19 results on '"Jean-Marc G. Daran"'
Search Results
2. The complete genome sequence of the nitrile biocatalyst Rhodococcus rhodochrous ATCC BAA-870
- Author
-
Joni Frederick, Fritha Hennessy, Uli Horn, Pilar de la Torre Cortés, Marcel van den Broek, Ulrich Strych, Richard Willson, Charles A. Hefer, Jean-Marc G. Daran, Trevor Sewell, Linda G. Otten, and Dean Brady
- Subjects
Biotechnology ,TP248.13-248.65 ,Genetics ,QH426-470 - Abstract
Abstract Background Rhodococci are industrially important soil-dwelling Gram-positive bacteria that are well known for both nitrile hydrolysis and oxidative metabolism of aromatics. Rhodococcus rhodochrous ATCC BAA-870 is capable of metabolising a wide range of aliphatic and aromatic nitriles and amides. The genome of the organism was sequenced and analysed in order to better understand this whole cell biocatalyst. Results The genome of R. rhodochrous ATCC BAA-870 is the first Rhodococcus genome fully sequenced using Nanopore sequencing. The circular genome contains 5.9 megabase pairs (Mbp) and includes a 0.53 Mbp linear plasmid, that together encode 7548 predicted protein sequences according to BASys annotation, and 5535 predicted protein sequences according to RAST annotation. The genome contains numerous oxidoreductases, 15 identified antibiotic and secondary metabolite gene clusters, several terpene and nonribosomal peptide synthetase clusters, as well as 6 putative clusters of unknown type. The 0.53 Mbp plasmid encodes 677 predicted genes and contains the nitrile converting gene cluster, including a nitrilase, a low molecular weight nitrile hydratase, and an enantioselective amidase. Although there are fewer biotechnologically relevant enzymes compared to those found in rhodococci with larger genomes, such as the well-known Rhodococcus jostii RHA1, the abundance of transporters in combination with the myriad of enzymes found in strain BAA-870 might make it more suitable for use in industrially relevant processes than other rhodococci. Conclusions The sequence and comprehensive description of the R. rhodochrous ATCC BAA-870 genome will facilitate the additional exploitation of rhodococci for biotechnological applications, as well as enable further characterisation of this model organism. The genome encodes a wide range of enzymes, many with unknown substrate specificities supporting potential applications in biotechnology, including nitrilases, nitrile hydratase, monooxygenases, cytochrome P450s, reductases, proteases, lipases, and transaminases.
- Published
- 2020
- Full Text
- View/download PDF
3. Chromosome level assembly and comparative genome analysis confirm lager-brewing yeasts originated from a single hybridization
- Author
-
Alex N. Salazar, Arthur R. Gorter de Vries, Marcel van den Broek, Nick Brouwers, Pilar de la Torre Cortès, Niels G. A. Kuijpers, Jean-Marc G. Daran, and Thomas Abeel
- Subjects
Lager yeast ,Genome assembly ,Long-read sequencing ,Nanopore sequencing ,Biotechnology ,TP248.13-248.65 ,Genetics ,QH426-470 - Abstract
Abstract Background The lager brewing yeast, S. pastorianus, is a hybrid between S. cerevisiae and S. eubayanus with extensive chromosome aneuploidy. S. pastorianus is subdivided into Group 1 and Group 2 strains, where Group 2 strains have higher copy number and a larger degree of heterozygosity for S. cerevisiae chromosomes. As a result, Group 2 strains were hypothesized to have emerged from a hybridization event distinct from Group 1 strains. Current genome assemblies of S. pastorianus strains are incomplete and highly fragmented, limiting our ability to investigate their evolutionary history. Results To fill this gap, we generated a chromosome-level genome assembly of the S. pastorianus strain CBS 1483 from Oxford Nanopore MinION DNA sequencing data and analysed the newly assembled subtelomeric regions and chromosome heterozygosity. To analyse the evolutionary history of S. pastorianus strains, we developed Alpaca: a method to compute sequence similarity between genomes without assuming linear evolution. Alpaca revealed high similarities between the S. cerevisiae subgenomes of Group 1 and 2 strains, and marked differences from sequenced S. cerevisiae strains. Conclusions Our findings suggest that Group 1 and Group 2 strains originated from a single hybridization involving a heterozygous S. cerevisiae strain, followed by different evolutionary trajectories. The clear differences between both groups may originate from a severe population bottleneck caused by the isolation of the first pure cultures. Alpaca provides a computationally inexpensive method to analyse evolutionary relationships while considering non-linear evolution such as horizontal gene transfer and sexual reproduction, providing a complementary viewpoint beyond traditional phylogenetic approaches.
