99 results on '"Jean-Michel Rey"'
Search Results
2. Littéralement et dans tous les sens
- Author
-
Jean-Michel Rey
- Subjects
General Medicine - Published
- 2022
- Full Text
- View/download PDF
3. Le « nous » mis en abyme
- Author
-
Jean-Michel Rey
- Published
- 2022
- Full Text
- View/download PDF
4. Test Methodology for Short-Circuit Assessment and Safe Operation Identification for Power SiC MOSFETs
- Author
-
Joao Oliveira, Jean-Michel Reynes, Hervé Morel, Pascal Frey, Olivier Perrotin, Laurence Allirand, Stéphane Azzopardi, Michel Piton, and Fabio Coccetti
- Subjects
SiC MOSFET ,short circuit ,test methodology ,failure analysis ,Technology - Abstract
The short-circuit (SC) immunity of power silicon carbide (SiC) MOSFETs is critical for high-reliability applications, where robust monitoring and protection strategies are essential to ensure system safety. Despite their superior voltage blocking capabilities and high energy efficiency, SiC MOSFETs exhibit greater sensitivity to SC-induced degradation compared to their silicon counterparts. This increased vulnerability necessitates the precise assessment of the key SC performance metrics, such as short-circuit withstand time (TSCWT), as well as a deeper understanding of the failure mechanisms. In this study, a comprehensive experimental methodology for evaluating the SC behavior of SiC MOSFETs is presented and validated using industrial references. The investigation further explores the concept of a Safe Operating Area (SOA) under SC conditions, highlighting the significant impact of quasi-simultaneous SC events on device lifetime. Additionally, an application case study demonstrates how these events can drastically reduce the device’s lifespan.
- Published
- 2024
- Full Text
- View/download PDF
5. « Les murs même n’oublieront pas »
- Author
-
Jean-Michel Rey
- Published
- 2019
- Full Text
- View/download PDF
6. L’œuvre comme généalogie de l’esthétique
- Author
-
Jean-Michel Rey
- Published
- 2018
- Full Text
- View/download PDF
7. Questions d’esthétique
- Author
-
Jean-Michel Rey
- Published
- 2018
- Full Text
- View/download PDF
8. Un concept introuvable
- Author
-
Jean-Michel Rey
- Published
- 2018
- Full Text
- View/download PDF
9. Sur la fabrique du « corps étranger »
- Author
-
Jean-Michel Rey
- Subjects
Psychiatry and Mental health ,Clinical Psychology - Abstract
C’est sur fond d’une theologie detournee ou grâce a des notions vides qu’une societe fabrique un « corps etranger ». Cette capacite de rejet violent se retrouve dans notre histoire au debut du christianisme avec le « verus Israel », pendant les guerres de religions, dans l’Affaire Dreyfus et pendant la derniere guerre (qui se prolonge dans l’Affaire Finaly). Ce sont des phrases ou des stereotypes qui servent d’appui a l’exclusion et qui prennent ensuite force de loi. Le rejet se fait au nom d’une Unite donnee comme absolue et a pour effet, le plus souvent, d’engendrer une guerre civile. La metaphore medicale joue un role determinant dans une perspective prophylactique. Des facons de faire de cette nature debordent les clivages ideologiques. C’est, dans chaque cas, la civilisation qu’il faut preserver d’un mal mortel. Toutes les ficelles de la rhetorique sont utilisees ici.
- Published
- 2014
- Full Text
- View/download PDF
10. Three-Dimensional Magnetic and Mechanical Finite-Element Analysis of the HTS Insert Coil
- Author
-
Jean-Michel Rey, C. Mayri, M. Devaux, and C. Pes
- Subjects
Materials science ,Mechanical engineering ,Superconducting magnet ,Condensed Matter Physics ,Finite element method ,Electronic, Optical and Magnetic Materials ,Magnetic field ,Dipole ,symbols.namesake ,Nuclear magnetic resonance ,Ferromagnetism ,Electromagnetic coil ,Condensed Matter::Superconductivity ,Magnet ,symbols ,Electrical and Electronic Engineering ,Lorentz force - Abstract
Future accelerator magnets will need to reach field in the 20-T range. Reaching such a magnetic field is a challenge only attainable using high-temperature superconductor (HTS) material. The high current densities and stress levels needed to satisfy the design criterion of such magnets make YBaCuO superconductor the most appropriate candidate. The HFM EUCARD program is aimed to design and manufacture a dipole insert made of HTS material generating 6 T inside a Nb3Sn dipole of 13 T at 4.2 K. In the HTS insert, engineering current densities higher than 250 A/mm2 under 19 T are required to reach the performances. This paper summarizes the results of magnetic and mechanical finite element analysis of the HTS dipole insert magnet. The nonlinearity of the ferromagnetic material is also taken into account. The mechanical analysis of the magnet is carried out under Lorentz forces.
- Published
- 2014
- Full Text
- View/download PDF
11. Organic free montmorillonite-based flexible insulating sheaths for Nb3Sn superconductor magnets
- Author
-
Jean-Michel Rey, André Larbot, Eric Prouzet, Alexandre Puigsegur, F. Rondeaux, Department of Chemistry & Waterloo Institute of Nanotechnology, University of Waterloo [Waterloo], Institut Européen des membranes (IEM), Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM), Département des Accélérateurs, de Cryogénie et de Magnétisme (ex SACM) (DACM), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, and Université Montpellier 2 - Sciences et Techniques (UM2)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010302 applied physics ,Superconductivity ,Materials science ,Metallurgy ,Intermetallic ,Sintering ,Geology ,Superconducting magnet ,Thermal treatment ,engineering.material ,01 natural sciences ,Coating ,Geochemistry and Petrology ,visual_art ,0103 physical sciences ,visual_art.visual_art_medium ,engineering ,[CHIM]Chemical Sciences ,Ceramic ,010306 general physics ,Ductility ,ComputingMilieux_MISCELLANEOUS - Abstract
Nb 3 Sn is a superconductor that exhibits higher performances than NbTi alloy currently used in superconducting magnets, regarding both the critical magnetic field and critical current. However, Nb 3 Sn is an intermetallic compound prepared by thermal treatment, which loses ductility and plasticity once reacted. Since organic materials cannot be used as insulating sheaths and applied before the thermal treatment required for the synthesis of Nb 3 Sn, a clay mineral-based organic-free sheath was prepared, which can be applied to Nb 3 Sn magnetic coils prepared by the wind & react method, before the thermal process. This process allows for facile shaping of the superconductor precursor, before reaction, along with the application of the insulating coating, the sintering of this coating being achieved by the thermal treatment required for the synthesis of Nb 3 Sn. This process has been designed for industrial developments and facile scale-up. The final material is an organic-free ceramic ribbon that can be stored before further use as an insulating sheath of Nb 3 Sn wires, and electrical and magnetic tests on both the material and a specific demonstrator made with a 20 m superconducting reel, demonstrate that this material can be used as an insulating sheath, with no side-effect on superconductor properties.
- Published
- 2013
- Full Text
- View/download PDF
12. Prefácio
- Author
-
Jean-Michel Rey
- Published
- 2017
- Full Text
- View/download PDF
13. Zur negativen Poetik Paul Valérys
- Author
-
Jean-Michel Rey
- Abstract
Der Artikel rückt die skrupulöse Arbeitsweise Valérys in die Nähe der »Genealogie«, wie Nietzsche sie neu begründet hat, und verleiht ihr die Züge eines analytischen Selbstversuchs. Indem er das Schreiben und die Reflexion des Schreibens unauflöslich miteinander verbindet, stellt Valéry alles in Frage, was die geistige Tätigkeit herkömmlicherweise auszeichnet: die Mythen des Hervorbringens, der Darstellung, der Originalität, der Wahrheitsfindung.
- Published
- 2012
- Full Text
- View/download PDF
14. Critical Current and Junction Between Pancake Studies for HTS Coil Design
- Author
-
Thibaud Lecrevisse, J. M. Gheller, Pascal Tixador, Jean-Michel Rey, O. Louchart, Département des Accélérateurs, de Cryogénie et de Magnétisme (ex SACM) (DACM), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Magnétisme et Supraconductivité (NEEL - MagSup), Institut Néel (NEEL), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), and Magnétisme et Supraconductivité (MagSup)
- Subjects
Critical current ,Materials science ,YBCO ,Cryogenics ,Physics and Astronomy(all) ,01 natural sciences ,Nuclear magnetic resonance ,Electrical equipment ,Condensed Matter::Superconductivity ,0103 physical sciences ,010306 general physics ,ComputingMilieux_MISCELLANEOUS ,010302 applied physics ,business.industry ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,Atmospheric temperature range ,Accelerators and Storage Rings ,Conductor ,Magnetic field ,Super-conducting High Field Magnets for higher luminosities and energies [7] ,Electromagnetic coil ,Soldering ,Optoelectronics ,Electric current ,Pancakes junction ,business ,SuperPower SCS4050 ,Model - Abstract
YBCO Coated Conductor (CC) are very attractive for very high magnetic field coil with lower cryogenics need. We study two major aspects of HTS coil building. First the results of critical current measurements on YBCO tape provided by SuperPower are presented for a large temperature range and in parallel magnetic field configuration. A model is also proposed to extrapolate those measurements at other temperatures and fields. Then we focus on the critical aspect of junctions between pancakes. Junctions in cylindrical configuration are studied using three different soldering materials. The results are promising for further coil building.
