11 results on '"Jean-Jil Duchamps"'
Search Results
2. A large sample theory for infinitesimal gradient boosting.
- Author
-
Clément Dombry and Jean-Jil Duchamps
- Published
- 2022
- Full Text
- View/download PDF
3. Infinitesimal gradient boosting.
- Author
-
Clément Dombry and Jean-Jil Duchamps
- Published
- 2021
4. From individual-based epidemic models to McKendrick-von Foerster PDEs: a guide to modeling and inferring COVID-19 dynamics
- Author
-
Félix Foutel-Rodier, François Blanquart, Philibert Courau, Peter Czuppon, Jean-Jil Duchamps, Jasmine Gamblin, Élise Kerdoncuff, Rob Kulathinal, Léo Régnier, Laura Vuduc, Amaury Lambert, Emmanuel Schertzer, Université du Québec à Montréal = University of Québec in Montréal (UQAM), Centre interdisciplinaire de recherche en biologie (CIRB), Labex MemoLife, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Collège de France (CdF (institution))-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Infection, Anti-microbiens, Modélisation, Evolution (IAME (UMR_S_1137 / U1137)), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité)-Université Sorbonne Paris Nord, Westfälische Wilhelms-Universität Münster = University of Münster (WWU), Laboratoire de Mathématiques de Besançon (UMR 6623) (LMB), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Institut de Systématique, Evolution, Biodiversité (ISYEB ), Muséum national d'Histoire naturelle (MNHN)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA), University of California [Berkeley] (UC Berkeley), University of California (UC), Temple University [Philadelphia], Pennsylvania Commonwealth System of Higher Education (PCSHE), Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de biologie de l'ENS Paris (IBENS), Département de Biologie - ENS Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), University of Vienna [Vienna], SMILE - Stochastic models for the inference of life evolution, Laboratoire de Probabilités et Modèles Aléatoires (LPMA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Centre interdisciplinaire de recherche en biologie (CIRB), Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Labex MemoLife, Institute for Evolution and Biodiversity, Department of Molecular and Cellular Biology [Berkeley, CA, USA], Université Paris-Saclay, Faculty of Mathematics [Vienne, Autriche], and Duchamps, Jean-Jil
- Subjects
[MATH.MATH-PR] Mathematics [math]/Probability [math.PR] ,Primary: 92D30, Secondary: 60J80, 60J85, 35Q92 ,[SDV.BID.EVO]Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE] ,[SDV]Life Sciences [q-bio] ,Applied Mathematics ,Probability (math.PR) ,Populations and Evolution (q-bio.PE) ,COVID-19 ,Models, Biological ,Agricultural and Biological Sciences (miscellaneous) ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,FOS: Biological sciences ,Modeling and Simulation ,[SDV.BID.EVO] Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE] ,FOS: Mathematics ,Humans ,Quantitative Biology::Populations and Evolution ,Quantitative Biology - Populations and Evolution ,Epidemics ,Mathematics - Probability ,Forecasting ,Probability - Abstract
International audience; We present a unifying, tractable approach for studying the spread of viruses causing complex diseases that require to be modeled using a large number of types (e.g., infective stage, clinical state, risk factor class). We show that recording each infected individual's infection age, i.e., the time elapsed since infection, 1. The age distribution $n(t, a)$ of the population at time $t$ can be described by means of a first-order, one-dimensional partial differential equation (PDE) known as the McKendrick-von Foerster equation. 2. The frequency of type $i$ at time $t$ is simply obtained by integrating the probability $p(a, i)$ of being in state $i$ at age a against the age distribution $n(t, a)$. The advantage of this approach is three-fold. First, regardless of the number of types, macroscopic observables (e.g., incidence or prevalence of each type) only rely on a one-dimensional PDE "decorated" with types. This representation induces a simple methodology based on the McKendrick-von Foerster PDE with Poisson sampling to infer and forecast the epidemic. We illustrate this technique using a French data from the COVID-19 epidemic. Second, our approach generalizes and simplifies standard compartmental models using high-dimensional systems of ordinary differential equations (ODEs) to account for disease complexity. We show that such models can always be rewritten in our framework, thus, providing a low-dimensional yet equivalent representation of these complex models. Third, beyond the simplicity of the approach, we show that our population model naturally appears as a universal scaling limit of a large class of fully stochastic individual-based epidemic models, here the initial condition of the PDE emerges as the limiting age structure of an exponentially growing population starting from a single individual.