- Published
- 2019
- Full Text
- View/download PDF
4. Improving Industrially Relevant Phenotypic Traits by Engineering Chromosome Copy Number in Saccharomyces pastorianus
- Author
-
Arthur R. Gorter de Vries, Ewout Knibbe, Roderick van Roosmalen, Marcel van den Broek, Pilar de la Torre Cortés, Stephanie F. O’Herne, Pascal A. Vijverberg, Anissa el Masoudi, Nick Brouwers, Jack T. Pronk, and Jean-Marc G. Daran
- Subjects
Saccharomyces pastorianus ,chromosome missegregation ,chromosome copy number stability ,strain engineering ,lager beer brewing ,Genetics ,QH426-470 - Abstract
The lager-brewing yeast Saccharomyces pastorianus is a hybrid between S. cerevisiae and S. eubayanus with an exceptional degree of aneuploidy. While chromosome copy number variation (CCNV) is present in many industrial Saccharomyces strains and has been linked to various industrially-relevant traits, its impact on the brewing performance of S. pastorianus remains elusive. Here we attempt to delete single copies of chromosomes which are relevant for the production of off-flavor compound diacetyl by centromere silencing. However, the engineered strains display CNV of multiple non-targeted chromosomes. We attribute this unintended CCNV to inherent instability and to a mutagenic effect of electroporation and of centromere-silencing. Regardless, the resulting strains displayed large phenotypic diversity. By growing centromere-silenced cells in repeated sequential batches in medium containing 10% ethanol, mutants with increased ethanol tolerance were obtained. By using CCNV mutagenesis by exposure to the mitotic inhibitor MBC, selection in the same set-up yielded even more tolerant mutants that would not classify as genetically modified organisms. These results show that CCNV of alloaneuploid S. pastorianus genomes is highly unstable, and that CCNV mutagenesis can generate broad diversity. Coupled to effective selection or screening, CCNV mutagenesis presents a potent tool for strain improvement.
- Published
- 2020
- Full Text
- View/download PDF
5. The Penicillium chrysogenum transporter PcAraT enables high-affinity, glucose-insensitive l-arabinose transport in Saccharomyces cerevisiae
- Author
-
Jasmine M. Bracher, Maarten D. Verhoeven, H. Wouter Wisselink, Barbara Crimi, Jeroen G. Nijland, Arnold J. M. Driessen, Paul Klaassen, Antonius J. A. van Maris, Jean-Marc G. Daran, and Jack T. Pronk
- Subjects
Penicillium ,Transcriptome ,Sugar transport ,Proton symport ,l-Arabinose transporter ,Second-generation bioethanol ,Fuel ,TP315-360 ,Biotechnology ,TP248.13-248.65 - Abstract
Abstract Background l-Arabinose occurs at economically relevant levels in lignocellulosic hydrolysates. Its low-affinity uptake via the Saccharomyces cerevisiae Gal2 galactose transporter is inhibited by d-glucose. Especially at low concentrations of l-arabinose, uptake is an important rate-controlling step in the complete conversion of these feedstocks by engineered pentose-metabolizing S. cerevisiae strains. Results Chemostat-based transcriptome analysis yielded 16 putative sugar transporter genes in the filamentous fungus Penicillium chrysogenum whose transcript levels were at least threefold higher in l-arabinose-limited cultures than in d-glucose-limited and ethanol-limited cultures. Of five genes, that encoded putative transport proteins and showed an over 30-fold higher transcript level in l-arabinose-grown cultures compared to d-glucose-grown cultures, only one (Pc20g01790) restored growth on l-arabinose upon expression in an engineered l-arabinose-fermenting S. cerevisiae strain in which the endogenous l-arabinose transporter, GAL2, had been deleted. Sugar transport assays indicated that this fungal transporter, designated as PcAraT, is a high-affinity (K m = 0.13 mM), high-specificity l-arabinose-proton symporter that does not transport d-xylose or d-glucose. An l-arabinose-metabolizing S. cerevisiae strain in which GAL2 was replaced by PcaraT showed 450-fold lower residual substrate concentrations in l-arabinose-limited chemostat cultures than a congenic strain in which l-arabinose import depended on Gal2 (4.2 × 10−3 and 1.8 g L−1, respectively). Inhibition of l-arabinose transport by the most abundant sugars in hydrolysates, d-glucose and d-xylose was far less pronounced than observed with Gal2. Expression of PcAraT in a hexose-phosphorylation-deficient, l-arabinose-metabolizing S. cerevisiae strain enabled growth in media supplemented with both 20 g L−1 l-arabinose and 20 g L−1 d-glucose, which completely inhibited growth of a congenic strain in the same condition that depended on l-arabinose transport via Gal2. Conclusion Its high affinity and specificity for l-arabinose, combined with limited sensitivity to inhibition by d-glucose and d-xylose, make PcAraT a valuable transporter for application in metabolic engineering strategies aimed at engineering S. cerevisiae strains for efficient conversion of lignocellulosic hydrolysates.