- Published
- 2012
- Full Text
- View/download PDF
15. Losses Measurement in HTc Bi2212 Ribbons and Round Wires
- Author
-
H. Cloez, Lionel Quettier, L. Zani, S. Girard, J.L. Duchateau, Jean-Michel Rey, J. L. Marechal, and A. Allais
- Subjects
High energy ,Materials science ,Condensed matter physics ,Magnet ,Mechanical engineering ,Critical current ,High field ,Superconducting magnet ,Superconducting magnetic energy storage ,Electrical and Electronic Engineering ,Condensed Matter Physics ,Energy storage ,Electronic, Optical and Magnetic Materials - Abstract
Recent progresses in Bi2212 wires have proved its suitability for round wire developments and high field magnet development. High energy storage magnets can be foreseen leading to cable developments. In order to prepare such work CEA Saclay has developed in collaboration with the Nexans company a Bi 2212 wire having 18 sub-elements. The round wire has been twisted to study losses and twisting degradation. The results are presented here and compared to losses measurements made on already existing ribbons.
- Published
- 2009
- Full Text
- View/download PDF
16. Critical Current Measurement in HTS Bi2212 Ribbons and Round Wires
- Author
-
Daniel Tordera, Lionel Quettier, J. M. Gheller, O. Louchard, Philippe Fazilleau, Jean-Michel Rey, R. Le Bouter, J.-L. Duchateau, and A. Allais
- Subjects
Insert (composites) ,Materials science ,Condensed matter physics ,Magnet ,Mechanical engineering ,High field ,Critical current ,Electrical and Electronic Engineering ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials - Abstract
Recent progresses in Bi2212 wires have proved its suitability for round wire developments and high field magnet insert manufacturing. In order to prepare cabling developments the Commissariat a l'Energie Atomique at Saclay has developed in collaboration with the Nexans Company a Bi2212 wire having 18 sub-elements. The results of the critical current measurement are presented here and compared with already existing ribbons. The round wire has also been twisted to study twisting degradation.
- Published
- 2009
- Full Text
- View/download PDF
17. Hot Spot in ATLAS Barrel Toroid Quenches
- Author
-
R. Pengo, P. Benoit, M. Arnaud, F.P. Juster, M. Humeau, V. Stepanov, C. Berriaud, Jean-Michel Rey, S. Junker, C. Mayri, G. Olesen, S. Ravat, G. Volpini, L. Deront, H. Ten Kate, N. Kopeykin, R. Leboeuf, F. Broggi, Arnaud Foussat, E. Sbrissa, Alexey Dudarev, and P. Vedrine
- Subjects
Toroid ,Materials science ,Heating element ,Nuclear engineering ,Barrel (horology) ,Superconducting magnet ,Condensed Matter Physics ,Temperature measurement ,Electronic, Optical and Magnetic Materials ,Nuclear magnetic resonance ,Physics::Plasma Physics ,Electromagnetic coil ,Magnet ,Electrical and Electronic Engineering ,Electrical conductor - Abstract
The ATLAS Barrel Toroid, the largest toroid ever built with 1.1 GJ stored energy, has been successfully tested after installation in the underground cavern in fall 2006. The eight coils of the Barrel Toroid were tested individually before and showed fully acceptable performances. We observed only one training quench during an individual coil test (at 30 A below the maximum test current) and no training during the test of the fully assembled toroid. At currents up to the nominal value of 20.5 kA, the toroid has been quenched inducing normal zones by means of heaters or by stopping the helium flow in the current leads. The quench safety system worked perfectly. Given the safe peak temperatures measured in the cold mass following various quenches, it is concluded that the Barrel Toroid can be operated safely. In this paper, the hot spot of the toroid is presented in detail: the measurement data are compared to various theoretical models.
- Published
- 2008
- Full Text
- View/download PDF
18. The Iseult/Inumac Whole Body 11.7 T MRI Magnet Design
- Author
-
G. Aubert, P. Bredy, Thierry Schild, P. Vedrine, F. Nunio, L. Quettier, C. Berriaud, Jean-Michel Rey, C. Meuris, and F.P. Juster
- Subjects
Physics ,Cryostat ,Tokamak ,Mechanical engineering ,Field strength ,Niobium-titanium ,Tore Supra ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,law.invention ,Nuclear magnetic resonance ,law ,Electromagnetic coil ,Magnet ,Shielded cable ,Electrical and Electronic Engineering - Abstract
A neuroscience research center with very high field MRI equipments has been opened in November 2006 by the CEA life science division. One of the imaging systems will require a 11.75 T magnet with a 900 mm warm bore. Regarding the large aperture and field strength, this magnet is a real challenge as compared to the largest MRI systems ever built, and is then developed within an ambitious R&D program, Iseult, focus on high field MRI. The conservative MRI magnet design principles are not readily applicable and other concepts taken from high energy physics or fusion experiments, namely the Tore Supra tokamak magnet system, will be used. The coil will thus be made of a niobium-titanium conductor cooled by a He II bath at 1.8 K, permanently connected to a cryoplant. Due to the high level of stored energy, about 340 MJ, and a relatively high nominal current, about 1500 A, the magnet will be operated in a non-persistent mode with a conveniently stabilized power supply. In order to take advantage of superfluid helium properties and regarding the high electromagnetic stresses on the conductors, the winding will be made of wetted double pancakes meeting the Stekly criterion for cryostability. The magnet will be actively shielded to fulfill the specifications regarding the stray field.
- Published
- 2008
- Full Text
- View/download PDF
19. The Whole Body 11.7 T MRI Magnet for Iseult/INUMAC Project
- Author
-
F.P. Juster, P. Bredy, P Chesny, Jean-Michel Rey, J. Beltramelli, T. Schild, G. Gilgrass, L. Quettier, A. Donati, C. Berriaud, A. Payn, F. Nunio, F. Molinie, P. Vedrine, A. Sinanna, F. Beaudet, Gerard Grunblatt, G. Aubert, J Belorgey, and C. Meuris
- Subjects
Cryostat ,Engineering ,Electromagnet ,business.industry ,Mechanical engineering ,Niobium-titanium ,Superconducting magnet ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,law.invention ,Nuclear magnetic resonance ,law ,Magnet ,Electrical equipment ,Medical imaging ,High field ,Electrical and Electronic Engineering ,business - Abstract
Neurospin, a neuroscience research centre with very high field MRI equipments, just opened in November 2006 at Saclay by the CEA life science division. One of the imaging systems will require an 11.7 T magnet with a 900 mm warm bore. This magnet is currently under development at CEA Saclay, in collaboration with Siemens Medical Solutions and Alstom Magnets and Superconductors, within the framework of the French-German consortium Iseult/INUMAC (Imaging of Neuro disease Using high field. MAgnetic resonance and Contrastophores). The main aim of the consortium is to promote magnetic resonance and molecular imaging within high magnetic fields. The proposed magnet design is based on conservative options, but definitely unusual construction methods, for an MRI magnet (pancake winding, liquefier, stabilized power supply). These key design points therefore need to be assessed with several prototypes, integrated within a 5 years projected development plan, ending in 2011. The paper will present the objectives of the project as well as the main characteristics of the magnet and its development plan.