- Published
- 2022
- Full Text
- View/download PDF
5. Trees within trees II: Nested fragmentations
- Author
-
Jean-Jil Duchamps, Laboratoire de Probabilités, Statistiques et Modélisations (LPSM (UMR_8001)), and Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0106 biological sciences ,0301 basic medicine ,Statistics and Probability ,Fragmentations ,Population genetics ,Evolution ,Gene tree ,010603 evolutionary biology ,01 natural sciences ,Combinatorics ,03 medical and health sciences ,60G09 ,60J25 ,FOS: Mathematics ,Quantitative Biology - Populations and Evolution ,Mathematics ,[SDV.BID.EVO]Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE] ,Probability (math.PR) ,Populations and Evolution (q-bio.PE) ,Random tree ,92D15 ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,Phylogenetics ,030104 developmental biology ,FOS: Biological sciences ,MSC 2010: 60G09,60G57,60J25,60J35,60J75,92D15 ,60J35 ,60G57 ,Coalescent ,Species tree ,Statistics, Probability and Uncertainty ,60J75 ,Exchangeable ,Mathematics - Probability ,Partition - Abstract
Similarly as in (Blancas et al. 2018) where nested coalescent processes are studied, we generalize the definition of partition-valued homogeneous Markov fragmentation processes to the setting of nested partitions, i.e. pairs of partitions $(\zeta,\xi)$ where $\zeta$ is finer than $\xi$. As in the classical univariate setting, under exchangeability and branching assumptions, we characterize the jump measure of nested fragmentation processes, in terms of erosion coefficients and dislocation measures. Among the possible jumps of a nested fragmentation, three forms of erosion and two forms of dislocation are identified - one of which being specific to the nested setting and relating to a bivariate paintbox process., Comment: 37 pages, 6 figures
- Published
- 2020
6. Random Structured Phylogenies
- Author
-
Jean-Jil Duchamps, Laboratoire de Probabilités, Statistiques et Modélisations (LPSM (UMR_8001)), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, and Amaury Lambert
- Subjects
[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,Fragmentation ,Biologie évolutive ,Arbre aléatoire ,Processus de branchement ,Random tree ,Coalescent ,Evolutionary biology ,Échangeabilité ,Branching process ,Exchangeable - Abstract
This thesis consists of four self-contained chapters whose motivations stem from population genetics and evolutionary biology, and related to the theory of fragmentation or coalescent processes. Chapter 2 introduces an infinite random binary tree built from a so-called coalescent point process equipped with Poissonian mutations along its branches and with a finite measure on its boundary. The allelic partition -- partition of the boundary into groups carrying the same combination of mutations -- is defined for this tree and its intensity measure is described. Chapters 3 and 4 are devoted to the study ofnested -- i.e. taking values in the space of nested pairs of partitions --coalescent and fragmentation processes, respectively. These Markov processes are analogs of Λ-coalescents and homogeneous fragmentations in a nested setting-- modeling a gene tree nested within a species tree. Nested coalescents are characterized in terms of Kingman coefficients and (possibly bivariate) coagulation measures, while nested fragmentations are similarly characterized in terms of erosion coefficients and (possibly bivariate) dislocation measures. Finally Chapter 5 gives a construction of fragmentation processes with speedmarks, which are fragmentation processes where each fragment is given a mark that speeds up or slows down its rate of fragmentation, and where the marks evolve as positive self-similar Markov processes. A Lévy-Khinchin representation of these generalized fragmentation processes is given, as well as sufficient conditions for their absorption in finite time to a frozen state,and for the genealogical tree of the process to have finite total length.; Cette thèse est constituée de quatre chapitres indépendants, puisant leur origine en génétique des populations et en biologie évolutive, et liés à la théorie des processus de fragmentation ou de