriet Middleton, Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO), Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)-Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES), Institut Armand Frappier (INRS-IAF), Institut National de la Recherche Scientifique [Québec] (INRS)-Réseau International des Instituts Pasteur (RIIP), Peptides et petits ARN, Laboratoire de Recherche en Sciences Végétales (LRSV), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Université de Rennes (UR)-Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR), Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0106 biological sciences ,0301 basic medicine ,Plant Development ,Plant Science ,Biology ,01 natural sciences ,03 medical and health sciences ,Mediator ,microRNA ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,Microbial inoculant ,Coevolution ,Soil Microbiology ,miRNA ,2. Zero hunger ,holobiont engineering ,Rhizosphere ,business.industry ,Host (biology) ,Microbiota ,fungi ,Plant microbe ,food and beverages ,Plants ,rhizospheric microbiota ,Biotechnology ,Holobiont ,MicroRNAs ,030104 developmental biology ,extracellular vesicles (EVs) ,inter-kingdom communication ,business ,010606 plant biology & botany - Abstract
International audience; The importance of microorganisms in plant development, nutrition, and stress resistance is unquestioned and has led to a more holistic approach of plant-microbe interactions, under the holobiont concept. The structure of the plant microbiota is often described as host driven, especially in the rhizosphere, where microbial communities are shaped by diverse rhizodeposits. Gradually, this anthropogenic vision is fading and being replaced by the idea that plants and microorganisms co-shape the plant microbiota. Through coevolution, plants and microbes have developed cross-kingdom communication channels. Here, we propose that miRNAs are crucial mediators of plant-microbe interactions and microbiota shaping in the rhizosphere. Moreover, we suggest, as an alternative to generally unsuccessful strategies based on microbial inoculants, miRNAs as a promising tool for novel holobiont engineering.
- Published
- 2021
- Full Text
- View/download PDF
16. Additional file 6 of Drosophila primary microRNA-8 encodes a microRNA-encoded peptide acting in parallel of miR-8
- Author
-
Montigny, Audrey, Tavormina, Patrizia, Duboe, Carine, Clémente, Hélène San, Aguilar, Marielle, Valenti, Philippe, Lauressergues, Dominique, Jean-Philippe Combier, and Plaza, Serge
- Abstract
Additional file 6. Review history.
- Published
- 2021
- Full Text
- View/download PDF
17. Additional file 5 of Drosophila primary microRNA-8 encodes a microRNA-encoded peptide acting in parallel of miR-8
- Author
-
Montigny, Audrey, Tavormina, Patrizia, Duboe, Carine, Clémente, Hélène San, Aguilar, Marielle, Valenti, Philippe, Lauressergues, Dominique, Jean-Philippe Combier, and Plaza, Serge
- Abstract
Additional file 5. Uncropped Western blots.
- Published
- 2021
- Full Text
- View/download PDF
18. Internalization of miPEP165a into Arabidopsis Roots Depends on both Passive Diffusion and Endocytosis-Associated Processes
- Author
-
Serge Plaza, Mélanie Ormancey, Hailing Jin, Carine Duboé, Patrice Thuleau, Aurélie Le Ru, Jean-Philippe Combier, Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, University of California [Riverside] (UCR), University of California, Laboratoire de Recherche en Sciences Végétales (LRSV), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Fédération de Recherche Agrobiosciences, Interactions et Biodiversité (FR AIB), Centre de biologie du développement (CBD), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre de Biologie Intégrative (CBI), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Department of Plant Pathology & Microbiology [Riverside], University of California-University of California, Peptides et petits ARN, Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), National Institute of Health (R01 GM093008), ANR-10-LABX-0041,TULIP,Towards a Unified theory of biotic Interactions: the roLe of environmental(2010), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, and Centre de Biologie Intégrative (CBI)
- Subjects
0106 biological sciences ,0301 basic medicine ,MESH: Cell Division / drug effects ,[SDV]Life Sciences [q-bio] ,Mutant ,Arabidopsis ,MESH: Plant Roots / drug effects ,01 natural sciences ,lcsh:Chemistry ,Arabidopsis thaliana ,Internalization ,[SDV.BDD]Life Sciences [q-bio]/Development Biology ,lcsh:QH301-705.5 ,ComputingMilieux_MISCELLANEOUS ,Spectroscopy ,MESH: Arabidopsis / metabolism ,media_common ,food and beverages ,MESH: Diffusion ,General Medicine ,MESH: Endocytosis* / drug effects ,Computer Science Applications ,Cell biology ,microRNAs ,Central cylinder ,MESH: Biological Transport ,media_common.quotation_subject ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,Biology ,MESH: Phenotype ,Endocytosis ,Catalysis ,Inorganic Chemistry ,03 medical and health sciences ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,endocytosis ,MESH: Arabidopsis / cytology ,Physical and Theoretical Chemistry ,Mode of action ,Molecular Biology ,Gene ,MESH: Plant Roots / metabolism ,Organic Chemistry ,fungi ,MESH: Arabidopsis / drug effects ,biology.organism_classification ,030104 developmental biology ,MESH: Plants, Genetically Modified ,lcsh:Biology (General) ,lcsh:QD1-999 ,peptides ,miPEPs ,MESH: Plant Roots / cytology ,010606 plant biology & botany - Abstract
International audience; MiPEPs are short natural peptides encoded by microRNAs in plants. Exogenous application of miPEPs increases the expression of their corresponding miRNA and, consequently, induces consistent phenotypical changes. Therefore, miPEPs carry huge potential in agronomy as gene regulators that do not require genome manipulation. However, to this end, it is necessary to know their mode of action, including where they act and how they enter the plants. Here, after analyzing the effect of Arabidopsis thaliana miPEP165a on root and aerial part development, we followed the internalization of fluorescent-labelled miPEP165a into roots and compared its uptake into endocytosis-altered mutants to that observed in wild-type plants treated or not with endocytosis inhibitors. The results show that entry of miPEP165a involves both a passive diffusion at the root apex and endocytosis-associated internalization in the differentiation and mature zones. Moreover, miPEP165a is unable to enter the central cylinder and does not migrate from the roots to the aerial part of the plant, suggesting that miPEPs have no systemic effect.
- Published
- 2020
- Full Text
- View/download PDF
19. Internalization of miPEP165a into
- Author
-
Mélanie, Ormancey, Aurélie, Le Ru, Carine, Duboé, Hailing, Jin, Patrice, Thuleau, Serge, Plaza, and Jean-Philippe, Combier
- Subjects
fungi ,Arabidopsis ,food and beverages ,Biological Transport ,Plants, Genetically Modified ,Plant Roots ,Article ,microRNAs ,Diffusion ,Phenotype ,peptides ,endocytosis ,miPEPs ,Cell Division - Abstract
MiPEPs are short natural peptides encoded by microRNAs in plants. Exogenous application of miPEPs increases the expression of their corresponding miRNA and, consequently, induces consistent phenotypical changes. Therefore, miPEPs carry huge potential in agronomy as gene regulators that do not require genome manipulation. However, to this end, it is necessary to know their mode of action, including where they act and how they enter the plants. Here, after analyzing the effect of Arabidopsis thaliana miPEP165a on root and aerial part development, we followed the internalization of fluorescent-labelled miPEP165a into roots and compared its uptake into endocytosis-altered mutants to that observed in wild-type plants treated or not with endocytosis inhibitors. The results show that entry of miPEP165a involves both a passive diffusion at the root apex and endocytosis-associated internalization in the differentiation and mature zones. Moreover, miPEP165a is unable to enter the central cylinder and does not migrate from the roots to the aerial part of the plant, suggesting that miPEPs have no systemic effect.