- Published
- 2008
- Full Text
- View/download PDF
20. Performance Tests of Prototype High-Field HTS Coils in Grenoble
- Author
-
Arnaud Badel, François Debray, Pascal Tixador, Xavier Chaud, Benjamin Vincent, T. Lecrevisse, T. Benkel, Philippe Fazilleau, Jean-Michel Rey, Yasuyuki Miyoshi, M. Devaux, Julien Marpaud, Département des Accélérateurs, de Cryogénie et de Magnétisme (ex SACM) (DACM), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire national des champs magnétiques intenses - Grenoble [2009-2015] (LNCMI-G [2009-2015]), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Magnétisme et Supraconductivité [2007-2015] (MagSup [2007-2015]), Institut Néel [2007-2015] (NEEL [2007-2015]), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019]), Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire de Génie Electrique de Grenoble [2007-2015] (G2ELab [2007-2015]), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS), Magnétisme et Supraconductivité (NEEL - MagSup), Institut Néel (NEEL), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), Laboratoire national des champs magnétiques intenses - Grenoble (LNCMI-G), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
superconducting tapes ,High-temperature superconductivity ,Materials science ,Nuclear engineering ,Superconducting magnet ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,law.invention ,Nuclear magnetic resonance ,law ,0103 physical sciences ,Electrical and Electronic Engineering ,010306 general physics ,Electrical conductor ,ComputingMilieux_MISCELLANEOUS ,010302 applied physics ,[PHYS]Physics [physics] ,Resistive touchscreen ,superconducting coils ,Condensed Matter Physics ,high-temperature superconductors ,Electronic, Optical and Magnetic Materials ,Conductor ,Magnetic field ,Electromagnetic coil ,Magnet ,superconducting magnets ,accelerator magnets - Abstract
International audience; Longitudinal and transverse quench propagation tests were performed at the Laboratoire National des Champs Magnetiques Intenses (LNCMI) high-field test facility on instrumented double pancake coils fabricated by CEA-Saclay using co-wound high-temperature superconductor (HTS) tapes. Energy deposited on an embedded heater initiated a quench and its subsequent propagations. Following the resulting thermomechanical analysis, a conductor design with stacked HTS tapes co-wound with stabilizers was conceived. A ten-turn demonstrator racetrack coil has been fabricated from the stacked HTS conductor with an aim to investigate the operation margin of an HTS coil in a background magnetic field misaligned from the coil axis as expected for the operating condition of an accelerator magnet insert. A test setup with a high current capacity up to 3 kA and angular variability that utilizes a room-temperature 376-mm-bore 10-T resistive magnet at LNCMI in Grenoble has been built. The performances and operation margin of the racetrack coil were investigated.
- Published
- 2015
- Full Text
- View/download PDF
21. The GBAR antimatter gravity experiment
- Author
-
André Rubbia, D. G. Brook-Roberge, D. P. van der Werf, François Biraben, Sebastian Wolf, Gabriel Dufour, J.-M. Reymond, C. Regenfus, P. Dupre, F. Nez, Niels Madsen, Paolo Crivelli, Nikolai N. Kolachevsky, Serge Reynaud, Piotr Froelich, Ferdinand Schmidt-Kaler, C. I. Szabo-Foster, Alexei Voronin, Laszlo Liszkay, Bruno Mansoulie, Yasuyuki Nagashima, Y. Sacquin, P. Comini, Stefan Eriksson, K. Khabarova, H. A. Torii, S. Guellati, A. Mohri, Naofumi Kuroda, O. D. Dalkarov, A. Douillet, B. Vallage, Yasuyuki Matsuda, Jean-Philippe Karr, S. Wronka, A. M. M. Leite, Johannes Heinrich, D. Banerjee, M. Charlton, Paul Indelicato, Yasunori Yamazaki, Astrid Lambrecht, Romain Guérout, Giovanni Manfredi, T. Mortensen, Jochen Walz, P. Clade, Valery Nesvizhevsky, David Lunney, P. Grandemange, A. Husson, Svante Jonsell, M. Staszczak, P. Perez, Nicolas Sillitoe, M. Valdes, Laurent Hilico, Jean-Michel Rey, Paul-Antoine Hervieux, and P. Debu
- Subjects
Free fall ,Physics ,Nuclear and High Energy Physics ,Hydrogen ,010308 nuclear & particles physics ,chemistry.chemical_element ,Condensed Matter Physics ,01 natural sciences ,7. Clean energy ,Atomic and Molecular Physics, and Optics ,Positronium ,Nuclear physics ,Gravitation ,chemistry ,Gravitational field ,Antiproton ,13. Climate action ,Antimatter ,0103 physical sciences ,Physics::Atomic Physics ,Physical and Theoretical Chemistry ,Atomic physics ,010306 general physics ,Antihydrogen - Abstract
The GBAR project (Gravitational Behaviour of Anti hydrogen at Rest) at CERN, aims to measure the free fall acceleration of ultracold neutral anti hydrogen atoms in the terrestrial gravitational field. The experiment consists preparing anti hydrogen ions (one antiproton and two positrons) and sympathetically cooling them with Be (+) ions to less than 10 mu K. The ultracold ions will then be photo-ionized just above threshold, and the free fall time over a known distance measured. We will describe the project, the accuracy that can be reached by standard techniques, and discuss a possible improvement to reduce the vertical velocity spread.
- Published
- 2015
- Full Text
- View/download PDF
22. Emulsion detectors for the antihydrogen detection in AEgIS
- Author
-
Paolo Crivelli, M. Staszczak, Niels Madsen, Laszlo Liszkay, K. Khabarova, D. Lunney, R. Guérout, J.-M. Reymond, F. Nez, S. Guellati, Jean-Philippe Karr, Stefan Eriksson, François Biraben, Yasuyuki Nagashima, D. Banerjee, P. Grandemange, Ferdinand Schmidt-Kaler, A. Voronin, Gabriel Dufour, S. Wolf, A Douillet, S. Wronka, Giovanni Manfredi, M. Charlton, Pierre Cladé, Johannes Heinrich, Y. Sacquin, D. G. Brook-Roberge, Piotr Froelich, A. Mohri, O.D. Dalkarov, Serge Reynaud, A. Husson, Naofumi Kuroda, Paul Indelicato, Svante Jonsell, André Rubbia, Valery Nesvizhevsky, T. Mortensen, Bruno Mansoulie, M. Valdes, Jean-Michel Rey, D. P. van der Werf, Astrid Lambrecht, Paul-Antoine Hervieux, P. Dupre, Amm Leite, P. Debu, C. I. Szabo-Foster, P. Comini, Nikolai N. Kolachevsky, Yasunori Yamazaki, Yasuyuki Matsuda, Jochen Walz, C. Regenfus, H. A. Torii, Laurent Hilico, Nicolas Sillitoe, P. Perez, and B. Vallage
- Subjects
Nuclear physics ,Physics ,Detector ,Emulsion ,Antihydrogen - Published
- 2015
- Full Text
- View/download PDF
23. On-Surface Tests of the ATLAS Barrel Toroid Coils: Acceptance Criteria and Results
- Author
-
I.O. Shugaev, J.J. Rabbers, Alexey Dudarev, P. Benoit, Jean-Michel Rey, Arnaud Foussat, S. Junker, F. Broggi, G. Olesen, S. Ravat, G. Volpini, R. Leboeuf, A. Olyunin, Erik Adli, M. Arnaud, C. Berriaud, V. Stepanov, P. Vedrine, C. Mayri, H.H.Jt. Kate, F.P. Juster, L. Deront, M. Humeau, N. Kopeykin, E. Sbrissa, and R. Pengo
- Subjects
Toroid ,Large Hadron Collider ,Physics::Instrumentation and Detectors ,business.industry ,Computer science ,ATLAS experiment ,Barrel (horology) ,Structural engineering ,Superconducting magnet ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,Nuclear magnetic resonance ,medicine.anatomical_structure ,Acceptance testing ,Atlas (anatomy) ,Electromagnetic coil ,medicine ,Electrical and Electronic Engineering ,business - Abstract
Each superconducting coil of the ATLAS Barrel Toroid has to pass the commissioning tests on surface before the installation in the underground cavern for the ATLAS Experiment at CERN. Particular acceptance criteria have been developed to characterize the individual coils during the on-surface testing. Based on these criteria and the limited time of the test, a compressed test program was proposed and realized. In only a few cases some additional tests were required to justify the coil performance and acceptance. In this paper the analysis of the test results is presented and discussed with respect to the acceptance criteria. Some differences in the parameters found between the identical coils are analyzed in relation to coil production features
- Published
- 2006
- Full Text
- View/download PDF
24. Completion of the Manufacturing of the ATLAS Barrel Toroid Magnet at CERN
- Author
-
Ht. Kate, Y. Pabot, M. Arnaud, B. Levesy, C. Mayri, P. Vedrine, G. Volpini, Jean-Michel Rey, C. Berriaud, Alexey Dudarev, M. Carty, F. Alessandria, Y. Zaitsev, and Z. Sun
- Subjects
Physics ,Cryostat ,Toroid ,Large Hadron Collider ,Physics::Instrumentation and Detectors ,Barrel (horology) ,Mechanical engineering ,Superconducting magnet ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,Nuclear physics ,Engineering ,medicine.anatomical_structure ,Atlas (anatomy) ,Electromagnetic coil ,Magnet ,medicine ,Detectors and Experimental Techniques ,Electrical and Electronic Engineering - Abstract