- Published
- 2018
- Full Text
- View/download PDF
6. CRISPR-Cas9 mediated gene deletions in lager yeast Saccharomyces pastorianus
- Author
-
Arthur R. Gorter de Vries, Philip A. de Groot, Marcel van den Broek, and Jean-Marc G. Daran
- Subjects
Saccharomyces pastorianus ,Brewing ,CRISPR-Cas9 ,Genome editing ,Ribozymes ,Microbiology ,QR1-502 - Abstract
Abstract Background The ease of use of CRISPR-Cas9 reprogramming, its high efficacy, and its multiplexing capabilities have brought this technology at the forefront of genome editing techniques. Saccharomyces pastorianus is an aneuploid interspecific hybrid of Saccharomyces cerevisiae and Saccharomyces eubayanus that has been domesticated for centuries and is used for the industrial fermentation of lager beer. For yet uncharacterised reasons, this hybrid yeast is far more resilient to genetic alteration than its ancestor S. cerevisiae. Results This study reports a new CRISPR-Cas9 method for accurate gene deletion in S. pastorianus. This method combined the Streptococcus pyogenes cas9 gene expressed from either a chromosomal locus or from a mobile genetic element in combination with a plasmid-borne gRNA expression cassette. While the well-established gRNA expression system using the RNA polymerase III dependent SNR52 promoter failed, expression of a gRNA flanked with Hammerhead and Hepatitis Delta Virus ribozymes using the RNA polymerase II dependent TDH3 promoter successfully led to accurate deletion of all four alleles of the SeILV6 gene in strain CBS1483. Furthermore the expression of two ribozyme-flanked gRNAs separated by a 10-bp linker in a polycistronic array successfully led to the simultaneous deletion of SeATF1 and SeATF2, genes located on two separate chromosomes. The expression of this array resulted in the precise deletion of all five and four alleles mediated by homologous recombination in the strains CBS1483 and Weihenstephan 34/70 respectively, demonstrating the multiplexing abilities of this gRNA expression design. Conclusions These results firmly established that CRISPR-Cas9 significantly facilitates and accelerates genome editing in S. pastorianus.
- Published
- 2017
- Full Text
- View/download PDF
7. Biological Parts for Kluyveromyces marxianus Synthetic Biology
- Author
-
Arun S. Rajkumar, Javier A. Varela, Hannes Juergens, Jean-Marc G. Daran, and John P. Morrissey
- Subjects
Kluyveromyces ,synthetic biology ,metabolic engineering ,genome engineering ,yeast ,Biotechnology ,TP248.13-248.65 - Abstract
Kluyveromyces marxianus is a non-conventional yeast whose physiology and metabolism lends itself to diverse biotechnological applications. While the wild-type yeast is already in use for producing fragrances and fermented products, the lack of standardised tools for its genetic and metabolic engineering prevent it from being used as a next-generation cell factory for bio-based chemicals. In this paper, we bring together and characterise a set of native K. marxianus parts for the expression of multiple genes for metabolic engineering and synthetic biology. All parts are cloned and stored according to the MoClo/Yeast Tool Kit standard for quick sharing and rapid construction. Using available genomic and transcriptomic data, we have selected promoters and terminators to fine-tune constitutive and inducible gene expression. The collection includes a number of known centromeres and autonomously replication sequences (ARS). We also provide a number of chromosomal integration sites selected for efficiency or visible phenotypes for rapid screening. Finally, we provide a single-plasmid CRISPR/Cas9 platform for genome engineering and facilitated gene targeting, and rationally create auxotrophic strains to expand the common range of selection markers available to K. marxianus. The curated and characterised tools we have provided in this kit will serve as a base to efficiently build next-generation cell factories from this alternative yeast. Plasmids containing all parts are available at Addgene for public distribution.