- Published
- 2020
20. Positive Gene Regulation by a Natural Protective miRNA Enables Arbuscular Mycorrhizal Symbiosis
- Author
-
Jean-Malo Couzigou, Bruno Guillotin, Caroline Gutjahr, Olivier André, Dominique Lauressergues, Guillaume Bécard, and Jean-Philippe Combier
- Subjects
0106 biological sciences ,0301 basic medicine ,Fungus ,Cleavage (embryo) ,Plant Roots ,01 natural sciences ,Microbiology ,03 medical and health sciences ,Downregulation and upregulation ,Symbiosis ,Gene Expression Regulation, Plant ,Mycorrhizae ,Virology ,Medicago truncatula ,Tobacco ,Botany ,microRNA ,Glomeromycota ,Regulation of gene expression ,Base Sequence ,biology ,fungi ,Meristem ,biology.organism_classification ,Cell biology ,Arbuscular mycorrhiza ,MicroRNAs ,030104 developmental biology ,Parasitology ,010606 plant biology & botany - Abstract
Arbuscular mycorrhizal (AM) symbiosis associates most plants with fungi of the phylum Glomeromycota. The fungus penetrates into roots and forms within cortical cell branched structures called arbuscules for nutrient exchange. We discovered that miR171b has a mismatched cleavage site and is unable to downregulate the miR171 family target gene, LOM1 (LOST MERISTEMS 1). This mismatched cleavage site is conserved among plants that establish AM symbiosis, but not in non-mycotrophic plants. Unlike other members of the miR171 family, miR171b stimulates AM symbiosis and is expressed specifically in root cells that contain arbuscules. MiR171b protects LOM1 from negative regulation by other miR171 family members. These findings uncover a unique mechanism of positive post-transcriptional regulation of gene expression by miRNAs and demonstrate its relevance for the establishment of AM symbiosis.
- Published
- 2017
- Full Text
- View/download PDF
21. Use of micro <scp>RNA</scp> ‐encoded peptide mi <scp>PEP</scp> 172c to stimulate nodulation in soybean
- Author
-
Marlène Alexandre, Jean-Malo Couzigou, Jean-Philippe Combier, Bruno Guillotin, and Olivier André
- Subjects
0106 biological sciences ,0301 basic medicine ,chemistry.chemical_classification ,Physiology ,Plant Root Nodulation ,Peptide ,Plant Science ,Biology ,01 natural sciences ,03 medical and health sciences ,030104 developmental biology ,chemistry ,Biochemistry ,microRNA ,010606 plant biology & botany - Published
- 2016
- Full Text
- View/download PDF
22. Sl-IAA27 regulates strigolactone biosynthesis and mycorrhization in tomato (var. MicroTom)
- Author
-
Bruno Guillotin, Jean-Philippe Combier, Corinne Audran, Guillaume Bécard, Mohammad Etemadi, Mondher Bouzayen, Laboratoire de Recherche en Sciences Végétales (LRSV), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Génomique et Biotechnologie des Fruits (GBF), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure Agronomique de Toulouse-Institut National Polytechnique (Toulouse) (Toulouse INP), Laboratoire des interactions plantes micro-organismes (LIPM), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA)-École nationale supérieure agronomique de Toulouse [ENSAT]-Institut National Polytechnique (Toulouse) (Toulouse INP), Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), Interactions Microbiennes dans la Rhizosphère et les Racines, Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Peptides et petits ARN, Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Institut National de la Recherche Agronomique - INRA (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), and Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
- Subjects
0106 biological sciences ,0301 basic medicine ,Génomique, Transcriptomique et Protéomique ,Physiology ,Strigolactone ,Aux-IAA ,Plant Science ,Biology ,01 natural sciences ,Plant Roots ,Tomato ,[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics ,03 medical and health sciences ,Lactones ,Symbiosis ,Solanum lycopersicum ,Auxin ,Gene Expression Regulation, Plant ,Mycorrhizae ,[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Genomics [q-bio.GN] ,Botany ,Gene expression ,Génétique des plantes ,Gene silencing ,Mycorrhiza ,Glomeromycota ,Gene ,Plant Proteins ,2. Zero hunger ,chemistry.chemical_classification ,Strigolactones ,Genetic Complementation Test ,fungi ,food and beverages ,biology.organism_classification ,Cell biology ,Metabolic pathway ,030104 developmental biology ,Phenotype ,chemistry ,RNA Interference ,Heterocyclic Compounds, 3-Ring ,010606 plant biology & botany - Abstract
International audience; - Root colonization by arbuscular mycorrhizal (AM) fungi is a complex and finely tuned process. Previous studies have shown that, among other plant hormones, auxin plays a role in this process but the specific involvement of Aux/IAAs, the key regulators of auxin responses, is still unknown. -In this study, we addressed the role of the tomato Sl-IAA27 during AM symbiosis by using Sl-IAA27-RNAi and pSL-IAA27::GUS stable tomato lines. - The data show that Sl-IAA27 expression is up-regulated by the AM fungus and that silencing of Sl-IAA27 has a negative impact on AM colonization. Sl-IAA27-silencing resulted in down-regulation of three genes involved in strigolactone synthesis, NSP1, D27 and MAX1, and treatment of Sl-IAA27-silenced plants with the strigolactone analog GR24 complemented their mycorrhizal defect phenotype. - Overall, the study identified an Aux/IAA gene as a new component of the signaling pathway controlling AM fungal colonization in tomato. This gene is proposed to control strigolactone biosynthesis via the regulation of NSP1.
- Published
- 2017
- Full Text
- View/download PDF
23. miRNA-encoded peptides (miPEPs): A new tool to analyze the roles of miRNAs in plant biology
- Author
-
Jean-Malo Couzigou, Jean-Philippe Combier, Guillaume Bécard, and Dominique Lauressergues
- Subjects
Transgene ,RNA ,Cell Biology ,Computational biology ,Plants ,Biology ,ENCODE ,Bioinformatics ,Plant biology ,MicroRNAs ,Open Reading Frames ,Open reading frame ,Gene Expression Regulation, Plant ,Transcription (biology) ,microRNA ,Peptides ,Point of View ,Molecular Biology ,Gene - Abstract
MicroRNAs (miRNAs) are short RNA molecules negatively regulating the expression of many important genes in plants and animals. We have recently shown that plant primary transcripts of miRNAs encode peptides (miPEPs) able to increase specifically the transcription of their associated miRNA.(1) We discuss here the possibility of using miPEPs as a new tool for functional analysis of single members of miRNA families in plants, including in non-model plants, that could avoid transgenic transformation and minimize artifactual interpretation. We also raise several fundamental and crucial questions that need to be address for a deeper understanding of the cellular and molecular mechanisms underlining the regulatory activity of miPEPs.
- Published
- 2015
- Full Text
- View/download PDF
24. <scp>NSP</scp>1 is a component of the Myc signaling pathway
- Author
-
Pierre-Marc Delaux, Guillaume Bécard, and Jean-Philippe Combier
- Subjects
Physiology ,viruses ,Mutant ,Oligosaccharides ,Plant Science ,Plant Roots ,Nod factor ,Symbiosis ,Gene Expression Regulation, Plant ,Mycorrhizae ,Medicago truncatula ,Botany ,Transcription factor ,Phylogeny ,Plant Proteins ,Genetics ,biology ,Host (biology) ,fungi ,virus diseases ,biology.organism_classification ,Metabolic pathway ,Mutation ,Signal transduction ,Signal Transduction ,Transcription Factors - Abstract
Nodulation and arbuscular mycorrhization require the activation of plant host symbiotic programs by Nod factors, and Myc-LCOs and COs, respectively. The pathways involved in the perception and downstream signaling of these signals include common and distinct components. Among the distinct components, NSP1, a GRAS transcription factor, has been considered for years to be specifically involved in nodulation. Here, we analyzed the degree of conservation of the NSP1 sequence in arbuscular mycorrhizal (AM) host and non-AM host plants and carefully examined the ability of Medicago truncatula nsp1 mutants to respond to Myc-LCOs and to be colonized by an arbuscular mycorrhizal fungus. In AM-host plants, the selection pressure on NSP1 is stronger than in non-AM host ones. The response to Myc-LCOs and the frequency of mycorrhizal colonization are significantly reduced in the nsp1 mutants. Our results reveal that NSP1, previously described for its involvement in the Nod factor signaling pathway, is also involved in the Myc-LCO signaling pathway. They bring additional evidence on the evolutionary relatedness between nodulation and mycorrhization.