The last two years have seen the completion of the integration and the cryostating of 8 superconducting coil windings for the ATLAS Barrel Toroid air-core magnet (BT). The Barrel Toroid is a 20 m in diameter, 25 m long and 5 m wide superconducting magnet for ATLAS, one of the two experiments dedicated to the search of the Higgs boson, which will be installed on the LHC ring at CERN in 2006. The paper presents the last steps of this integration progress which ends with the cold acceptance tests. A special emphasis is put on the integration of the cold mass into the vacuum vessel. The integration of the windings in their coil casings has been completed in October 2003 and the last coil cryostating was performed in June 2005. The BT coils are now being installed in the ATLAS cavern at CERN
- Published
- 2006
- Full Text
- View/download PDF
25. Suspension System of the Barrel Toroid Cold Mass
- Author
-
Ht. Kate, P. Vedrine, Y. Pabot, Alexey Dudarev, C. Berriaud, C. Mayri, S. Cazaux, Y. Zaitsev, Jean-Michel Rey, Arnaud Foussat, Z. Sun, and M. Reytier
- Subjects
Cryostat ,Materials science ,Large Hadron Collider ,Toroid ,Physics::Instrumentation and Detectors ,business.industry ,Tie rod ,Barrel (horology) ,Cryogenics ,engineering.material ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,Optics ,Nuclear magnetic resonance ,Electromagnetic coil ,engineering ,Electrical and Electronic Engineering ,business ,Beam (structure) - Abstract
The ATLAS Barrel Toroid consists of 8 racetrack coils symmetrically placed around the LHC beam axis. The coil dimensions are 25-m of length, 5-m of width and 1-m of thickness. Each cold mass is held in its cryostat by different types of supports. The paper describes the design, the tests and the behavior of each element during on surface test of individual coils
- Published
- 2006
- Full Text
- View/download PDF
26. Cold Mass Integration of the ATLAS Barrel Toroid Magnets at CERN
- Author
-
S. Cazaux, M. Arnaud, J.-P. Gourdin, Jean-Michel Rey, C. Berriaud, Alexey Dudarev, C. Mayri, M. Humeau, R. Berthier, Ht. Kate, P. Vedrine, C. Pes, and R. Leboeuf
- Subjects
Materials science ,Toroid ,Physics::Instrumentation and Detectors ,Physics::Medical Physics ,Superconducting magnet ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,Conductor ,Engineering ,Nuclear magnetic resonance ,Inflatable ,Electromagnetic coil ,Magnet ,Detectors and Experimental Techniques ,Electrical and Electronic Engineering ,Composite material ,Electrical conductor ,Casing - Abstract
The ATLAS Barrel Toroid, part of the ATLAS Detector built at CERN, is comprised of 8 coils symmetrically placed around the LHC beam axis. The coil dimensions are 25 m length, 5 m width and 0.4 m thickness. Each coil cold mass consists of 2 double pancakes of aluminum stabilized NbTi conductor held in an aluminum alloy casing. Because the magnet is conduction cooled a good bonding between the superconducting winding and the coil casing is a basic requirement. Due to the high load level induced by the Lorentz forces on the double pancakes, a pre-stressing technique has been developed for the assembling of the double pancake windings in the coil casing. This prestressing technique uses inflatable bladders made of extruded aluminum tubes filled with glass microballs and epoxy resin then cured under pressure. The paper describes the design of the system as well as the problems occurred during the assembling of the 8 superconducting ATLAS coils and the ATLAS B0 prototype coil, and the behavior of the Barrel Toroid coils with respect to this prestress during the cold tests
- Published
- 2006
- Full Text
- View/download PDF
27. An Innovating Insulation for<tex>$rm Nb_3rm Sn$</tex>Wind & React Coils: Electrical Tests
- Author
-
Alexandre Puigsegur, Jean-Michel Rey, L. Quettier, F. Rondeaux, and E. Prouzet
- Subjects
Superconductivity ,Vacuum insulated panel ,Materials science ,010308 nuclear & particles physics ,Superconducting magnet ,Condensed Matter Physics ,7. Clean energy ,01 natural sciences ,Electronic, Optical and Magnetic Materials ,Conductor ,Magnetic field ,Electromagnetic coil ,visual_art ,Magnet ,0103 physical sciences ,visual_art.visual_art_medium ,Ceramic ,Electrical and Electronic Engineering ,Composite material ,010306 general physics - Abstract
If Nb3Sn is the best superconductor candidate for the realization of high field magnets (for 10-11 Tesla), its implementation remains delicate because of the great brittleness of material after the heat treatment necessary for the formation of Nb3Sn compounds. The conventional insulation for Nb3Sn Wind & React coils requires performing, after the heat treatment, a vacuum resin impregnation, which adds to the cost and raises failure risk. We have proposed a one-step innovating ceramic insulation deposited directly on the un-reacted cable. After the heat treatment, we obtain a coil having a mechanical cohesion, while maintaining a proper conductor positioning and a suitable electric insulation. We have shown that using this insulation in a coil manufacturing process does not affect the electrical properties of the Nb3Sn wires. A solenoid of small dimensions (9 * 20 turns on an internal diameter of 22 mm) has produced a magnetic field of 3.8 T at 740 A. It was tested with success in high external magnetic fields: the quench limits have been imposed by the strand and the insulation was not damaged
- Published
- 2006
- Full Text
- View/download PDF
28. Manufacturing and Integration Progress of the ATLAS Barrel Toroid Magnet at CERN
- Author
-
Y. Zaitsev, Augusto Leone, Z. Sun, Y. Pabot, G. Volpini, B. Levesy, Jean-Michel Rey, R. Berthier, H. Ten Kate, C. Mayri, P. Vedrine, C. Berriaud, M. Arnaud, Alexey Dudarev, and F. Alessandria
- Subjects
Physics ,Cryostat ,Large Hadron Collider ,Toroid ,Barrel (horology) ,Mechanical engineering ,Superconducting magnet ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,Nuclear physics ,Electromagnetic coil ,Magnet ,Electrical and Electronic Engineering ,Casing - Abstract
ATLAS is one of the two experiments dedicated the search of the Higgs boson, which will be installed on the LHC ring at CERN in 2006. The ATLAS barrel toroid air-core magnet (BT) is 20 m in diameter and consists of 8 superconducting coils, each one 25 m long and 5 m wide. After several years of technological development, the major concepts have been proved in 1999/2000 during the construction of the B0 prototype; a technological model for BT. The delivery by several European industrial companies of all the major components for BT is nearly finished. The eight BT coils are now being integrated at CERN. The paper presents a general overview of the component manufacturing and integration progress. A special emphasis is put on the major component delivery (conductor, double pancake windings, aluminum coil casing and cryostat) together with a description of the two phases of the integration process: integration of the windings into their coil casings and integration of the cold mass into the vacuum vessel. The integration of the windings in their coil casings will be completed in October 2003. The closure of the first cryostat is planned for the end of the year. The start of the first cold test and the assembly in the cavern is foreseen for the beginning of 2004.
- Published
- 2004
- Full Text
- View/download PDF
29. En mémoire de la poésie
- Author
-
Jean-Michel Rey
- Subjects
Literature ,Painting ,Literature and Literary Theory ,Poetry ,business.industry ,media_common.quotation_subject ,Art history ,Active listening ,Art ,business ,media_common - Abstract
In Memory of Poetry The Vita Nuova is based on the principle that writing calls forth further writing, which calls forth further writing. . . Among writers deeply influenced by Dante, Mi- chelet stands out for understanding that Dante's poetry depended on his listening to all the voices before and around him; while Osip Mandelstam brings out Dante's relationship to painting., Rey Jean-Michel. En mémoire de la poésie. In: Littérature, n°133, 2004. Dante, l'art et la mémoire. pp. 20-29.
- Published
- 2004
- Full Text
- View/download PDF
30. Kinetics of phase growth in the Cu-Sn system and application to composite Nb/sub 3/Sn strands
- Author
-
Emanuela Barzi, F. Fineschi, Jean-Michel Rey, and S. Mattafirri
- Subjects
Superconductivity ,Self-diffusion ,Materials science ,Diffusion ,Analytical chemistry ,Intermetallic ,chemistry.chemical_element ,Condensed Matter Physics ,Jelly roll ,Electronic, Optical and Magnetic Materials ,chemistry ,Phase (matter) ,Electrical and Electronic Engineering ,Tin ,Type-II superconductor - Abstract
Nb/sub 3/Sn is the superconductor most used in the R&D of high field accelerator magnets by either the wind&react or the react&wind technique. In order to program the low temperature steps of the heat treatment, the growth kinetics of Cu-Sn intermetallics was investigated as a function of duration and temperature. The diffusion constants of /spl eta/, /spl epsiv/ and /spl delta/ phases between 150 /spl deg/C and 550 /spl deg/C were evaluated using Cu-Sn model samples. For an accurate data analysis, statistical and systematic errors were determined. Next the behavior of Internal Tin and Modified Jelly Roll Nb/sub 3/Sn composites was compared with the model predictions.