coalescence. Le chapitre 2 traite d'un arbre aléatoire binaire infini construit à partir d'un processus ponctuel coalescent équipé de mutations poissonniennes le long de ses branches et d'une mesure sur sa frontière. La partition allélique -- partition de la frontière en parties qui portent la même combinaison de mutations -- est définie pour cet arbre et sa mesure d'intensité est explicitée. Les chapitres 3 et 4 sont dédiés à l'étude de processus de coalescence et de fragmentation emboîtés -- plus précisément à valeurs dans les couples de partitions emboîtées --, qui sont des analogues des Λ-coalescents et des fragmentations homogènes. Ces objets visent à modéliser un arbre de gènes niché dans un arbre d'espèces. Les coalescents emboîtés sont caractérisés par leurs coefficients de Kingman et leurs mesures de coagulation (éventuellement bivariées), tandis que les fragmentations emboîtées sont caractérisées par leurs coefficients d'érosion et leurs mesures de dislocation (éventuellement bivariées). Enfin le chapitre 5 pose la construction de processus de fragmentation à vitesses aléatoires, qui sont des processus de fragmentation où chaque fragment possède une marque qui accélère ou ralentit son taux de fragmentation, et où les marques de vitesse évoluent comme des processus de Markov positifs auto-similaires. Une caractérisation de type Lévy-Khintchine de ces processus de fragmentation généralisés est donné,ainsi que des conditions suffisantes pour l'absorption dans un état gelé.
- Published
- 2019
7. Renewal sequences and record chains related to multiple zeta sums
- Author
-
Jim Pitman, Wenpin Tang, Jean-Jil Duchamps, Laboratoire de Probabilités, Statistiques et Modélisations (LPSM (UMR_8001)), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Department of Statistics [Berkeley], University of California [Berkeley], and University of California-University of California
- Subjects
General Mathematics ,01 natural sciences ,Combinatorics ,010104 statistics & probability ,symbols.namesake ,Chain (algebraic topology) ,FOS: Mathematics ,Mathematics - Combinatorics ,Partition (number theory) ,Number Theory (math.NT) ,0101 mathematics ,Algebraic number ,Linear combination ,ComputingMilieux_MISCELLANEOUS ,Mathematics ,Real number ,Sequence ,Mathematics - Number Theory ,Markov chain ,Applied Mathematics ,Probability (math.PR) ,010102 general mathematics ,11M06, 60C05, 60E05 ,Riemann zeta function ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,symbols ,Combinatorics (math.CO) ,Mathematics - Probability - Abstract
For the random interval partition of $[0,1]$ generated by the uniform stick-breaking scheme known as GEM$(1)$, let $u_k$ be the probability that the first $k$ intervals created by the stick-breaking scheme are also the first $k$ intervals to be discovered in a process of uniform random sampling of points from $[0,1]$. Then $u_k$ is a renewal sequence. We prove that $u_k$ is a rational linear combination of the real numbers $1, \zeta(2), \ldots, \zeta(k)$ where $\zeta$ is the Riemann zeta function, and show that $u_k$ has limit $1/3$ as $k \to \infty$. Related results provide probabilistic interpretations of some multiple zeta values in terms of a Markov chain derived from the interval partition. This Markov chain has the structure of a weak record chain. Similar results are given for the GEM$(\theta)$ model, with beta$(1,\theta)$ instead of uniform stick-breaking factors, and for another more algebraic derivation of renewal sequences from the Riemann zeta function., Comment: 25 pages. This paper is published by https://www.ams.org/journals/tran/2019-371-08/S0002-9947-2018-07516-X/
- Published
- 2019
- Full Text
- View/download PDF
8. Fragmentations with self-similar branching speeds
- Author
-