- Published
- 2013
- Full Text
- View/download PDF
25. miR396 affects mycorrhization and root meristem activity in the legumeMedicago truncatula
- Author
-
Ramiro E. Rodriguez, Jérémie Bazin, Jean-Philippe Combier, Juan M. Debernardi, Pilar Bustos-Sanmamed, Caroline Hartmann, Martin Crespi, Javier F. Palatnik, Christine Lelandais-Brière, Céline Sorin, and Ghazanfar Abbas Khan
- Subjects
0106 biological sciences ,Meristem ,Gene Expression ,Plant Science ,Plant Root Nodulation ,Plant Roots ,01 natural sciences ,Ciencias Biológicas ,03 medical and health sciences ,Gene Expression Regulation, Plant ,Genes, Reporter ,Mycorrhizae ,Medicago truncatula ,Botany ,Medicago ,Genetics ,Biomass ,Promoter Regions, Genetic ,Symbiosis ,Ciencias de las Plantas, Botánica ,Legume ,Cell Proliferation ,Plant Proteins ,030304 developmental biology ,0303 health sciences ,biology ,Fungi ,Computational Biology ,Cell Biology ,Plants, Genetically Modified ,root ,biology.organism_classification ,MicroRNAs ,GRF ,RNA Interference ,Sequence Alignment ,CIENCIAS NATURALES Y EXACTAS ,Sinorhizobium meliloti ,Transcription Factors ,010606 plant biology & botany - Abstract
The root system is crucial for acquisition of resources from the soil. In legumes, the efficiency of mineral and water uptake by the roots may be reinforced due to establishment of symbiotic relationships with mycorrhizal fungi and interactions with soil rhizobia. Here, we investigated the role of miR396 in regulating the architecture of the root system and in symbiotic interactions in the model legume Medicago truncatula. Analyses with promoter–GUS fusions suggested that the mtr-miR396a and miR396b genes are highly expressed in root tips, preferentially in the transition zone, and display distinct expression profiles during lateral root and nodule development. Transgenic roots of composite plants that over-express the miR396b precursor showed lower expression of six growth-regulating factor genes (MtGRF) and two bHLH79-like target genes, as well as reduced growth and mycorrhizal associations. miR396 inactivation by mimicry caused contrasting tendencies, with increased target expression, higher root biomass and more efficient colonization by arbuscular mycorrhizal fungi. In contrast to MtbHLH79, repression of three GRF targets by RNA interference severely impaired root growth. Early activation of mtr-miR396b, concomitant with post-transcriptional repression of MtGRF5 expression, was also observed in response to exogenous brassinosteroids. Growth limitation in miR396 over-expressing roots correlated with a reduction in cell-cycle gene expression and the number of dividing cells in the root apical meristem. These results link the miR396 network to the regulation of root growth and mycorrhizal associations in plants. Fil: Bazin, Jeremie. Centre National de la Recherche Scientifique. Institut des Sciences du Veg etal; Francia. Universite Paris Diderot - Paris 7; Francia Fil: Khan. Ghazanfar Abbas. Centre National de la Recherche Scientifique. Institut des Sciences du Veg etal; Francia Fil: Combier, Jean Philippe. Laboratoire de Recherche en Sciences Veg etales; Francia. Centre National de la Recherche Scientifique; Francia Fil: Bustos Sanmamed, Maria del Pilar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina. Centre National de la Recherche Scientifique. Institut des Sciences du Veg etal; Francia Fil: Debernardi, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Rodriguez, Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Sorin, Celine. Centre National de la Recherche Scientifique. Institut des Sciences du Veg etal; Francia. Universite Paris Diderot - Paris 7; Francia Fil: Palatnik, Javier Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Hartmann, Caroline. Centre National de la Recherche Scientifique. Institut des Sciences du Veg etal; Francia. Universite Paris Diderot - Paris 7; Francia Fil: Crespi, Martin. Centre National de la Recherche Scientifique. Institut des Sciences du Veg etal; Francia Fil: Lelandais Briere, Christine. Centre National de la Recherche Scientifique. Institut des Sciences du Veg etal; Francia. Universite Paris Diderot - Paris 7; Francia
- Published
- 2013
- Full Text
- View/download PDF
26. Plant microRNAs: key regulators of root architecture and biotic interactions
- Author
-
Jean-Malo Couzigou and Jean-Philippe Combier
- Subjects
0301 basic medicine ,Regulation of gene expression ,Physiology ,Ecology ,Lateral root ,Meristem ,Gene regulatory network ,Context (language use) ,Plant Science ,Computational biology ,Biology ,Plant Root Nodulation ,Plant Roots ,03 medical and health sciences ,MicroRNAs ,030104 developmental biology ,microRNA ,Adaptation ,Symbiosis ,Post-transcriptional regulation ,Transcription factor - Abstract
Contents 22 I. 22 II. 24 III. 25 IV. 27 V. 29 VI. 10 31 References 32 SUMMARY: Plants have evolved a remarkable faculty of adaptation to deal with various and changing environmental conditions. In this context, the roots have taken over nutritional aspects and the root system architecture can be modulated in response to nutrient availability or biotic interactions with soil microorganisms. This adaptability requires a fine tuning of gene expression. Indeed, root specification and development are highly complex processes requiring gene regulatory networks involved in hormonal regulations and cell identity. Among the different molecular partners governing root development, microRNAs (miRNAs) are key players for the fast regulation of gene expression. miRNAs are small RNAs involved in most developmental processes and are required for the normal growth of organisms, by the negative regulation of key genes, such as transcription factors and hormone receptors. Here, we review the known roles of miRNAs in root specification and development, from the embryonic roots to the establishment of root symbioses, highlighting the major roles of miRNAs in these processes.
- Published
- 2016
27. The microRNA miR171h modulates arbuscular mycorrhizal colonization ofMedicago truncatulaby targetingNSP2
- Author
-
Jean-Philippe Combier, Christine Lelandais-Brière, Pierre-Marc Delaux, Christophe Roux, Sébastien Fort, Damien Formey, Andreas Niebel, Sylvain Cottaz, Dominique Lauressergues, and Guillaume Bécard
- Subjects
0106 biological sciences ,Rhizophagus irregularis ,Regulation of gene expression ,0303 health sciences ,biology ,fungi ,Mutant ,Cell Biology ,Plant Science ,Fungus ,biochemical phenomena, metabolism, and nutrition ,15. Life on land ,biology.organism_classification ,01 natural sciences ,Medicago truncatula ,Glomeromycota ,03 medical and health sciences ,Symbiosis ,Botany ,Genetics ,Colonization ,030304 developmental biology ,010606 plant biology & botany - Abstract
Most land plants live symbiotically with arbuscular mycorrhizal fungi. Establishment of this symbiosis requires signals produced by both partners: strigolactones in root exudates stimulate pre-symbiotic growth of the fungus, which releases lipochito-oligosaccharides (Myc-LCOs) that prepare the plant for symbiosis. Here, we have investigated the events downstream of this early signaling in the roots. We report that expression of miR171h, a microRNA that targets NSP2, is up-regulated in the elongation zone of the root during colonization by Rhizophagus irregularis (formerly Glomus intraradices) and in response to Myc-LCOs. Fungal colonization was much reduced by over-expressing miR171h in roots, mimicking the phenotype of nsp2 mutants. Conversely, in plants expressing an NSP2 mRNA resistant to miR171h cleavage, fungal colonization was much increased and extended into the elongation zone of the roots. Finally, phylogenetic analyses revealed that miR171h regulation of NSP2 is probably conserved among mycotrophic plants. Our findings suggest a regulatory mechanism, triggered by Myc-LCOs, that prevents over-colonization of roots by arbuscular mycorrhizal fungi by a mechanism involving miRNA-mediated negative regulation of NSP2.