- Published
- 2003
- Full Text
- View/download PDF
31. Un certain retard
- Author
-
Jean-Michel Rey
- Published
- 2015
- Full Text
- View/download PDF
32. R&D for a single-layer Nb/sub 3/Sn common coil dipole using the react-and-wind fabrication technique
- Author
-
R.M. Scanlan, V.V. Kashikhin, Ryuji Yamada, L. Imbasciati, K. Ewald, D.R. Chichili, P. Bauer, Emanuela Barzi, Igor Novitski, Giorgio Ambrosio, Alexander V. Zlobin, S. Yadav, L. Litvinenko, Sandor Feher, N. Andreev, Jean-Michel Rey, and P.J. Limon
- Subjects
Materials science ,Fabrication ,Particle accelerator ,Superconducting magnet ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,law.invention ,Dipole ,Nuclear magnetic resonance ,law ,Electromagnetic coil ,Dipole magnet ,Magnet ,Electrical and Electronic Engineering ,Composite material ,Very Large Hadron Collider - Abstract
A dipole magnet based on the common coil design, using prereacted Nb/sub 3/Sn superconductor, is under development at Fermilab, for a future Very Large Hadron Collider. This magnet has some innovative design and technological features such as single layer coils, a 22 mm wide 60-strand Rutherford type cable and stainless steel collars reinforced by horizontal bridges inserted between coil blocks. Both left and right coils are wound simultaneously into the collar structure and then impregnated with epoxy. In order to optimize the design and fabrication techniques an R&D program is underway. The production of cables with the required characteristics was shown possible. Collar laminations were produced, assembled and tested in order to check the effectiveness of the bridges and the validity of the mechanical design. A mechanical model consisting in a 165 mm long section of the magnet straight section was assembled and tested. This paper summarizes the status of the program, and reports the results of fabrication and test of cable, collars and the mechanical model.
- Published
- 2002
- Full Text
- View/download PDF
33. Superconductor and cable R&D for high field accelerator magnets at Fermilab
- Author
-
Giorgio Ambrosio, Emanuela Barzi, Jean-Michel Rey, N. Andreev, Ryuji Yamada, D.R. Chichili, J. Hoffman, P. Bauer, Alexander V. Zlobin, S. Mattafirri, M. Fratini, P.J. Limon, and L. Elementi
- Subjects
Superconductivity ,Materials science ,Scanning electron microscope ,Nuclear engineering ,chemistry.chemical_element ,Superconducting magnet ,Condensed Matter Physics ,Jelly roll ,Electronic, Optical and Magnetic Materials ,Nuclear physics ,chemistry ,Magnet ,High field ,Fermilab ,Electrical and Electronic Engineering ,Tin - Abstract
This paper presents past results and future goals of the Nb/sub 3/Sn strand and cable R&D being performed within the High Field Magnet program at Fermilab. Research tools include a reaction site for Nb/sub 3/Sn, a Short Sample Test Facility, a Scanning Electron Microscope, and a 28-strand cabling machine. Strands of various designs and diameters produced with the Internal Tin, Modified Jelly Roll, and Powder-in-Tube methods, and several Rutherford-type cables were studied.
- Published
- 2002
- Full Text
- View/download PDF
34. Construction of the ATLAS B0 model coil
- Author
-
H. Van Hille, Massimo Sorbi, Z. Sun, F. Alessandria, M. Reytier, A. Dael, C. Mayri, Jean-Michel Rey, C. Berriaud, Lucio Rossi, R. Berthier, E. Acerbi, Y. Pabot, F. Broggi, and G. Volpini
- Subjects
Cryostat ,Engineering ,Toroid ,business.industry ,Barrel (horology) ,Mechanical engineering ,Welding ,Superconducting magnet ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,law.invention ,Conductor ,law ,Electromagnetic coil ,Electrical and Electronic Engineering ,business ,Casing - Abstract
The B0 coil is a technological model for the ATLAS Barrel Toroid coils. The major concepts and the construction procedures are the same as those specified for the BT coils. So the manufacturing feasibility has been extensively proved and the technological developments have been carried out for the industrial production of the conductor, the welding technique of the coil casing, the prestress of the coil with bladders, the cold to warm supports, the construction and assembly of the cryostat. The paper illustrates all these phases.
- Published
- 2001
- Full Text
- View/download PDF
35. Development of a Nb/sub 3/Sn quadrupole magnet model
- Author
-
Jean-Michel Rey, C. Gourdin, J. M. Rifflet, Maria Durante, P. Vedrine, J.M. Streiff, M. Peyrot, F.P. Juster, and A. Devred
- Subjects
Fabrication ,Materials science ,Large Hadron Collider ,Superconducting magnet ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,chemistry.chemical_compound ,Nuclear magnetic resonance ,chemistry ,Electromagnetic coil ,Magnet ,Physics::Accelerator Physics ,Electrical and Electronic Engineering ,Composite material ,Niobium-tin ,Quadrupole magnet ,Yoke - Abstract
One possible application of Nb/sub 3/Sn, whose superconducting properties far exceed those of NbTi, is the fabrication of short and powerful quadrupole magnets for the crowded interaction regions of large particle accelerators. To learn about Nb/sub 3/Sn technology and to evaluate fabrication techniques, DAPNIA/STCM at CEA/Saclay has undertaken an R&D program aimed at designing and building a 1 m-long, 56 mm single-aperture quadrupole magnet model. The model relies on the same coil geometry as the LHC arc quadrupole magnets, but has no iron yoke. It is expected to produce a nominal field gradient of 211 T/m at 11870 A. The coils are wound from Rutherford-type cables insulated with quartz fiber tapes, before being heat-treated and vacuum-impregnated with epoxy resin. Laminated, austenitic collars, locked around the coil assembly by means of keys restrain the Lorentz forces. After reviewing the conceptual design of the magnet model, we report on the cable and cable insulation development programs and we present the results of NbTi-Nb/sub 3/Sn cable splice tests.
- Published
- 2001
- Full Text
- View/download PDF
36. Stability and quench propagation velocities measurements on the 'racetrack' mock-up of ATLAS toroid coil
- Author
-
F.P. Juster, J. Deregel, Jean-Michel Rey, and B. Hervieu
- Subjects
Physics ,Toroid ,Large Hadron Collider ,Physics::Instrumentation and Detectors ,Joule ,Superconducting magnet ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,Conductor ,Nuclear physics ,Nuclear magnetic resonance ,Electromagnetic coil ,Mockup ,Magnet ,Electrical and Electronic Engineering - Abstract
A mock-up of ATLAS toroid coil, which is one of the 3 detectors presently under construction for the future Large Hadron Collider at CERN, had been tested at Saclay. Various experiments have been led to check the validity of important technical options for the magnet. This paper focuses on thermal stability and quench propagation velocities measurements. For a 70/spl times/7 mm/sup 2/ aluminum-stabilized conductor carrying a 20 kA current, a 4-5 joule minimum quench energy and a 20 m/s longitudinal quench propagation velocity were found. We also studied the dependence of those features according to the operating current in the 5-20 kA range.
- Published
- 2000
- Full Text
- View/download PDF
37. A mini linac based positron source
- Author
-
Nicolas Ruiz, Aline Curtoni, Mickael Carty, Tomoko Muranaka, Valentin Blideanu, Pierre Dupré, P. Perez, Laszlo Liszkay, Olivier Delferrierre, Jean-Michel Rey, and Yves Sacquin
- Subjects
Nuclear physics ,Physics ,Diffraction ,Positron ,Pair production ,Cathode ray ,Physics::Accelerator Physics ,Flux ,Condensed Matter Physics ,Linear particle accelerator ,Neutron activation ,Ion - Abstract
We have installed in Sac lay a demonstration setup for an intense positron source in November 2008. It is based on a compact 6 MeV electron linac to produce positrons via pair production on a tungsten target. A relatively high current of 0.15 mA compensates the low energy, which is below the neutron activation threshold. The expected production rate is 4x10(11) fast positrons per second. A set of coils is arranged to select the fast positrons from the diffracted electron beam in order to study the possibility to use a rare gas cryogenic moderator away from the main flux of particles. A first part of the commissioning of the linac has been performed. First attempts at measuring the fast positron flux are underway. This setup is part of a project to demonstrate the feasibility of an experiment to produce the H(+) ion for a free fall measurement of neutral antihydroeen (H). Its small size and cost could be of interest for a university laboratory or industry for materials science applications. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
- Published
- 2009
- Full Text
- View/download PDF
38. Epoxy resin developments for large superconducting magnets impregnation
- Author
-
Jean-Michel Rey, B. Gallet, F. Kircher, and J. C. Lottin
- Subjects
Superconductivity ,Large Hadron Collider ,Materials science ,General Physics and Astronomy ,Epoxy ,Superconducting magnet ,Thermal expansion ,Conductor ,Physics::Popular Physics ,visual_art ,visual_art.visual_art_medium ,General Materials Science ,Composite material ,Glass transition ,Shrinkage - Abstract
The future detectors ATLAS and CMS of the Large Hadron Collider at CERN will use two huge superconducting magnets. Both are now under design, and their electrical insulation could be realized using epoxy resin and a wet impregnation technique. Because of their large dimensions, and the indirect cooling of the superconductor, the strengths of the resin and of the resin/conductor interface are of major importance. A new generation of epoxy resins for vacuum/pressure impregnation methods has been tested, and compared with some classical and well-known epoxy resins used in impregnation techniques. In order to understand the mechanical behaviour at 4 K, the complete evolution from liquid state to low temperature service condition is considered. The paper will present some results on the mechanical properties, the density and the chemical shrinkage occurring during the polymerization and the thermal contraction between room temperature and 4 K for these different types of epoxy resins.