Jean-Jil Duchamps, Laboratoire de Probabilités, Statistiques et Modélisations (LPSM (UMR_8001)), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Probabilités, Statistique et Modélisation (LPSM (UMR_8001)), Laboratoire de Mathématiques de Besançon (UMR 6623) (LMB), Université de Bourgogne (UB)-Université de Franche-Comté (UFC), and Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Statistics and Probability ,Pure mathematics ,60J80 (primary), 60G09, 60G18, 60G51 (secondary) ,Generalization ,Applied Mathematics ,Probability (math.PR) ,010102 general mathematics ,Fragmentation (computing) ,Markov process ,State (functional analysis) ,16. Peace & justice ,01 natural sciences ,Lévy process ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,010104 statistics & probability ,symbols.namesake ,Random tree ,FOS: Mathematics ,symbols ,0101 mathematics ,Mathematics - Probability ,Mathematics ,Branching process ,Real number - Abstract
We consider fragmentation processes with values in the space of marked partitions of $\mathbb{N}$, i.e. partitions where each block is decorated with a nonnegative real number. Assuming that the marks on distinct blocks evolve as independent positive self-similar Markov processes and determine the speed at which their blocks fragment, we get a natural generalization of the self-similar fragmentations of Bertoin (2002). Our main result is the characterization of these generalized fragmentation processes: a L\'evy-Khinchin representation is obtained, using techniques from positive self-similar Markov processes and from classical fragmentation processes. We then give sufficient conditions for their absorption in finite time to a frozen state, and for the genealogical tree of the process to have finite total length., Comment: 38 pages
- Published
- 2019
9. The Moran forest
- Author
-
Jean-Jil Duchamps, Félix Foutel-Rodier, François Bienvenu, Centre interdisciplinaire de recherche en biologie (CIRB), Labex MemoLife, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Collège de France (CdF (institution))-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Collège de France (CdF (institution))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Probabilités, Statistiques et Modélisations (LPSM (UMR_8001)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire de Mathématiques de Besançon (UMR 6623) (LMB), Université de Bourgogne (UB)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Collège de France (CdF (institution))-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Duchamps, Jean-Jil, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Laboratoire de Probabilités, Statistique et Modélisation (LPSM (UMR_8001)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), and Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
Vertex (graph theory) ,[MATH.MATH-PR] Mathematics [math]/Probability [math.PR] ,05C80, 60C05 (Primary) 60J10, 05C05, 05C07 (Secondary) ,General Mathematics ,0102 computer and information sciences ,01 natural sciences ,Combinatorics ,Tree (descriptive set theory) ,Random tree ,[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] ,FOS: Mathematics ,Mathematics - Combinatorics ,Mathematics ,Stationary distribution ,Degree (graph theory) ,Markov chain ,Applied Mathematics ,Probability (math.PR) ,Degree distribution ,Computer Graphics and Computer-Aided Design ,[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO] ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,Uniform tree ,010201 computation theory & mathematics ,Combinatorics (math.CO) ,Software ,Mathematics - Probability - Abstract
Starting from any graph on $\{1, \ldots, n\}$, consider the Markov chain where at each time-step a uniformly chosen vertex is disconnected from all of its neighbors and reconnected to another uniformly chosen vertex. This Markov chain has a stationary distribution whose support is the set of non-empty forests on $\{1, \ldots, n\}$. The random forest corresponding to this stationary distribution has interesting connections with the uniform rooted labeled tree and the uniform attachment tree. We fully characterize its degree distribution, the distribution of its number of trees, and the limit distribution of the size of a tree sampled uniformly. We also show that the size of the largest tree is asymptotically $\alpha \log n$, where $\alpha = (1 - \log(e - 1))^{-1} \approx 2.18$, and that the degree of the most connected vertex is asymptotically $\log n / \log\log n$., Comment: Accepted version
- Published
- 2019
10. Trees within trees: simple nested coalescents