- Published
- 2012
- Full Text
- View/download PDF
28. The dominant Hc.Sdh R carboxin-resistance gene of the ectomycorrhizal fungus Hebeloma cylindrosporum as a selectable marker for transformation
- Author
-
Chrisse Ngari, Jean-Philippe Combier, Jeanne Doré, Roland Marmeisse, Gilles Gay, Delphine Melayah, Laboratoire d'Ecologie Microbienne - UMR 5557 (LEM), Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Ecole Nationale Vétérinaire de Lyon (ENVL), Ecologie microbienne ( EM ), Centre National de la Recherche Scientifique ( CNRS ) -Ecole Nationale Vétérinaire de Lyon ( ENVL ) -Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Institut National de la Recherche Agronomique ( INRA ) -VetAgro Sup ( VAS ), Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Vétérinaire de Lyon (ENVL)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut National de la Recherche Agronomique (INRA)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)
- Subjects
0106 biological sciences ,Hebeloma cylindrosporum ,[SDV]Life Sciences [q-bio] ,Mutant ,01 natural sciences ,Marker gene ,Transformation ,03 medical and health sciences ,Transformation, Genetic ,Genetics ,Hebeloma ,[ SDV.MP.MYC ] Life Sciences [q-bio]/Microbiology and Parasitology/Mycology ,[SDV.MP.MYC]Life Sciences [q-bio]/Microbiology and Parasitology/Mycology ,Mycelium ,Selectable marker ,030304 developmental biology ,Southern blot ,[ SDE.BE ] Environmental Sciences/Biodiversity and Ecology ,0303 health sciences ,biology ,General Medicine ,Agrobacterium tumefaciens ,biology.organism_classification ,Molecular biology ,Ectomycorrhiza ,Succinate Dehydrogenase ,Transformation (genetics) ,Genetic marker ,Mutation ,Ectomycorrhiza · Transformation · Carboxin · Succinate dehydrogenase · Hebeloma cylindrosporum ,Carboxin ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,010606 plant biology & botany - Abstract
International audience; In an attempt to get a marker gene suitable for genetical transformation of the ectomycorrhizal fungus Hebeloma cylindrosporum, the gene Hc.SdhR that confers carboxin-resistance was isolated from a UV mutant of this fungus. It encodes a mutant allele of the Fe–S subunit of the succinate dehydrogenase gene that carries a single amino acid substitution known to confer carboxin-resistance. This gene was successfully used as the selective marker to transform, via Agrobacterium tumefaciens, monokaryotic and dikaryotic strains of H. cylindrosporum. We also successfully transformed hygromycin-resistant insertional mutants. Transformation yielded mitotically stable carboxin-resistant mycelia. This procedure produced transformants, the growth of which was not aVected by 2 g l¡1 carboxin, whereas wild-type strains were unable to grow in the presence of 0.1 g l¡1 of this fungicide. This makes the carboxin-resistance cassette much more discriminating than the hygromycin-resistance one. PCR ampliWcation and Southern blot hybridisation indicated that more than 90% of the tested carboxin-resistant mycelia contained the Hc.SdhR cassette, usually as a single copy. The AGL-1 strain of A. tumefaciens was a much less eYcient donor than LBA 1126; the former yielded ca. 0–30% transformation frequency, depending on fungal strain and resistance cassette used, whereas the latter yielded ca. 60–95%.
- Published
- 2009
- Full Text
- View/download PDF
29. EFD Is an ERF Transcription Factor Involved in the Control of Nodule Number and Differentiation inMedicago truncatula
- Author
-
Françoise de Billy, Andreas Niebel, Tatiana Vernié, Christian Rogers, Florian Frugier, Giles E. D. Oldroyd, Julie Plet, Jean-Philippe Combier, Pascal Gamas, Sandra Moreau, Laboratoire des interactions plantes micro-organismes ( LIPMO ), Institut National de la Recherche Agronomique ( INRA ) -Centre National de la Recherche Scientifique ( CNRS ), Ecologie microbienne ( EM ), Centre National de la Recherche Scientifique ( CNRS ) -Ecole Nationale Vétérinaire de Lyon ( ENVL ) -Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Institut National de la Recherche Agronomique ( INRA ) -VetAgro Sup ( VAS ), Institut des sciences du végétal ( ISV ), Centre National de la Recherche Scientifique ( CNRS ), Laboratoire des interactions plantes micro-organismes (LIPM), Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Ecologie Microbienne - UMR 5557 (LEM), Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Ecole Nationale Vétérinaire de Lyon (ENVL), Institut des sciences du végétal (ISV), Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Vétérinaire de Lyon (ENVL)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut National de la Recherche Agronomique (INRA)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)
- Subjects
MESH: Signal Transduction ,0106 biological sciences ,[ SDV.BV ] Life Sciences [q-bio]/Vegetal Biology ,Cytokinins ,MESH : Molecular Sequence Data ,MESH : Transcription Factors ,MESH: Feedback, Physiological ,Regulator ,MESH : Gene Deletion ,Plant Science ,Plant Root Nodulation ,01 natural sciences ,Nod factor ,chemistry.chemical_compound ,MESH : Nitrogen Fixation ,MESH: Phylogeny ,MESH: Medicago truncatula ,Research Articles ,Phylogeny ,Plant Proteins ,Regulator gene ,Feedback, Physiological ,MESH : Cell Nucleus ,0303 health sciences ,MESH: Plant Proteins ,food and beverages ,MESH: Transcription Factors ,MESH : Feedback, Physiological ,MESH : Cytokinins ,Medicago truncatula ,Cell biology ,MESH: Root Nodules, Plant ,Multigene Family ,Cytokinin ,RNA Interference ,MESH: Cytokinins ,Root Nodules, Plant ,MESH: Plant Root Nodulation ,Signal Transduction ,MESH: Cell Nucleus ,MESH: Ethylenes ,Molecular Sequence Data ,MESH: RNA Interference ,MESH : Multigene Family ,Biology ,MESH: Nitrogen Fixation ,MESH: Gene Expression Profiling ,MESH : Root Nodules, Plant ,03 medical and health sciences ,Nitrogen Fixation ,MESH : Plant Proteins ,Botany ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,Transcription factor ,030304 developmental biology ,Cell Nucleus ,MESH : Signal Transduction ,MESH: Molecular Sequence Data ,Gene Expression Profiling ,MESH : Gene Expression Profiling ,MESH : Medicago truncatula ,fungi ,MESH : Phylogeny ,MESH : Sinorhizobium meliloti ,Cell Biology ,Ethylenes ,Meristem ,biology.organism_classification ,Response regulator ,chemistry ,MESH: Gene Deletion ,MESH: Multigene Family ,MESH : RNA Interference ,MESH: Sinorhizobium meliloti ,MESH : Plant Root Nodulation ,Gene Deletion ,MESH : Ethylenes ,Sinorhizobium meliloti ,Transcription Factors ,010606 plant biology & botany - Abstract
Mechanisms regulating legume root nodule development are still poorly understood, and very few regulatory genes have been cloned and characterized. Here, we describe EFD (for ethylene response factor required for nodule differentiation), a gene that is upregulated during nodulation in Medicago truncatula. The EFD transcription factor belongs to the ethylene response factor (ERF) group V, which contains ERN1, 2, and 3, three ERFs involved in Nod factor signaling. The role of EFD in the regulation of nodulation was examined through the characterization of a null deletion mutant (efd-1), RNA interference, and overexpression studies. These studies revealed that EFD is a negative regulator of root nodulation and infection by Rhizobium and that EFD is required for the formation of functional nitrogen-fixing nodules. EFD appears to be involved in the plant and bacteroid differentiation processes taking place beneath the nodule meristem. We also showed that EFD activated Mt RR4, a cytokinin primary response gene that encodes a type-A response regulator. We propose that EFD induction of Mt RR4 leads to the inhibition of cytokinin signaling, with two consequences: the suppression of new nodule initiation and the activation of differentiation as cells leave the nodule meristem. Our work thus reveals a key regulator linking early and late stages of nodulation and suggests that the regulation of the cytokinin pathway is important both for nodule initiation and development.
- Published
- 2008
- Full Text
- View/download PDF
30. The MtMMPL1 Early Nodulin Is a Novel Member of the Matrix Metalloendoproteinase Family with a Role in Medicago truncatula Infection by Sinorhizobium meliloti
- Author
-
Françoise de Billy, Tatiana Vernié, Jean-Philippe Combier, Fikri El Yahyaoui, Pascal Gamas, and René Mathis
- Subjects
Root nodule ,Transcription, Genetic ,Physiology ,Molecular Sequence Data ,Mutant ,Context (language use) ,Plant Science ,Focus Issue on Legume Biology ,Medicago truncatula ,Botany ,Genetics ,Amino Acid Sequence ,Symbiosis ,Gene ,Regulation of gene expression ,Sinorhizobium meliloti ,Binding Sites ,biology ,food and beverages ,biology.organism_classification ,Matrix Metalloproteinases ,Cell biology ,Rhizobium ,RNA Interference ,Root Nodules, Plant - Abstract
We show here that MtMMPL1, a Medicago truncatula nodulin gene previously identified by transcriptomics, represents a novel and specific marker for root and nodule infection by Sinorhizobium meliloti. This was established by determining the spatial pattern of MtMMPL1 expression and evaluating gene activation in the context of various plant and bacterial symbiotic mutant interactions. The MtMMPL1 protein is the first nodulin shown to belong to the large matrix metalloendoproteinase (MMP) family. While plant MMPs are poorly documented, they are well characterized in animals as playing a key role in a number of normal and pathological processes involving the remodeling of the extracellular matrix. MtMMPL1 represents a novel MMP variant, with a substitution of a key amino acid residue within the predicted active site, found exclusively in expressed sequence tags corresponding to legume MMP homologs. An RNA interference approach revealed that decreasing MtMMPL1 expression leads to an accumulation of rhizobia within infection threads, whose diameter is often significantly enlarged. Conversely, MtMMPL1 ectopic overexpression under the control of a constitutive (35S) promoter led to numerous abortive infections and an overall decrease in the number of nodules. We discuss possible roles of MtMMPL1 during Rhizobium infection.