- Published
- 2019
- Full Text
- View/download PDF
8. Phenotype-Independent Isolation of Interspecies Saccharomyces Hybrids by Dual-Dye Fluorescent Staining and Fluorescence-Activated Cell Sorting
- Author
-
Arthur R. Gorter de Vries, Charlotte C. Koster, Susan M. Weening, Marijke A. H. Luttik, Niels G. A. Kuijpers, Jan-Maarten A. Geertman, Jack T. Pronk, and Jean-Marc G. Daran
- Subjects
FACS ,Saccharomyces eubayanus × Saccharomyces cerevisiae hybrids ,heterosis ,marker-free mating ,lager beer brewing ,non-GMO ,Microbiology ,QR1-502 - Abstract
Interspecies hybrids of Saccharomyces species are found in a variety of industrial environments and often outperform their parental strains in industrial fermentation processes. Interspecies hybridization is therefore increasingly considered as an approach for improvement and diversification of yeast strains for industrial application. However, current hybridization methods are limited by their reliance on pre-existing or introduced selectable phenotypes. This study presents a high-throughput phenotype-independent method for isolation of interspecies Saccharomyces hybrids based on dual dye-staining and subsequent mating of two strains, followed by enrichment of double-stained hybrid cells from a mating population by fluorescence-activated cell sorting (FACS). Pilot experiments on intra-species mating of heterothallic haploid S. cerevisiae strains showed that 80% of sorted double-stained cells were hybrids. The protocol was further optimized by mating an S. cerevisiae haploid with homothallic S. eubayanus spores with complementary selectable phenotypes. In crosses without selectable phenotype, using S. cerevisiae and S. eubayanus haploids derived from laboratory as well as industrial strains, 10 to 15% of double-stained cells isolated by FACS were hybrids. When applied to rare mating, sorting of double-stained cells consistently resulted in about 600-fold enrichment of hybrid cells. Mating of dual-stained cells and FACS-based selection allows efficient enrichment of interspecies Saccharomyces hybrids within a matter of days and without requiring selectable hybrid phenotypes, both for homothallic and heterothallic strains. This strategy should accelerate the isolation of laboratory-made hybrids, facilitate research into hybrid heterosis and offer new opportunities for non-GM industrial strain improvement and diversification.
- Published
- 2019
- Full Text
- View/download PDF
9. Laboratory Evolution of a Saccharomyces cerevisiae × S. eubayanus Hybrid Under Simulated Lager-Brewing Conditions
- Author
-
Arthur R. Gorter de Vries, Maaike A. Voskamp, Aafke C. A. van Aalst, Line H. Kristensen, Liset Jansen, Marcel van den Broek, Alex N. Salazar, Nick Brouwers, Thomas Abeel, Jack T. Pronk, and Jean-Marc G. Daran
- Subjects
Saccharomyces pastorianus ,loss of heterozygosity ,laboratory evolution ,domestication ,maltotriose utilization ,flocculation ,Genetics ,QH426-470 - Abstract
Saccharomyces pastorianus lager-brewing yeasts are domesticated hybrids of S. cerevisiae x S. eubayanus that display extensive inter-strain chromosome copy number variation and chromosomal recombinations. It is unclear to what extent such genome rearrangements are intrinsic to the domestication of hybrid brewing yeasts and whether they contribute to their industrial performance. Here, an allodiploid laboratory hybrid of S. cerevisiae and S. eubayanus was evolved for up to 418 generations on wort under simulated lager-brewing conditions in six independent sequential batch bioreactors. Characterization of 55 single-cell isolates from the evolved cultures showed large phenotypic diversity and whole-genome sequencing revealed a large array of mutations. Frequent loss of heterozygosity involved diverse, strain-specific chromosomal translocations, which differed from those observed in domesticated, aneuploid S. pastorianus brewing strains. In contrast to the extensive aneuploidy of domesticated S. pastorianus strains, the evolved isolates only showed limited (segmental) aneuploidy. Specific mutations could be linked to calcium-dependent flocculation, loss of maltotriose utilization and loss of mitochondrial activity, three industrially relevant traits that also occur in domesticated S. pastorianus strains. This study indicates that fast acquisition of extensive aneuploidy is not required for genetic adaptation of S. cerevisiae × S. eubayanus hybrids to brewing environments. In addition, this work demonstrates that, consistent with the diversity of brewing strains for maltotriose utilization, domestication under brewing conditions can result in loss of this industrially relevant trait. These observations have important implications for the design of strategies to improve industrial performance of novel laboratory-made hybrids.