- Published
- 1998
- Full Text
- View/download PDF
39. The Gbar project, or how does antimatter fall?
- Author
-
M. Staszczak, Jean-Michel Rey, J. Trapateau, Laszlo Liszkay, Paul Indelicato, Paul-Antoine Hervieux, Romain Guérout, Vladimir Manea, P. Debu, B. Rossi, Serge Reynaud, V.-Q. Tran, A. Douillet, P. Perez, A. Mohri, H. A. Torii, Jean-Philippe Karr, F. Nez, François Biraben, Alexei Voronin, S. Guellati, Laurent Hilico, P.Froelich, Jochen Walz, B. Vallage, D. Lunney, P. Dupre, A. Badertscher, Sebastian Wolf, Giovanni Manfredi, Astrid Lambrecht, A. Marchionni, M. Charlton, Paolo Crivelli, Y. Sacquin, P. Grandemange, Pierre Cladé, Naofumi Kuroda, N. Ruiz, S. Wronka, P. Comini, A. Curioni, Stefan Eriksson, Csilla I. Szabo, Yasunori Yamazaki, G. Chardin, B. Reymond, Gabriel Dufour, Bruno Mansoulie, Valery Nesvizhevsky, Niels Madsen, Ferdinand Schmidt-Kaler, D. G. Brook-Roberge, André Rubbia, D. P. van der Werf, Yasuyuki Nagashima, CSNSM SNO, Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Département des Accélérateurs, de Cryogénie et de Magnétisme (ex SACM) (DACM), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Université Paris 06, Université d'Évry-Val-d'Essonne (UEVE), Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Uppsala Univ, Dept Phys & Astron, Uppsala, SWEDEN, Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)-Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, and Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)
- Subjects
Free fall ,IONS ,Nuclear and High Energy Physics ,Sympathetic cooling ,Physics::General Physics ,ANTIHYDROGEN ,MASS ,ACCELERATION ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,7. Clean energy ,Gravitation ,Nuclear physics ,ATOMS ,Gravitational field ,GRAVITY ,Quantum mechanics ,Physics::Atomic and Molecular Clusters ,Physics::Atomic Physics ,Physical and Theoretical Chemistry ,Antihydrogen ,Physics ,Condensed Matter::Quantum Gases ,[PHYS]Physics [physics] ,SPECTROSCOPY ,PLASMA ,FIELD Free fall ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,Antiproton ,Antimatter ,Weak equivalence principle ,ANTIGRAVITY ,Quantum reflection - Abstract
International audience; The Einstein classical Weak Equivalence Principle states that the trajectory of a particle is independent of its composition and internal structure when it is only submitted to gravitational forces. This fundamental principle has never been directly tested with antimatter. However, theoretical models such as supergravity may contain components inducing repulsive gravity, thus violating this principle. The GBAR project (Gravitational Behaviour of Antihydrogen at Rest) proposes to measure the free fall acceleration of ultracold neutral antihydrogen atoms in the terrestrial gravitational field. The experiment consists in preparing antihydrogen ions (one antiproton and two positrons) and sympathetically cool them with Be+ ions to a few 10 mu K. The ultracold ions will then be photoionized just above threshold, and the free-fall time over a known distance measured. In this work, the GBAR project is described as well as possible improvements that use quantum reflection of antihydrogen on surfaces to use quantum methods of measurements.
- Published
- 2013
- Full Text
- View/download PDF
40. Beam preparation for studying the gravitational behavior of antimatter at rest (GBAR)
- Author
-
P. Dupré, P. Lotrus, S. Pitrel, Laszlo Liszkay, Jean-Michel Rey, Y. Sacquin, D. Lunney, N. Ruiz, D. G. Brook-Roberge, P. Debu, Ph. Hardy, T. Mortensen, P. Comini, J.-M. Reymond, P. Grandemange, P. Perez, B. Vallage, S. Cabaret, Vladimir Manea, CSNSM SNO, Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse (CSNSM), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)-Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), CSNSM MECA, Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), CSNSM INSTR, Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Département de Physique des Particules (ex SPP) (DPP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), and Département de Physique des Particules (ex SPP) (DPhP)
- Subjects
Nuclear and High Energy Physics ,Charged-particle beams ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,Ion ,law.invention ,Nuclear physics ,Positron ,law ,Physics::Plasma Physics ,Physics::Atomic Physics ,Physical and Theoretical Chemistry ,Nuclear Experiment ,Antihydrogen ,Traps ,Physics ,[PHYS]Physics [physics] ,Large Hadron Collider ,Particle accelerator ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,Antiproton ,Antimatter ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Atomic physics ,Beam (structure) ,Gravitation - Abstract
International audience; The specific antiproton- and positron-beam requirements of the CERN AD-7 experiment, GBAR (Gravitational Behavior of Antimatter at Rest) are presented. GBAR will synthesize antihydrogen ions which will be sympathetically cooled before performing a free-fall experiment on the atom. Antiprotons delivered by CERN's ELENA facility in 100-keV, 300-ns pulses will be electrostatically decelerated and transformed to keV energies using a pulsed drift tube. Positrons are created using a linear electron accelerator and collected into a Penning-Malmberg trap. Descriptions of these ion optical systems are given along with the status.
- Published
- 2013
- Full Text
- View/download PDF
41. HTS Dipole Insert Developments
- Author
-
Pascal Tixador, Massimo Sorbi, G. Volpini, Philippe Fazilleau, Jean-Michel Rey, M. Devaux, François Debray, T. Lecrevisse, Jean-Marc Tudela, Xavier Chaud, T. Tardy, C. Mayri, F. Bertinelli, F. Pottier, Antti Stenvall, G. Favre, M. Durante, C. Pes, Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire national des champs magnétiques intenses - Grenoble (LNCMI-G), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Département des Accélérateurs, de Cryogénie et de Magnétisme (ex SACM) (DACM), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, CERN [Genève], Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire SUBATECH Nantes (SUBATECH), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Nantes (UN)-Mines Nantes (Mines Nantes), Medical Radiation Physics - Department of Clinical Sciences Lund, Lund University [Lund], Magnétisme et Supraconductivité (MagSup), Institut Néel (NEEL), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes (UGA), Université Grenoble Alpes (UGA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement (LAMBE - UMR 8587), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Mines Nantes (Mines Nantes)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Magnétisme et Supraconductivité (MagSup ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), and Magnétisme et Supraconductivité (NEEL - MagSup)
- Subjects
010302 applied physics ,Superconductivity ,Coupling ,[PHYS]Physics [physics] ,Insert (composites) ,Materials science ,High-temperature superconductivity ,Condensed matter physics ,Condensed Matter Physics ,01 natural sciences ,7. Clean energy ,Engineering physics ,Electronic, Optical and Magnetic Materials ,Magnetic field ,law.invention ,Dipole ,law ,Magnet ,0103 physical sciences ,High current ,Electrical and Electronic Engineering ,010306 general physics ,ComputingMilieux_MISCELLANEOUS - Abstract
Future accelerator magnets will need to reach a magnetic field in the 20 T range. Reaching such a magnetic field is a challenge only reachable using high temperature superconductor (HTS) material. The high current densities and stress levels needed to satisfy the design criterion of such magnets make YBaCuO superconductor the most appropriate candidate especially when produced using the IBAD route. The HFM EUCARD program is aimed at designing and manufacturing a dipole insert made of HTS material generating 6 T inside a Nb3Sn dipole of 13 T at 4.2 K. In the HTS insert, engineering current densities higher than 250 MA/m2 under 19 T are required to reach the performances. The stress level is consequently very high. The insert protection is also a critical issue as HTS shows low quench propagation velocity. The coupling with the Nb3Sn dipole makes the problem even more difficult. The magnetic and mechanical designs of the HTS insert will be presented as well as the technological developments underway to realize this compact dipole insert.