- Published
- 2007
- Full Text
- View/download PDF
31. Primary Transcripts of microRNAs Encode Regulatory Peptides
- Author
-
Jean-Philippe Combier, Hélène San Clemente, Jean-Malo Couzigou, Yves Martinez, Dominique Lauressergues, Guillaume Bécard, and Christophe Dunand
- Subjects
Transcription, Genetic ,Arabidopsis ,pri-miRNA ,Plant Science ,Bioinformatics ,Plant Roots ,Open Reading Frames ,Downregulation and upregulation ,Transcription (biology) ,Gene Expression Regulation, Plant ,microRNA ,Medicago truncatula ,RNA Precursors ,Gene ,Plant Proteins ,Regulation of gene expression ,miRNA-encoded peptide (miPEP) ,Multidisciplinary ,biology ,General Commentary ,fungi ,Lateral root ,food and beverages ,long noncoding RNA (lncRNA) ,biology.organism_classification ,Cell biology ,Open reading frame ,MicroRNAs ,Peptides ,gene regulation - Abstract
MicroRNAs (miRNAs) are small regulatory RNA molecules that inhibit the expression of specific target genes by binding to and cleaving their messenger RNAs or otherwise inhibiting their translation into proteins. miRNAs are transcribed as much larger primary transcripts (pri-miRNAs), the function of which is not fully understood. Here we show that plant pri-miRNAs contain short open reading frame sequences that encode regulatory peptides. The pri-miR171b of Medicago truncatula and the pri-miR165a of Arabidopsis thaliana produce peptides, which we term miPEP171b and miPEP165a, respectively, that enhance the accumulation of their corresponding mature miRNAs, resulting in downregulation of target genes involved in root development. The mechanism of miRNA-encoded peptide (miPEP) action involves increasing transcription of the pri-miRNA. Five other pri-miRNAs of A. thaliana and M. truncatula encode active miPEPs, suggesting that miPEPs are widespread throughout the plant kingdom. Synthetic miPEP171b and miPEP165a peptides applied to plants specifically trigger the accumulation of miR171b and miR165a, leading to reduction of lateral root development and stimulation of main root growth, respectively, suggesting that miPEPs might have agronomical applications.
- Published
- 2014
32. Auxin Perception Is Required for Arbuscule Development in Arbuscular Mycorrhizal Symbiosis
- Author
-
Antonius C.J. Timmers, Jean-Malo Couzigou, Mohamed Zouine, Mohammad Etemadi, Guillaume Bécard, Mondher Bouzayen, Corinne Audran, Dominique Lauressergues, Jean-Philippe Combier, Caroline Gutjahr, Génomique et Biotechnologie des Fruits (GBF), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure Agronomique de Toulouse-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Laboratoire de Recherche en Sciences Végétales (LRSV), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Ludwig Maximilian University [Munich] (LMU), Laboratoire des interactions plantes micro-organismes (LIPM), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Institut National de la Recherche Agronomique (INRA)-École nationale supérieure agronomique de Toulouse [ENSAT]-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), Federation de Recherches 3450 Institute, French-Bavarian University Center (Bayerisch-Franzosisches Hochschulzentrum/Centre de Cooperation Universitaire Franco-Bavarois), ANR-12-JSV7-0002,miRcorrhiza,Régulation de la symbiose mycorhizienne à arbuscules par des microARNs(2012), ANR-11-IDEX-0002,UNITI,Université Fédérale de Toulouse(2011), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Institut National de la Recherche Agronomique - INRA (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Ludwig Maximilians Universiät München - LMU (GERMANY), Laboratoire des Interactions Plantes Micro-Organismes - LIPMO (Castanet-Tolosan, France), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Interactions Microbiennes dans la Rhizosphère et les Racines, Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Peptides et petits ARN, French Agence Nationale pour la Recherche (ANR) Project miRcorrhiza [ANR-12-JSV7-0002-01], and French Laboratory of Excellence Project Vers une Theorie Unifiee des Interactions Biotiques: Role des Perturbations Environnementales [ANR-10-LABX-41, ANR-11-IDEX-0002-02]
- Subjects
0106 biological sciences ,Physiology ,Plant Science ,01 natural sciences ,Magnoliopsida ,03 medical and health sciences ,Symbiosis ,Gene Expression Regulation, Plant ,Auxin ,Mycorrhizae ,Auxin perception ,Botany ,Genetics ,Gene ,030304 developmental biology ,chemistry.chemical_classification ,Regulation of gene expression ,0303 health sciences ,Oryza sativa ,Indoleacetic Acids ,biology ,fungi ,food and beverages ,Articles ,15. Life on land ,[SDV.BV.BOT]Life Sciences [q-bio]/Vegetal Biology/Botanics ,biology.organism_classification ,Transport inhibitor ,Medicago truncatula ,MicroRNAs ,Arbiscule ,chemistry ,Alimentation et Nutrition ,Arbuscule ,Solanum ,Biologie végétale ,010606 plant biology & botany - Abstract
Most land plant species live in symbiosis with arbuscular mycorrhizal fungi. These fungi differentiate essential functional structures called arbuscules in root cortical cells from which mineral nutrients are released to the plant. We investigated the role of microRNA393 (miR393), an miRNA that targets several auxin receptors, in arbuscular mycorrhizal root colonization. Expression of the precursors of the miR393 was down-regulated during mycorrhization in three different plant species: Solanum lycopersicum, Medicago truncatula, and Oryza sativa. Treatment of S. lycopersicum, M. truncatula, and O. sativa roots with concentrations of synthetic auxin analogs that did not affect root development stimulated mycorrhization, particularly arbuscule formation. DR5-GUS, a reporter for auxin response, was preferentially expressed in root cells containing arbuscules. Finally, overexpression of miR393 in root tissues resulted in down-regulation of auxin receptor genes (transport inhibitor response1 and auxin-related F box) and underdeveloped arbuscules in all three plant species. These results support the conclusion that miR393 is a negative regulator of arbuscule formation by hampering auxin perception in arbuscule-containing cells.
- Published
- 2014
- Full Text
- View/download PDF
33. The microRNA miR171h modulates arbuscular mycorrhizal colonization of Medicago truncatula by targeting NSP2
- Author
-
Dominique, Lauressergues, Pierre-Marc, Delaux, Damien, Formey, Christine, Lelandais-Brière, Sébastien, Fort, Sylvain, Cottaz, Guillaume, Bécard, Andreas, Niebel, Christophe, Roux, and Jean-Philippe, Combier
- Subjects
Lipopolysaccharides ,Binding Sites ,Gene Expression ,Plant Roots ,Up-Regulation ,Lactones ,MicroRNAs ,Phenotype ,Gene Expression Regulation, Plant ,RNA, Plant ,Mycorrhizae ,Medicago truncatula ,Glomeromycota ,Symbiosis ,Phylogeny ,Plant Proteins ,Signal Transduction ,Transcription Factors - Abstract
Most land plants live symbiotically with arbuscular mycorrhizal fungi. Establishment of this symbiosis requires signals produced by both partners: strigolactones in root exudates stimulate pre-symbiotic growth of the fungus, which releases lipochito-oligosaccharides (Myc-LCOs) that prepare the plant for symbiosis. Here, we have investigated the events downstream of this early signaling in the roots. We report that expression of miR171h, a microRNA that targets NSP2, is up-regulated in the elongation zone of the root during colonization by Rhizophagus irregularis (formerly Glomus intraradices) and in response to Myc-LCOs. Fungal colonization was much reduced by over-expressing miR171h in roots, mimicking the phenotype of nsp2 mutants. Conversely, in plants expressing an NSP2 mRNA resistant to miR171h cleavage, fungal colonization was much increased and extended into the elongation zone of the roots. Finally, phylogenetic analyses revealed that miR171h regulation of NSP2 is probably conserved among mycotrophic plants. Our findings suggest a regulatory mechanism, triggered by Myc-LCOs, that prevents over-colonization of roots by arbuscular mycorrhizal fungi by a mechanism involving miRNA-mediated negative regulation of NSP2.