- Published
- 2019
- Full Text
- View/download PDF
10. Structural, Physiological and Regulatory Analysis of Maltose Transporter Genes in Saccharomyces eubayanus CBS 12357T
- Author
-
Anja Brickwedde, Nick Brouwers, Marcel van den Broek, Joan S. Gallego Murillo, Julie L. Fraiture, Jack T. Pronk, and Jean-Marc G. Daran
- Subjects
yeast ,brewing ,domestication ,gene regulation ,wort ,transport ,Microbiology ,QR1-502 - Abstract
Saccharomyces pastorianus lager brewing yeasts are domesticated hybrids of Saccharomyces cerevisiae and cold-tolerant Saccharomyces eubayanus. To understand the contribution of both parental genomes to maltose metabolism in brewing wort, this study focuses on maltose transport in the S. eubayanus type strain CBS 12357T/FM1318. To obtain complete sequences of the MAL loci of this strain, a near-complete genome assembly was generated using the Oxford Nanopore Technology MinION sequencing platform. Except for CHRXII, all sixteen chromosomes were assembled as single contigs. Four loci harboring putative maltose transporter genes (SeMALT1-4), located in subtelomeric regions of CHRII, CHRV, CHRXIII, and CHRXVI, were completely resolved. The near-identical loci on CHRV and CHRXVI strongly resembled canonical S. cerevisiae MAL loci, while those on CHRII and CHRXIII showed different structures suggestive of gene loss. Overexpression of SeMALT1-4 in a maltose-transport-deficient S. cerevisiae strain restored growth on maltose, but not on maltotriose, indicating maltose-specific transport functionality of all four transporters. Simultaneous CRISPR-Cas9-assisted deletion of only SeMALT2 and SeMALT4, which shared 99.7% sequence identity, eliminated growth of S. eubayanus CBS 12357T on maltose. Transcriptome analysis of S. eubayanus CBS 12357T established that SeMALT1 and SeMALT3, are poorly expressed in maltose-grown cultures, while SeMALT2 and SeMALT4 were expressed at much higher levels than SeMALT1 and SeMALT3, indicating that only SeMALT2/4 are responsible for maltose consumption in CBS 12357T. These results represent a first genomic and physiological characterization of maltose transport in S. eubayanus CBS 12357T and provides a valuable resource for further industrial exploitation of this yeast.
- Published
- 2018
- Full Text
- View/download PDF
11. Selection of Pof-Saccharomyces eubayanus Variants for the Construction of S. cerevisiae × S. eubayanus Hybrids With Reduced 4-Vinyl Guaiacol Formation
- Author
-
Jasper A. Diderich, Susan M. Weening, Marcel van den Broek, Jack T. Pronk, and Jean-Marc G. Daran
- Subjects
4-vinyl guaiacol ,hybridization ,genetic ,high-throughput screening (HTS) ,brewing fermentation ,ferulic acid ,Microbiology ,QR1-502 - Abstract
Saccharomyces pastorianus is an interspecies hybrid between S. cerevisiae and S. eubayanus. The identification of the parental species of S. pastorianus enabled the de novo reconstruction of hybrids that could potentially combine a wide array of phenotypic traits. Lager yeasts are characterized by their inability to decarboxylate ferulic acid present in wort, a phenotype also known as Pof- (phenolic off-flavor). However, all known S. eubayanus strains characterized so far produce clove-like aroma specific of 4-vinyl guaiacol, a decarboxylated form of ferulic acid. This study explored a non-GMO approach to construct Pof-S. eubayanus variants derived from the parental strain S. eubayanus CBS 12357. To rapidly screen a population of UV-mutagenized cells two complementary assays were developed. The first assay was based on the difference of light absorption spectra of ferulic acid and 4-vinyl guaiacol, while the second was based on the difference of sensitivity of Pof- and Pof+ strains to cinnamic acid. The S. eubayanus variant HTSE042 was selected and was confirmed not to produce 4-vinyl guaiacol. Whole genome sequencing revealed that this variant lost the subtelomeric region of the CHRXIII right arm that carried the two clustered genes SePAD1- SeFDC1 whose deletion in a naïve S. eubayanus strain (CBS 12357/FM1318) resulted in an identical phenotype. Subsequently, the Pof- variant was crossed with a Pof-S. cerevisiae partner. The resulting hybrid was not able to convert ferulic acid demonstrating the undisputable value of the mutagenized variant HTSE042 to eventually construct S. cerevisiae × S. eubayanus hybrids with phenotypic characteristics of S. pastorianus.