- Published
- 2013
- Full Text
- View/download PDF
42. Des lectures en commun
- Author
-
Jean-Michel Rey
- Published
- 2017
- Full Text
- View/download PDF
43. Quench considerations and protection scheme of a high field HTS dipole insert coil
- Author
-
J. Fleiter, T. Lecrevisse, Massimo Sorbi, Pascal Tixador, F. Hornung, M. Devaux, E. Haro, G. Volpini, C. Pes, Christophe Trophime, Philippe Fazilleau, Jean-Michel Rey, Antti Stenvall, Laboratoire de l'intégration, du matériau au système (IMS), Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Medical Radiation Physics - Department of Clinical Sciences Lund, Lund University [Lund], Département des Accélérateurs, de Cryogénie et de Magnétisme (ex SACM) (DACM), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, European Organization for Nuclear Research (CERN), CERN [Genève], Laboratoire national des champs magnétiques intenses - Grenoble (LNCMI-G), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Magnétisme et Supraconductivité (MagSup), Institut Néel (NEEL), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1, Université Joseph Fourier - Grenoble 1 (UJF)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement (LAMBE - UMR 8587), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire national des champs magnétiques intenses - Grenoble (LNCMI), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Joseph Fourier - Grenoble 1 (UJF)-Université Grenoble Alpes (UGA), Magnétisme et Supraconductivité (MagSup ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), and Magnétisme et Supraconductivité (NEEL - MagSup)
- Subjects
Materials science ,Nuclear engineering ,Superconducting magnet ,01 natural sciences ,7. Clean energy ,law.invention ,chemistry.chemical_compound ,law ,Condensed Matter::Superconductivity ,0103 physical sciences ,ddc:530 ,Electrical and Electronic Engineering ,010306 general physics ,ComputingMilieux_MISCELLANEOUS ,010302 applied physics ,Condensed matter physics ,Physics ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,Particle accelerator ,Yttrium barium copper oxide ,Condensed Matter Physics ,Inductive coupling ,Finite element method ,Electronic, Optical and Magnetic Materials ,Dipole ,chemistry ,Electromagnetic coil ,Magnet - Abstract
The large scale particle accelerators of the future in the 20 T regime are enabled by high temperature superconducting magnets. The dipole magnets needed in new high-field accelerators can be constructed with an YBCO insert and a Nb3Sn outsert. Such a configuration makes the quench analysis and magnet protection challenging because the quench behavior in both of these coils is different and there is very strong inductive coupling between the coils. The Nb3Sn coil is characterized by high energy and current and relatively fast quench propagation velocity. However, quench propagates slowly in YBCO coils because of typically wide spread large temperature margin. Currently, in the EuCARD project, a European collaboration is targeting to construct a small-scale high field YBCO-Nb3Sn hybrid magnet. In this paper, we scrutinize quench in the YBCO insert. We utilized an approach based on a solution of the heat diffusion equation with the finite element method. Additionally, we present a protection scheme for the coil.
- Published
- 2013
- Full Text
- View/download PDF
44. Quench propagation in YBCO pancake: experimental and computational results
- Author
-
Y. Miyoshi, T. Lecrevisse, Xavier Chaud, M. Devaux, F. Debray, B. Vincent, F. P. Juster, Pascal Tixador, Philippe Fazilleau, Jean-Michel Rey, Département des Accélérateurs, de Cryogénie et de Magnétisme (ex SACM) (DACM), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire national des champs magnétiques intenses - Grenoble (LNCMI-G), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Magnétisme et Supraconductivité (MagSup), Institut Néel (NEEL), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Informatique, de Modélisation et d'optimisation des Systèmes (LIMOS), SIGMA Clermont (SIGMA Clermont)-Université d'Auvergne - Clermont-Ferrand I (UdA)-Ecole Nationale Supérieure des Mines de St Etienne-Centre National de la Recherche Scientifique (CNRS)-Université Blaise Pascal - Clermont-Ferrand 2 (UBP), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Magnétisme et Supraconductivité (NEEL - MagSup), and Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Université d'Auvergne - Clermont-Ferrand I (UdA)-SIGMA Clermont (SIGMA Clermont)-Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010302 applied physics ,Superconductivity ,Materials science ,High-temperature superconductivity ,Nuclear engineering ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,Condensed Matter Physics ,01 natural sciences ,Finite element method ,Electronic, Optical and Magnetic Materials ,law.invention ,Magnetic field ,Nuclear magnetic resonance ,Electromagnetic coil ,law ,Magnet ,0103 physical sciences ,Constant current ,Electrical and Electronic Engineering ,010306 general physics ,Current density ,ComputingMilieux_MISCELLANEOUS - Abstract
High-temperature superconductors are promising materials for future applications such as high field magnets thanks to their ability to carry high current densities. Nevertheless, their protection still remains a key issue mainly due to the slow velocity of quench propagation. To understand the quench behavior of a YBCO coil, a simulation code has been developed using the CASTEM-CEA finite element software. Simulations can be performed considering constant current and magnetic field. Results of those simulations will be displayed and a way for improving the protection by adding a stabilizer will be discussed. Two well instrumented YBCO coils were fabricated in order to obtain experimental data on quench propagation in pancake configuration. Their design and some measurements are reported in this paper along with another experiment on a double pancake made by and tested at CNRS Grenoble. Finally, we compare the numerical and experimental results and discuss the accuracy of our simulations.
- Published
- 2013
- Full Text
- View/download PDF
45. HTS coil test facility in a large bore 20 T resistive magnet at LNCMI
- Author
-
Pascal Tixador, T. Lecrevisse, François Debray, Yasuyuki Miyoshi, K. Watanabe, Jean-Michel Rey, Hitoshi Kitaguchi, Xavier Chaud, Hidetoshi Oguro, Gen Nishijima, Satoshi Awaji, Benjamin Vincent, Laboratoire national des champs magnétiques intenses - Grenoble (LNCMI-G), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Magnétisme et Supraconductivité (NEEL - MagSup), Institut Néel (NEEL), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), Département des Accélérateurs, de Cryogénie et de Magnétisme (ex SACM) (DACM), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), and Magnétisme et Supraconductivité (MagSup)
- Subjects
Resistive touchscreen ,Materials science ,High-temperature superconductivity ,Nuclear engineering ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,Superconducting magnet ,Test probe ,Condensed Matter Physics ,01 natural sciences ,Temperature measurement ,010305 fluids & plasmas ,Electronic, Optical and Magnetic Materials ,law.invention ,Nuclear magnetic resonance ,Electromagnetic coil ,law ,Magnet ,0103 physical sciences ,Electrical and Electronic Engineering ,010306 general physics ,Rogowski coil ,ComputingMilieux_MISCELLANEOUS - Abstract
The high temperature superconductor (HTS) coil development, especially in the interest of high field insert coil, requires characterizations of a prototype coil in high magnetic field. Our test probe fits into the bore of O 170 mm 20 T dc magnet, and the sample space O 130 mm allows test coils with ~O 110 mm and 140 mm height. A fast data acquisition method at sampling period of 0.1 ms was developed for coil quench test program, and a working principle of the method is demonstrated for a small test coil. To accommodate high current required in tests such as Ic and hoop stress tests, the new current leads were manufactured with an optimal current measured in the range of 600 ~ 700 A, which was sufficient for the envisaged coil tests. For short duration, the current lead could carry more than 1000 A without any influence of overheating in short sample Ic test. A demonstration of short sample Ic test is also presented.