- Published
- 2012
34. Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis
- Author
-
Joseph Hershenhorn, Hinanit Koltai, Pierre-Marc Delaux, Guillaume Bécard, Jean-Philippe Combier, Smadar Wininger, Natalie Resnick, Eduard Belausov, Nathalie Séjalon-Delmas, Chaitali Bhattacharya, Evgenia Dor, Tom Beeckman, Einav Mayzlish-Gati, and Yoram Kapulnik
- Subjects
Analysis of Variance ,integumentary system ,biology ,Organogenesis ,Mutant ,Lateral root ,Arabidopsis ,Strigolactone ,Plant Science ,Root hair ,Root hair elongation ,biology.organism_classification ,Plant Roots ,Lactones ,Botany ,Mutation ,Genetics ,Biophysics ,Lateral root formation - Abstract
Strigolactones (SLs) have been proposed as a new group of plant hormones, inhibiting shoot branching, and as signaling molecules for plant interactions. Here, we present evidence for effects of SLs on root development. The analysis of mutants flawed in SLs synthesis or signaling suggested that the absence of SLs enhances lateral root formation. In accordance, roots grown in the presence of GR24, a synthetic bioactive SL, showed reduced number of lateral roots in WT and in max3-11 and max4-1 mutants, deficient in SL synthesis. The GR24-induced reduction in lateral roots was not apparent in the SL signaling mutant max2-1. Moreover, GR24 led to increased root-hair length in WT and in max3-11 and max4-1 mutants, but not in max2-1. SLs effect on lateral root formation and root-hair elongation may suggest a role for SLs in the regulation of root development; perhaps, as a response to growth conditions.
- Published
- 2010
35. Evidence for the involvement in nodulation of the two small putative regulatory peptide-encoding genes MtRALFL1 and MtDVL1
- Author
-
Pascal Gamas, Natalija Hohnjec, Etienne-Pascal Journet, Jean-Philippe Combier, Andreas Niebel, Helge Küster, Unité mixte de recherche interactions plantes-microorganismes, Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, and Universität Bielefeld = Bielefeld University
- Subjects
0106 biological sciences ,Physiology ,Nod ,Biology ,Genes, Plant ,01 natural sciences ,Microbiology ,Rhizobia ,Nod factor ,Transcriptome ,03 medical and health sciences ,Gene Expression Regulation, Plant ,Gene expression ,Genes, Regulator ,Medicago truncatula ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Symbiosis ,Gene ,030304 developmental biology ,Regulator gene ,RELATION HOTE-PARASITE ,Oligonucleotide Array Sequence Analysis ,Genetics ,0303 health sciences ,Reverse Transcriptase Polymerase Chain Reaction ,NOD FACTORS ,food and beverages ,General Medicine ,biology.organism_classification ,RHIZOBIAL INFECTION ,Root Nodules, Plant ,Agronomy and Crop Science ,010606 plant biology & botany ,Rhizobium - Abstract
International audience; Nod factors are key bacterial signaling molecules regulating the symbiotic interaction between bacteria known as rhizobia and leguminous plants. Studying plant host genes whose expression is affected by Nod factors has given insights into early symbiotic signaling and development. Here, we used a double supernodulating mutant line that shows increased sensitivity to Nod factors to study the Nod factor-regulated transcriptome. Using microarrays containing more than 16,000 70-mer oligonucleotide probes, we identified 643 Nod-factor-regulated genes, including 225 new Nod-factor-upregulated genes encoding many potential regulators. Among the genes found to be Nod factor upregulated, we identified and characterized MtRALFL1 and MtDVL1, which code for two small putative peptide regulators of 135 and 53 amino acids, respectively. Expression analysis confirmed that these genes are upregulated during initial phases of nodulation. Overexpression of MtRALFL1 and MtDVL1 in Medicago truncatula roots resulted in a marked reduction in the number of nodules formed and in a strong increase in the number of aborted infection threads. In addition, abnormal nodule development was observed when MtRALFL1 was overexpressed. This work provides evidence for the involvement of new putative small-peptide regulators during nodulation.
- Published
- 2008
- Full Text
- View/download PDF
36. MicroRNA166 controls root and nodule development in Medicago truncatula
- Author
-
Carole Laffont, Martin Crespi, Andreas Niebel, Julie Plet, Philippe Laporte, Jean-Philippe Combier, Mariana Jovanovic, Florian Frugier, Adnane Boualem, Institut des sciences du végétal (ISV), Centre National de la Recherche Scientifique (CNRS), Nouveaux Outils pour La Coopération et l'Education (NOCE), Laboratoire d'Informatique Fondamentale de Lille (LIFL), Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS), Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Ecologie Microbienne - UMR 5557 (LEM), Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Ecole Nationale Vétérinaire de Lyon (ENVL), Laboratoire des interactions plantes micro-organismes (LIPM), Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), Université de Lyon-Université de Lyon-Ecole Nationale Vétérinaire de Lyon (ENVL)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Vétérinaire de Lyon (ENVL)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Recherche Agronomique (INRA)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Institut des sciences du végétal ( ISV ), Centre National de la Recherche Scientifique ( CNRS ), Nouveaux Outils pour La Coopération et l'Education ( NOCE ), Laboratoire d'Informatique Fondamentale de Lille ( LIFL ), Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique ( Inria ) -Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique ( CNRS ) -Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique ( Inria ) -Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique ( CNRS ), Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique ( Inria ) -Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique ( CNRS ), Ecologie microbienne ( EM ), Centre National de la Recherche Scientifique ( CNRS ) -Ecole Nationale Vétérinaire de Lyon ( ENVL ) -Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Institut National de la Recherche Agronomique ( INRA ) -VetAgro Sup ( VAS ), Laboratoire des interactions plantes micro-organismes ( LIPMO ), and Institut National de la Recherche Agronomique ( INRA ) -Centre National de la Recherche Scientifique ( CNRS )
- Subjects
0106 biological sciences ,MESH : Plant Roots ,MESH : Brain Chemistry ,MESH: Plant Roots ,clustered miRNA ,Plant Science ,MESH: Amino Acid Sequence ,MESH: Base Sequence ,01 natural sciences ,MESH : Cattle ,MESH: Cattle Diseases ,MESH: Animals ,In Situ Hybridization ,0303 health sciences ,MESH : Amino Acid Sequence ,MESH : Reverse Transcriptase Polymerase Chain Reaction ,MESH : In Situ Hybridization ,Medicago truncatula ,Cell biology ,MESH : Proton-Translocating ATPases ,MESH : DNA Primers ,MESH: Proteolipids ,MESH: DNA Primers ,MESH: Mitochondria ,Organogenesis ,MESH: Microscopy, Electron ,MESH : Electrophoresis, Polyacrylamide Gel ,03 medical and health sciences ,MESH: In Situ Hybridization ,microRNA ,Botany ,Genetics ,MESH: Blotting, Northern ,MESH: Mass Spectrometry ,MESH : Cattle Diseases ,MESH: Molecular Sequence Data ,MESH : Medicago truncatula ,Lateral root ,HD ZIP III transcription factors ,MESH : Pigments, Biological ,MESH: Neuronal Ceroid-Lipofuscinoses ,MESH : Brain ,MESH : Amino Acids ,MESH : Gene Expression Regulation, Plant ,MESH: MicroRNAs ,MESH: Female ,MESH: Liver ,[ SDV.BV ] Life Sciences [q-bio]/Vegetal Biology ,MESH : Molecular Sequence Data ,MESH: Amino Acids ,Plant Roots ,lateral root ,MESH: Proton-Translocating ATPases ,Gene Expression Regulation, Plant ,MESH: Reverse Transcriptase Polymerase Chain Reaction ,MESH : Female ,MESH: Brain Chemistry ,MESH : Pancreas ,MESH: Medicago truncatula ,biology ,Reverse Transcriptase Polymerase Chain Reaction ,MESH : Blotting, Northern ,MESH: Pancreas ,MESH: Lipoproteins ,MESH : Kidney ,MESH: Cattle ,MESH : Mitochondria ,Rhizobium ,MESH: Pigments, Biological ,Transgene ,MESH : Lipoproteins ,MESH: Brain ,MESH : Mass Spectrometry ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,MESH: Gene Expression Regulation, Plant ,Transcription factor ,Gene ,030304 developmental biology ,DNA Primers ,Base Sequence ,polycistronic miRNA ,MESH : Liver ,MESH : Lipids ,Cell Biology ,MESH: Kidney ,Meristem ,biology.organism_classification ,Blotting, Northern ,symbiotic nodulation ,MESH: Lipids ,MESH : Microscopy, Electron ,MESH : MicroRNAs ,MicroRNAs ,MESH : Proteolipids ,MESH : Base Sequence ,MESH : Animals ,MESH : Neuronal Ceroid-Lipofuscinoses ,010606 plant biology & botany ,MESH: Electrophoresis, Polyacrylamide Gel - Abstract
International audience; Legume root architecture is characterized by the development of two de novo meristems, leading to the formation of lateral roots or symbiotic nitrogen-fixing nodules. Organogenesis involves networks of transcription factors, the encoding mRNAs of which are frequently targets of microRNA (miRNA) regulation. Most plant miRNAs, in contrast with animal miRNAs, are encoded as single entities in an miRNA precursor. In the model legume Medicago truncatula, we have identified the MtMIR166a precursor containing tandem copies of MIR166 in a single transcriptional unit. These miRNAs post-transcriptionally regulate a new family of transcription factors associated with nodule development, the class-III homeodomain-leucine zipper (HD-ZIP III) genes. In situ expression analysis revealed that these target genes are spatially co-expressed with MIR166 in vascular bundles, and in apical regions of roots and nodules. Overexpression of the tandem miRNA precursor correlated with MIR166 accumulation and the downregulation of several class-III HD-ZIP genes, indicating its functionality. MIR166 overexpression reduced the number of symbiotic nodules and lateral roots, and induced ectopic development of vascular bundles in these transgenic roots. Hence, plant polycistronic miRNA precursors, although rare, can be processed, and MIR166-mediated post-transcriptional regulation is a new regulatory pathway involved in the regulation of legume root architecture.