- Published
- 2018
- Full Text
- View/download PDF
12. Evolutionary Engineering in Chemostat Cultures for Improved Maltotriose Fermentation Kinetics in Saccharomyces pastorianus Lager Brewing Yeast
- Author
-
Anja Brickwedde, Marcel van den Broek, Jan-Maarten A. Geertman, Frederico Magalhães, Niels G. A. Kuijpers, Brian Gibson, Jack T. Pronk, and Jean-Marc G. Daran
- Subjects
brewing ,Sacchromyces pastorianus ,evolutionary engineering ,chemostat ,maltose ,maltotriose consumption rate ,Microbiology ,QR1-502 - Abstract
The lager brewing yeast Saccharomyces pastorianus, an interspecies hybrid of S. eubayanus and S. cerevisiae, ferments maltotriose, maltose, sucrose, glucose and fructose in wort to ethanol and carbon dioxide. Complete and timely conversion (“attenuation”) of maltotriose by industrial S. pastorianus strains is a key requirement for process intensification. This study explores a new evolutionary engineering strategy for improving maltotriose fermentation kinetics. Prolonged carbon-limited, anaerobic chemostat cultivation of the reference strain S. pastorianus CBS1483 on a maltotriose-enriched sugar mixture was used to select for spontaneous mutants with improved affinity for maltotriose. Evolved populations exhibited an up to 5-fold lower residual maltotriose concentration and a higher ethanol concentration than the parental strain. Uptake studies with 14C-labeled sugars revealed an up to 4.75-fold higher transport capacity for maltotriose in evolved strains. In laboratory batch cultures on wort, evolved strains showed improved attenuation and higher ethanol concentrations. These improvements were also observed in pilot fermentations at 1,000-L scale with high-gravity wort. Although the evolved strain exhibited multiple chromosomal copy number changes, analysis of beer made from pilot fermentations showed no negative effects on flavor compound profiles. These results demonstrate the potential of evolutionary engineering for strain improvement of hybrid, alloploid brewing strains.
- Published
- 2017
- Full Text
- View/download PDF
13. Requirements for Carnitine Shuttle-Mediated Translocation of Mitochondrial Acetyl Moieties to the Yeast Cytosol
- Author
-
Harmen M. van Rossum, Barbara U. Kozak, Matthijs S. Niemeijer, James C. Dykstra, Marijke A. H. Luttik, Jean-Marc G. Daran, Antonius J. A. van Maris, and Jack T. Pronk
- Subjects
Microbiology ,QR1-502 - Abstract
ABSTRACT In many eukaryotes, the carnitine shuttle plays a key role in intracellular transport of acyl moieties. Fatty acid-grown Saccharomyces cerevisiae cells employ this shuttle to translocate acetyl units into their mitochondria. Mechanistically, the carnitine shuttle should be reversible, but previous studies indicate that carnitine shuttle-mediated export of mitochondrial acetyl units to the yeast cytosol does not occur in vivo. This apparent unidirectionality was investigated by constitutively expressing genes encoding carnitine shuttle-related proteins in an engineered S. cerevisiae strain, in which cytosolic acetyl coenzyme A (acetyl-CoA) synthesis could be switched off by omitting lipoic acid from growth media. Laboratory evolution of this strain yielded mutants whose growth on glucose, in the absence of lipoic acid, was l-carnitine dependent, indicating that in vivo export of mitochondrial acetyl units to the cytosol occurred via the carnitine shuttle. The mitochondrial pyruvate dehydrogenase complex was identified as the predominant source of acetyl-CoA in the evolved strains. Whole-genome sequencing revealed mutations in genes involved in mitochondrial fatty acid synthesis (MCT1), nuclear-mitochondrial communication (RTG2), and encoding a carnitine acetyltransferase (YAT2). Introduction of these mutations into the nonevolved parental strain enabled l-carnitine-dependent growth on glucose. This study indicates intramitochondrial acetyl-CoA concentration and constitutive expression of carnitine shuttle genes as key factors in enabling in vivo export of mitochondrial acetyl units via the carnitine shuttle. IMPORTANCE This study demonstrates, for the first time, that Saccharomyces cerevisiae can be engineered to employ the carnitine shuttle for export of acetyl moieties from the mitochondria and, thereby, to act as the sole source of cytosolic acetyl-CoA. Further optimization of this ATP-independent mechanism for cytosolic acetyl-CoA provision can contribute to efficient, yeast-based production of industrially relevant compounds derived from this precursor. The strains constructed in this study, whose growth on glucose depends on a functional carnitine shuttle, provide valuable models for further functional analysis and engineering of this shuttle in yeast and other eukaryotes.
