Sylvain David, C. Pascal, Pauline Serre, Jean-Michel Missiaen, Céline Ternon, Jean-Marie Lebrun, Thierry Baron, Thierry Luciani, Virginie Brouzet, Maxime Legallais, Laboratoire des matériaux et du génie physique (LMGP ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des technologies de la microélectronique (LTM), Université Joseph Fourier - Grenoble 1 (UJF)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Science et Ingénierie des Matériaux et Procédés (SIMaP), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Microélectronique, Electromagnétisme et Photonique - Laboratoire d'Hyperfréquences et Caractérisation (IMEP-LAHC), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), European Project: 257375,ICT,FP7-ICT-2009-5,NANOFUNCTION(2010), Institut National Polytechnique de Grenoble (INPG)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Institut National Polytechnique de Grenoble (INPG), and Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)
International audience; The development of functional devices compatible with standard microelectronic processes is central to the More‐than‐Moore and Beyond‐CMOS (complementary metal oxide semiconductor) electronic fields. Devices based on nanowires (NWs) are very promising, but their integration remains complex and submitted to variability limiting the potential scalability. The field of flexible electronics is another one in which the standard microelectronic industry struggles to propose a solution. Despite tremendous progress, organic materials remain highly sensitive to oxygen and humidity and deteriorate under UV irradiation, thus limiting their long‐term operation. Here, it is shown that Si NW networks, also called Si nanonets, provide an easy‐to‐process single answer to develop flexible electronics and NW‐based devices. As a major contribution to the state of the art, it is demonstrated that stable Si NW–NW junctions, insensitive to oxidation, can be formed with low variability, which opens up a new route to form reproducible and reliable devices, with long‐term performances, presumably over several years, for NW‐based or flexible devices using Si as active element.