- Published
- 2008
- Full Text
- View/download PDF
37. Novel Symbiotic Regulatory Genes Identified by Transcriptomics in Medicago truncatula
- Author
-
Tatiana Vernié, Sandra Moreau, Pascal Gamas, Laurence Godiard, Jean-Philippe Combier, Andreas Niebel, and Thomas Ott
- Subjects
Transcriptome ,Computational biology ,Biology ,biology.organism_classification ,Medicago truncatula ,Regulator gene - Published
- 2008
- Full Text
- View/download PDF
38. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum
- Author
-
Jean-Philippe Combier, Delphine Melayah, Colette Raffier, Gilles Gay, and Roland Marmeisse
- Subjects
DNA, Bacterial ,Acetosyringone ,Rhizobiaceae ,Genetic Vectors ,Molecular Sequence Data ,Mutagenesis (molecular biology technique) ,Microbiology ,Polymerase Chain Reaction ,Insertional mutagenesis ,chemistry.chemical_compound ,Transformation, Genetic ,Sequence Homology, Nucleic Acid ,Genetics ,Selection, Genetic ,DNA, Fungal ,Symbiosis ,Molecular Biology ,biology ,Base Sequence ,Fungal genetics ,Acetophenones ,Agrobacterium tumefaciens ,biology.organism_classification ,Transformation (genetics) ,Mutagenesis, Insertional ,Phosphotransferases (Alcohol Group Acceptor) ,chemistry ,Hebeloma ,Agaricales ,Sequence Alignment - Abstract
We transformed haploid mycelium of Hebeloma cylindrosporum via Agrobacterium tumefaciens and optimised the procedure to develop a new tool for insertional mutagenesis in this fungus. Southern blot analysis of 83 randomly selected transformants showed that they all contained plasmid inserts. Each of them showed a unique hybridisation pattern, suggesting that integration was random in the fungal genome. Sixty percent of transformants obtained in the presence of bacteria pre-treated with acetosyringone integrated a single transferred DNA copy. Thermal asymmetric interlaced polymerase chain reaction allowed us to recover the left border and the right border junctions in 85% and 15% of transformants analysed, respectively. Results show that A. tumefaciens-mediated transformation may be a powerful tool for insertional mutagenesis in H. cylindrosporum.
- Published
- 2003
39. Sl-IAA27gene expression is induced during arbuscular mycorrhizal symbiosis in tomato and inMedicago truncatula
- Author
-
Mohammad Etemadi, Carole Bassa, Jean-Philippe Combier, Mondher Bouzayen, Corinne Audran-Delalande, Génomique et Biotechnologie des Fruits (GBF), Institut National de la Recherche Agronomique (INRA)-École nationale supérieure agronomique de Toulouse [ENSAT]-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Laboratoire de Recherche en Sciences Végétales (LRSV), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Peptides et petits ARN, Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure Agronomique de Toulouse-Institut National Polytechnique (Toulouse) (Toulouse INP), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Institut National de la Recherche Agronomique - INRA (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), and Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
- Subjects
Chlorophyll ,Short Communication ,Mutant ,Plant Science ,Aux/IAA genes ,[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics ,Solanum lycopersicum ,Auxin ,Mycorrhizae ,Arabidopsis ,Génétique des plantes ,Medicago truncatula ,Gene expression ,Botany ,heterocyclic compounds ,Symbiosis ,Gene ,chemistry.chemical_classification ,Medicago ,biology ,fungi ,food and beverages ,Tomato- Arbuscular mycorrhizal fungus ,[SDV.BV.BOT]Life Sciences [q-bio]/Vegetal Biology/Botanics ,biology.organism_classification ,Botanique ,Plant Leaves ,Root ,chemistry ,Solanaceae - Abstract
International audience; Aux/IAA genes play a pivotal role in auxin transcriptional regulation. Their functions were mainly studied in Arabidopsis through analysis of gain-of-function mutants. In the tomato, the Solanaceae reference species, different studies on Sl-IAA down-regulated lines showed specific role for Sl-IAA genes. Our recent work revealed that the Sl-IAA 27 gene displays a distinct behavior compared with most Aux/IAA genes, being down-regulated by auxin. Interestingly, the silencing of Sl-IAA27 leads to altered chlorophyll accumulation in leaves, reduced fertilization, altered fruit development and altered root formation. Here we report that IAA27 could be a key auxin signaling gene involved in AM in tomato and also in Medicago model plant. Indeed both Sl-IAA27 and its closest homolog in Medicago truncatula, Mt-IAA27, are overexpressed in mycorrhized roots. These data are in line with the putative role of auxin in arbuscular mycorrhization.
- Published
- 2013
- Full Text
- View/download PDF
40. Nonmycorrhizal (Myc) Mutants of Hebeloma cylindrosporum Obtained Through Insertional Mutagenesis
- Author
-
Jean-Philippe Combier, Delphine Melayah, Colette Raffier, Régis Pépin, Roland Marmeisse, Gilles Gay, Lyon 1, Depot 1, Laboratoire d'Ecologie Microbienne - UMR 5557 (LEM), Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Ecole Nationale Vétérinaire de Lyon (ENVL)
- Subjects
0106 biological sciences ,Physiology ,[SDV]Life Sciences [q-bio] ,Mutant ,Mutagenesis (molecular biology technique) ,01 natural sciences ,Polyethylene Glycols ,Insertional mutagenesis ,03 medical and health sciences ,Transformation, Genetic ,Plasmid ,Crosses, Genetic ,ComputingMilieux_MISCELLANEOUS ,Monokaryon ,Plant Diseases ,030304 developmental biology ,Genetics ,0303 health sciences ,Hartig net ,biology ,Basidiomycota ,General Medicine ,Pinus ,biology.organism_classification ,[SDV] Life Sciences [q-bio] ,Mutagenesis, Insertional ,Transformation (genetics) ,Microscopy, Electron, Scanning ,Hebeloma ,Agronomy and Crop Science ,Plasmids ,010606 plant biology & botany - Abstract
Polyethylene glycol-mediated transformation of protoplasts was used as a method for insertional mutagenesis to obtain mutants of the ectomycorrhizal fungus Hebeloma cylindrosporum impaired in symbiotic ability. Following restriction enzyme-mediated integration or conventional plasmid insertion, a library of 1,725 hygromycin-resistant monokaryotic transformants was generated and screened for the symbiotic defect, using Pinus pinaster seedlings as host plants. A total of 51 transformants displaying a dramatically reduced mycorrhizal ability were identified. Among them, 29 were nonmycorrhizal (myc¯), but only 10 of them had integrated one or several copies of the transforming plasmid in their genome. Light and scanning electron microscopy observations of pine roots inoculated with myc¯ mutants suggested that we selected mutants blocked at early stages of interaction between partners or at the stage of Hartig net formation. Myc¯ mutants with plasmid insertions were crossed with a compatible wild-type monokaryon and allowed to fruit. Monokaryotic progenies were obtained in three independent crosses and were analyzed for symbiotic activity and plasmid insertion. In all three progenies, a 1:1 myc¯:myc+ segregation ratio was observed, suggesting that each myc¯ phenotype resulted from a single gene mutation. However, for none of the three mutants, the myc¯ phenotype segregated with any of the plasmid insertions. Our results support the idea that master genes, the products of which are essential for symbiosis establishment, do exist in ectomycorrhizal fungi.