- Published
- 2016
- Full Text
- View/download PDF
14. Improving CRISPR-Cas9 mediated genome integration in interspecific hybrid yeasts
- Author
-
Nicole X. Bennis, Matic Kostanjšek, Marcel van den Broek, and Jean-Marc G. Daran
- Subjects
Landing sites ,Loss of heterozygosity ,Bioengineering ,General Medicine ,CRISPR-Cas9 ,Genome modifications ,Molecular Biology ,Allo-aneuploid ,Saccharomyces pastorianus ,Biotechnology - Abstract
Saccharomyces pastorianus is not a classical taxon, it is an interspecific hybrid resulting from the cross of Saccharomyces cerevisiae and Saccharomyces eubayanus. Exhibiting heterosis for phenotypic traits such as wort α-oligosaccharide consumption and fermentation at low temperature, it has been domesticated to become the main workhorse of the brewing industry. Although CRISPR-Cas9 has been shown to be functional in S. pastorianus, repair of CRISPR-induced double strand breaks is unpredictable and preferentially uses the homoeologous chromosome as template, preventing targeted introduction of the desired repair construct. Here, we demonstrate that lager hybrids can be edited with near 100% efficiency at carefully selected landing sites on the chimeric SeScCHRIII. The landing sites were systematically selected and evaluated for (i) absence of loss of heterozygosity upon CRISPR-editing, (ii) efficiency of the gRNA, and (iii) absence of effect on strain physiology. Successful examples of highly efficient single and double gene integration illustrated that genome editing can be applied in interspecies hybrids, paving the way to a new impulse to lager yeast strain development.
- Published
- 2023
15. The complete genome sequence of the nitrile biocatalyst Rhodocccus rhodochrous ATCC BAA-870
- Author
-
Joni Frederick, Fritha Hennessy, Uli Horn, Pilar de la Torre Cortés, Marcel van den Broek, Ulrich Strych, Richard C. Willson, Charles A. Hefer, Jean-Marc G. Daran, Trevor Sewell, Linda G. Otten, and Dean Brady
- Abstract
Background Rhodococci are industrially important soil-dwelling Gram-positive bacteria that are well known for both nitrile hydrolysis and oxidative metabolism of aromatics. Rhodococcus rhodochrous ATCC BAA-870 is capable of metabolising a wide range of aliphatic and aromatic nitriles and amides. The genome of the organism was sequenced and analysed in order to better understand this whole cell biocatalyst. Results The genome of R. rhodochrous ATCC BAA-870 is the first Rhodococcus genome fully sequenced using Nanopore sequencing. The circular genome contains 5.9 megabase pairs (Mbp) and includes a 0.53 Mbp linear plasmid, that together encode 7548 predicted protein sequences according to BASys annotation, and 5535 predicted protein sequences according to RAST annotation. The genome contains numerous oxidoreductases, 15 identified antibiotic and secondary metabolite gene clusters, several terpene and nonribosomal peptide synthetase clusters, as well as 6 putative clusters of unknown type. The 0.53 Mbp plasmid encodes 677 predicted genes and contains the nitrile converting gene cluster, including a nitrilase, a low molecular weight nitrile hydratase, and an enantioselective amidase. Although there are fewer biotechnologically relevant enzymes compared to those found in rhodococci with larger genomes, such as the well-known Rhodococcus jostii RHA1, the abundance of transporters in combination with the myriad of enzymes found in strain BAA-870 might make it more suitable for use in industrially relevant processes than other rhodococci. Conclusions The sequence and comprehensive description of the R. rhodochrous ATCC BAA-870 genome will facilitate the additional exploitation of rhodococci for biotechnological applications, as well as enable further characterisation of this model organism. The genome encodes a wide range of enzymes, many with unknown substrate specificities supporting potential applications in biotechnology, including nitrilases, nitrile hydratase, monooxygenases, cytochrome P450s, reductases, proteases, lipases, and transaminases.