- Published
- 2013
- Full Text
- View/download PDF
46. How can cybersecurity be enhanced in existing substations minimizing impact on the automation and control system
- Author
-
Jérôme Arnaud and Jean-Michel Rey
- Subjects
Engineering ,business.industry ,Communication link ,Attack surface ,Computer security ,computer.software_genre ,Automation ,Software ,Cyber security standards ,Control system ,High availability ,Malware ,business ,computer - Abstract
Most of existing substations were commissioned in a time when the only communication link was a private telecontrol bus. Since then, DSO and utilities practices have evolved and require more connectivity to the substation. These new practices and the increasing threat of malware have raised cyber security awareness. Even though a protection and automation control system is becoming more and more an IT system, it has its specific constraints (high availability, highly distributed, weak connectivity and a long lifecycle) and must be treated accordingly. The authors have collected technical security practices from the IT world and selected those that can be applied to a commissioned substation and require no change to the substation automation core software. While implementation of these techniques will not lead to full compliance to cyber security standards (such as NERC CIP) or recommendations (such as NISTIR 7628), the substation “attack surface” will be greatly reduced for a low cost. (4 pages)
- Published
- 2013
- Full Text
- View/download PDF
47. HTS insert magnet design study
- Author
-
C. Pes, Philippe Fazilleau, Jean-Michel Rey, J. Fleiter, G. Volpini, Massimo Sorbi, François Debray, Antti Stenvall, Pascal Tixador, M. Devaux, J.M. Rifflet, T. Lecrevisse, Département des Accélérateurs, de Cryogénie et de Magnétisme (ex SACM) (DACM), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire national des champs magnétiques intenses - Grenoble (LNCMI-G), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), CERN [Genève], INFN Sezione di Milano-Bicocca, Istituto Nazionale di Fisica Nucleare (INFN), Tampere University of Technology [Tampere] (TUT), Magnétisme et Supraconductivité (NEEL - MagSup), Institut Néel (NEEL), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Génie Electrique de Grenoble (G2ELab), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS), Laboratoire national des champs magnétiques intenses - Grenoble (LNCMI), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Joseph Fourier - Grenoble 1 (UJF)-Université Grenoble Alpes (UGA), Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement (LAMBE - UMR 8587), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Preuves, Programmes et Systèmes (PPS), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Medical Radiation Physics - Department of Clinical Sciences Lund, Lund University [Lund], Magnétisme et Supraconductivité (MagSup ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,High-temperature superconductivity ,Superconducting magnet ,YBaCuO ,01 natural sciences ,law.invention ,chemistry.chemical_compound ,Nuclear magnetic resonance ,law ,0103 physical sciences ,Electrical and Electronic Engineering ,010306 general physics ,Electrical conductor ,ComputingMilieux_MISCELLANEOUS ,high temperature superconductor ,010302 applied physics ,Superconductivity ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,Yttrium barium copper oxide ,Condensed Matter Physics ,Accelerators and Storage Rings ,Engineering physics ,Electronic, Optical and Magnetic Materials ,Super-conducting High Field Magnets for higher luminosities and energies [7] ,chemistry ,Electromagnetic coil ,Magnet ,High field magnet ,Current density - Abstract
Future accelerator magnets will need to reach higher field in the range of 20 T. This field level is very difficult to reach using only Low Temperature Superconductor materials whereas High Temperature Superconductors (HTS) provide interesting opportunities. High current densities and stress levels are needed to design such magnets. YBCO superconductor indeed carries large current densities under high magnetic field and provides good mechanical properties especially when produced using the IBAD approach. The HFM EUCARD program studies the design and the realization of an HTS insert of 6 T inside a Nb$_{3}$Sn dipole of 13T at 4.2 K. In the2HTS insert, engineering current densities higher than 250 MA/m under 19 T are required to fulfill the specifications. The stress level is also very severe. YBCO IBAD tapes theoretically meet these challenges from presented measurements. The insert protection is also a critical because HTS materials show low quench propagation velocities and the coupling with the Nb$_{3}$Sn magnet makes the problem even more challenging. The magnetic and mechanical designs of the HTS insert as well as some protection investigation ways will be presented.
- Published
- 2012
- Full Text
- View/download PDF
48. Characterization of YBCO Coated Conductors Under High Magnetic Field at LNCMI
- Author
-
T. Lecrevisse, E. Mossang, C.E. Bruzek, Jean-Michel Rey, F. Debray, Xavier Chaud, L. Ronayette, P. Brosse-Maron, A.-J Vialle, Pascal Tixador, Laboratoire national des champs magnétiques intenses - Grenoble (LNCMI-G), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, X'Press (X'Press), Institut Néel (NEEL), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), Cryogénie (Cryo), Laboratoire de Génie Electrique de Grenoble (G2ELab), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS), Magnétisme et Supraconductivité (MagSup), Département des Accélérateurs, de Cryogénie et de Magnétisme (ex SACM) (DACM), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Nexans France, Nexans, Université Joseph Fourier - Grenoble 1 (UJF)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), X'Press : diffraction et hautes pressions (NEEL - X'Press), Cryogénie (NEEL - Cryo), and Magnétisme et Supraconductivité (NEEL - MagSup)
- Subjects
Materials science ,High-temperature superconductivity ,02 engineering and technology ,Superconducting magnet ,7. Clean energy ,01 natural sciences ,Temperature measurement ,law.invention ,chemistry.chemical_compound ,Nuclear magnetic resonance ,law ,0103 physical sciences ,Electrical and Electronic Engineering ,010306 general physics ,Ion beam-assisted deposition ,Electrical conductor ,ComputingMilieux_MISCELLANEOUS ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,Yttrium barium copper oxide ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Engineering physics ,Electronic, Optical and Magnetic Materials ,Characterization (materials science) ,chemistry ,Magnet ,0210 nano-technology - Abstract
The second generation (2G) HTS conductors, the YBaCuO Coated Conductors, show very exciting performances in terms of critical currents under very high fields whereas their mechanical properties, the key issues for very high field magnets, are outstanding for the IBAD (Ion Beam Assisted Deposition) route. Preliminary measurements have shown critical currents Ic above 500 A at 15 T and 4 K on commercial YBCO coated conductors. They are now available in reasonable length and manufacturing focus to provide reliable, consistent performance conductors. With these high critical current and tensile strength above 600 MPa, these conductors are very promising for making HTS superconducting coils able to generate very high field. But very few characterizations exist above 20 T. LNCMI is one of the few facilities in the world where such measurement can be performed.
- Published
- 2012
- Full Text
- View/download PDF
49. Critical current reduction in coated conductors when in-plane fields are applied
- Author
-
P. Bernstein, Jean-Michel Rey, Th. Lécrevisse, C. McLoughlin, Yohann Thimont, Département des Accélérateurs, de Cryogénie et de Magnétisme (ex SACM) (DACM), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire de cristallographie et sciences des matériaux (CRISMAT), École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC), Dublin City University [Dublin] (DCU), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), and Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Superconductivity ,High-temperature superconductivity ,Materials science ,Field (physics) ,Thin films ,Flux penetration ,General Physics and Astronomy ,YBA2CU3O7-DELTA ,Substrate (electronics) ,NI-ALLOY SUBSTRATE ,01 natural sciences ,law.invention ,Crystallographic defects ,HIGH-TEMPERATURE SUPERCONDUCTORS ,Electromagnetism ,THIN-FILMS ,Electrostatics ,law ,0103 physical sciences ,FLUX-PENETRATION ,Heterostructures ,Superconductors ,Thin film ,010306 general physics ,Electrical conductor ,LOSSES ,010302 applied physics ,[PHYS]Physics [physics] ,Range (particle radiation) ,Condensed matter physics ,MAGNETIC-FIELD ,Yba2cu3o7-Detla ,Magnetic field ,Magnetic fields ,Ferromagnetic materials ,Quantum vortices ,Reduction (mathematics) - Abstract
International audience; We report measurements of the critical current of two commercial coated conductors at low temperatures when in-plane magnetic fields up to 15 T are applied. The comparison between the two samples suggests that the presence of a magnetic substrate may have a detrimental effect, at least at low and medium fields. Nevertheless, the critical current density at 30 K and 15 T is in the range of that measured in self field at 77 K. We ascribe its reduction in presence of the field to inter-vortex forces.
- Published
- 2012
- Full Text
- View/download PDF
50. Paul Valéry : strategie del sensibile
- Author
-
Zaccarello, Benedetta, Fabrizio, Desideri, Jean-Michel, Rey, Littérature, idéologies, représentations, XVIIIe-XIXe siècles (LIRE), Université Stendhal - Grenoble 3-École normale supérieure - Lyon (ENS Lyon)-Université Lumière - Lyon 2 (UL2)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Chercheur indépendant, and Université Stendhal - Grenoble 3-École normale supérieure de Lyon (ENS de Lyon)-Université Lumière - Lyon 2 (UL2)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SHS.PHIL]Humanities and Social Sciences/Philosophy ,Expérience ,Perception ,Sensibility ,Sensibilité ,Valéry ,Art - Abstract
Publication en ligne : http://www.fupress.net/index.php/aisthesis/article/view/11046/10498; Sensibilité is in Valéry's theory the name of a large grasp of functions, involving both perception and creation, and involved both in art and in experience. So far, this key word of Valéry's aesthetics can be read as the bridge between his conceptions of art and his idea of the self in order to understand the way this author writes and conceives what philosophy can aim to.; Le "sensible", dans la théorie valéryenne, nomme une large variété de fonctions, de la perception à la création, et joue un rôle crucial dans l'art comme dans l'expérience ordinaire. Ce concept clé de l'esthétique de Valéry se prête alors à être lu comme le point de contact entre son idée de l'art et la théorie du soi développée par cet auteur, se proposant ainsi comme une de pierres de touche de toute sa philosophie.
- Published
- 2012
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.