- Full Text
- View/download PDF
41. Spatiotemporal regulation of the arbuscular mycorrhiza symbiosis establishment
- Author
-
Guillotin, Bruno, Laboratoire de Recherche en Sciences Végétales (LRSV), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier - Toulouse III, Guillaume Bécard, and Jean-Philippe Combier
- Subjects
Strigolactones ,MAX1 ,D27 ,NSP2 ,miR171h ,Arbuscular mycorrhizal symbiosis ,Tomato ,IAA27 ,Coding target mimicry ,Tomate ,Medicago ,Arbuscule ,NSP1 ,Symbiose mycorhizienne ,[SDV.MP.MYC]Life Sciences [q-bio]/Microbiology and Parasitology/Mycology ,Regulation - Abstract
The arbuscular mycorrhiza (AM), a symbiosis between fungi from the phylum Glomeromycota and nearly 80% of terrestrial plant species. It is characterized by a two-way exchange in which the fungus provides mineral nutrients to the plant in exchange for carbohydrates. However this "feeding" of the fungus during the symbiotic process represents a significant carbon cost for the plant. To maintain a mutualistic interaction the two symbiotic partners have to strictly control the extent of fungal development in the roots. This control is called autoregulation. Several proteins have been found to be important for the regulation of the different mycorrhizal steps: the stimulation of fungal growth in the rhizosphere by the strigolactones, the fungal entrance in the roots, the hyphal proliferation in the roots and the arbuscule formation. In this work we examine in more detail the role of two of these proteins known to be involved in the mycorrhization process, the transcriptional factors NSP1 and NSP2 (Nodulation Signaling Pathway). We first confirm in M. truncatula roots the direct implication of NSP1 in the regulation of two strigolactone biosynthesis genes, DWARF27 (D27) and MAX1, during the asymbiotic conditions. Then, we show that NSP1, unlike NSP2, is a factor that promotes the fungal entries in the root, presumably due to its activation of D27 and MAX1 resulting in a stimulation of strigolactone synthesis and presymbiotic fungal growth. Next, during the later stages of mycorrhization, we highlight that in the colonized tissues NSP1 is absent and the induction of both D27 and MAX1 is not anymore NSP1 dependent. NSP1 protein is then localized in cells which are not yet colonized but are close to a colonization zone. There, it controls negatively the hyphal propagation in the root and positively the formation of arbuscules. In contrast, NSP2 is present in the colonized tissue where it promotes hyphal propagation and arbuscule development, perhaps by interacting with other proteins. We also show that if NSP1 proteins are absent of the colonized tissues, NSP1 transcripts are present. Unexpectedly, we unveil that in those colonized cells, NSP1 mRNA can protect, by a micro RNA (miR171h) decoy action called target mimicry, NSP2 mRNA against miR171h-mediated degradation. This is the first demonstration that a coding RNA molecule can be a target mimic for a microRNA. In our context this finding reveals a positive regulation of NSP2 expression by NSP1 transcripts and brings to light an additional layer of complexity in the mycorrhizal dual role of these two transcription factors. Finally, in tomato, we highlight that SlNSP1 could be directly or indirectly regulated by the AUX/IAA protein, SlIAA27. As a link with auxin we presume that this AUX/IAA protein is a new component of the signaling pathway controlling AM fungal colonization in tomato, and we propose that it controls strigolactone biosynthesis via the regulation of SlNSP1. Overall our work provides new pieces of the mycorrhizal puzzle and shows how important it is to perform spatiotemporal investigations for a better understanding of highly integrated and complex biological processes.; La symbiose mycorhizienne à arbuscule est une interaction bénéfique entre les champignons du phylum Glomeromycota et près de 80% des espèces de plantes terrestres. Elle est caractérisée par un échange réciproque de nutriments dans lequel le champignon fournit des sels minéraux à la plante en échange de sucres issus de la photosynthèse. Cependant, cette "alimentation" du champignon au cours de la symbiose représente un coût carbone important pour la plante. Ainsi, les plantes doivent strictement maitriser le développement des champignons symbiotiques dans les racines. Ce contrôle est appelé autorégulation. Plusieurs protéines ont été démontrées comme étant importantes pour la régulation des différentes étapes de la colonisation : la stimulation de la croissance fongique dans la rhizosphère par les strigolactones, l'entrée dans les racines, la prolifération des hyphes au sein des racines et la formation des arbuscules. Dans ce travail, nous avons examiné plus en détail le rôle de deux de ces protéines connues pour être impliquées dans le processus de mycorhization, les facteurs de transcription NSP1 et NSP2 (Nodulation Signaling Pathway). Nous avons d'abord pu confirmer dans les racines de M. truncatula en conditions non-symbiotiques, l'implication directe de NSP1 dans la régulation de deux gènes de biosynthèse des strigolactones, DWARF27 (D27) et MORE AXILLARY GROWTH (MAX1). Ensuite, nous avons montré que NSP1, contrairement à NSP2, favorise l'entrée du champignon dans la racine, sans doute due à l'induction de la synthèse des strigolactones stimulant le champignon, via l'activation de D27 et de MAX1. Ensuite, au cours des étapes ultérieures de la mycorhization, nous avons montré que dans les tissus colonisés, NSP1 est absent et que l'induction de D27 et de MAX1 n'était plus NSP1 dépendante. À cette étape, l'expression de la protéine NSP1 est localisée dans les cellules justes en amont du front de colonisation fongique. Là, elle contrôle négativement la propagation des hyphes dans la racine et positivement la formation des arbuscules. En revanche, NSP2 est présente dans le tissu colonisé où elle favorise la propagation des hyphes et le développement des arbuscules, peut-être en interaction avec d'autres facteurs. Nous avons également montré chez M. truncatula que si les protéines NSP1 sont absentes des tissus colonisés, les transcrits de NSP1 sont présents. De façon inattendue, nous avons mis en évidence que l'ARN messager de NSP1 avait la capacité de protéger l'ARN messager de NSP2 contre sa dégradation par le microARN (miR171h), par une action de piégeage du miR171h, appelé effet mimicry. Ceci est la première démonstration qu'une molécule d'ARN codante peut être la cible mimétique d'un microARN. Dans notre contexte d'étude cette constatation révèle que les transcrits de NSP1 permettent une régulation positive de l'expression de NSP2, et met en lumière un niveau de complexité supplémentaire dans le rôle de ces deux facteurs de transcription dans la symbiose mycorhizienne. Enfin, dans la tomate, nous avons montré que Sl-NSP1 pourrait être directement ou indirectement régulée par une protéine AUX / IAA impliquée dans la réponse précoce à l'auxine, Sl-IAA27. Ce lien avec l'auxine nous fait présumer que cette AUX/AAI est un nouveau composant de la voie de signalisation du contrôle de la colonisation fongique dans la tomate, et nous proposons qu'il puisse avoir un rôle dans le contrôle de la biosynthèse des strigolactones via la régulation de Sl-NSP1. L'ensemble de ce travail fournit de nouvelles pièces du puzzle constituant la symbiose mycorhizienne et montre l'importance de l'analyse des régulations spatiotemporelles pour une meilleure compréhension de ces processus biologiques extrêmement complexes.
- Published
- 2016
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.