- Published
- 2019
16. The biotechnological relevance of Rhodococcus rhodochrous. The complete genomic sequence of nitrile biocatalyst strain ATCC BAA-870
- Author
-
Joni Frederick, Fritha Hennessy, Uli Horn, Pilar de la Torre Cortés, Marcel van den Broek, Ulrich Strych, Richard C. Willson, Charles A. Hefer, Jean-Marc G. Daran, Trevor Sewell, Linda G. Otten, and Dean Brady
- Abstract
Background Rhodococci are industrially important soil-dwelling Gram-positive bacteria that are well known for both nitrile hydrolysis and oxidative metabolism of aromatics. Rhodococcus rhodochrous ATCC BAA-870 is capable of metabolising a wide range of aliphatic and aromatic nitriles and amides. The expressed nitrilase, nitrile hydratase and amidase activities have shown stereoselective preferences for beta-substituted nitrile compounds. The genome of the organism was sequenced and analysed in order to better understand this whole cell biocatalyst. Results The genome of R. rhodochrous ATCC BAA-870 is the first Rhodococcus genome fully sequenced using Nanopore sequencing. The circular genome contains 5.9 megabase pairs (Mbp) and includes a 0.53 Mbp linear plasmid, that together encode 7548 predicted protein sequences according to BASys annotation, and 5535 predicted protein sequences according to RAST annotation. The genome contains numerous oxidoreductases, 15 identified antibiotic and secondary metabolite gene clusters, and several terpene and nonribosomal peptide synthetase clusters, as well as 6 putative clusters of unknown type. The 0.53 Mbp plasmid encodes 677 predicted genes and contains the nitrile converting gene cluster. Based on COG functional categories of proteins using RAST annotation, the main distributions of predicted annotated genes belong to known subsystems encoding amino acids and derivatives (19.7%), carbohydrates (13.4%), fatty acids, lipids and isoprenoids (12.2%), and cofactors, vitamins, prosthetic groups and pigments (9.4%). However, 74% of RAST annotated genes are not assigned clear functional roles within known metabolic pathways, and 38% of genes are annotated as hypothetical. BASys annotation predicts that 55% of annotated genes have an unknown function. The R. rhodochrous ATCC BAA-870 genome contains one possible CRISPR, identified by CRISPRCasFinder. Conclusions The sequence and comprehensive description of the R. rhodochrous ATCC BAA-870 genome will facilitate the additional exploitation of rhodococci for biotechnological applications, as well as enable further characterisation of this model organism. The genome encodes a wide range of enzymes, many with unknown substrate specificities supporting potential applications in biotechnology, including monooxygenases, cytochrome P450s, reductases, proteases, lipases, and transaminases. The capacity of this strain to hydrolyse nitriles resides upon a plasmid, containing a nitrilase, a low molecular weight nitrile hydratase, and an enantioselective amidase.
- Published
- 2019
17. Engineering Yeasts to Produce Aromatics
- Author
-
Else-Jasmijn Hassing, Rajkumar, Arun Stephen, Larroude, Macarena, Akinola, Joel Abidemi, Groot, Philip A De, Beck, Mario, Marquenie, Vita, Pronk, Jack T, Morrissey, John P, and Jean-Marc G Daran
- Published
- 2019
- Full Text
- View/download PDF
18. A toolkit to expand the synthetic biology potential of Kluyveromyces marxianus
- Author
-
Rajkumar, Arun S, Varela, Javier A, Juergens, Hannes, Pronk, Jack T, Jean-Marc G Daran, and Morrissey, John P
- Published
- 2018
- Full Text
- View/download PDF
19. In vivo recombination of Saccharomyces eubayanus maltose-transporter genes yields a chimeric transporter that enables maltotriose fermentation.
- Author
-
Nick Brouwers, Arthur R Gorter de Vries, Marcel van den Broek, Susan M Weening, Tom D Elink Schuurman, Niels G A Kuijpers, Jack T Pronk, and Jean-Marc G Daran
- Subjects
Genetics ,QH426-470 - Abstract
Saccharomyces eubayanus is the non-S. cerevisiae parent of the lager-brewing hybrid S. pastorianus. In contrast to most S. cerevisiae and Frohberg-type S. pastorianus strains, S. eubayanus cannot utilize the α-tri-glucoside maltotriose, a major carbohydrate in brewer's wort. In Saccharomyces yeasts, utilization of maltotriose is encoded by the subtelomeric MAL gene family, and requires transporters for maltotriose uptake. While S. eubayanus strain CBS 12357T harbors four SeMALT genes which enable uptake of the α-di-glucoside maltose, it lacks maltotriose transporter genes. In S. cerevisiae, sequence identity indicates that maltotriose and maltose transporters likely evolved from a shared ancestral gene. To study the evolvability of maltotriose utilization in S. eubayanus CBS 12357T, maltotriose-assimilating mutants obtained after UV mutagenesis were subjected to laboratory evolution in carbon-limited chemostat cultures on maltotriose-enriched wort. An evolved strain showed improved maltose and maltotriose fermentation in 7 L fermenter experiments on industrial wort. Whole-genome sequencing revealed a novel mosaic SeMALT413 gene, resulting from repeated gene introgressions by non-reciprocal translocation of at least three SeMALT genes. The predicted tertiary structure of SeMalT413 was comparable to the original SeMalT transporters, but overexpression of SeMALT413 sufficed to enable growth on maltotriose, indicating gene neofunctionalization had occurred. The mosaic structure of SeMALT413 resembles the structure of S. pastorianus maltotriose-transporter gene SpMTY1, which has high sequences identity to alternatingly S. cerevisiae MALx1, S. paradoxus MALx1 and S. eubayanus SeMALT3. Evolution of the maltotriose transporter landscape in hybrid S. pastorianus lager-brewing strains is therefore likely to have involved mechanisms similar to those observed in the present study.
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.