- Author
-
Jean-Jil Duchamps, Amaury Lambert, Arno Siri-Jégousse, Airam Blancas, Goethe-Universität Frankfurt am Main, Laboratoire de Probabilités, Statistiques et Modélisations (LPSM (UMR_8001)), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas [México] (IIMAS), and Universidad Nacional Autónoma de México (UNAM)
- Subjects
0301 basic medicine ,Statistics and Probability ,Evolution ,Population genetics ,Gene tree ,Markov process ,exchangeable ,01 natural sciences ,lambda-coalescent ,Coalescent theory ,Combinatorics ,010104 statistics & probability ,03 medical and health sciences ,symbols.namesake ,60G09 ,Random tree ,FOS: Mathematics ,Quantitative Biology::Populations and Evolution ,Partition (number theory) ,0101 mathematics ,Mathematics ,Exchangeable partitions ,Coalescence (physics) ,60G09, 60G57, 60J35, 60J75, 92D10, 92D15 ,Semigroup ,[SDV.BID.EVO]Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE] ,Probability (math.PR) ,Lambda-coalescents ,92D10 ,Coming down from infinity ,partition ,92D15 ,Phylogenetics ,MSC 2000 Classification: 60G09, 60G57, 60J35, 60J75, 92D10, 92D15 ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,030104 developmental biology ,Compact space ,60J35 ,symbols ,60G57 ,Species tree ,60J75 ,Statistics, Probability and Uncertainty ,Mathematics - Probability - Abstract
We consider the compact space of pairs of nested partitions of $\mathbb N$, where by analogy with models used in molecular evolution, we call "gene partition" the finer partition and "species partition" the coarser one. We introduce the class of nondecreasing processes valued in nested partitions, assumed Markovian and with exchangeable semigroup. These processes are said simple when each partition only undergoes one coalescence event at a time (but possibly the same time). Simple nested exchangeable coalescent (SNEC) processes can be seen as the extension of $\Lambda$-coalescents to nested partitions. We characterize the law of SNEC processes as follows. In the absence of gene coalescences, species blocks undergo $\Lambda$-coalescent type events and in the absence of species coalescences, gene blocks lying in the same species block undergo i.i.d. $\Lambda$-coalescents. Simultaneous coalescence of the gene and species partitions are governed by an intensity measure $\nu_s$ on $(0,1]\times {\mathcal M}_1 ([0,1])$ providing the frequency of species merging and the law in which are drawn (independently) the frequencies of genes merging in each coalescing species block. As an application, we also study the conditions under which a SNEC process comes down from infinity., Comment: 37 pages
- Published
- 2018
- Full Text
- View/download PDF
11. Mutations on a Random Binary Tree with Measured Boundary
- Author
-
Amaury Lambert and Jean-Jil Duchamps
- Subjects
Statistics and Probability ,Population ,regenerative set ,random point measure ,Real tree ,01 natural sciences ,Point process ,Random binary tree ,Combinatorics ,05C05 ,010104 statistics & probability ,Counting measure ,FOS: Mathematics ,Quantitative Biology::Populations and Evolution ,0101 mathematics ,education ,Ultrametric space ,Branching process ,Mathematics ,allelic partition ,60J80 ,education.field_of_study ,primary 05C05, 60J80, secondary 54E45, 60G51, 60G55, 60G57, 60K15, 92D10 ,Coalescent point process ,tree-valued process ,Probability (math.PR) ,010102 general mathematics ,92D10 ,branching process ,54E45 ,Tree (data structure) ,60K15 ,60G57 ,60G55 ,Statistics, Probability and Uncertainty ,60G51 ,Mathematics - Probability - Abstract
Consider a random real tree whose leaf set, or boundary, is endowed with a finite mass measure. Each element of the tree is further given a type, or allele, inherited from the most recent atom of a random point measure (infinitely-many-allele model) on the skeleton of the tree. The partition of the boundary into distinct alleles is the so-called allelic partition. In this paper, we are interested in the infinite trees generated by supercritical, possibly time-inhomogeneous, binary branching processes, and in their boundary, which is the set of particles `co-existing at infinity'. We prove that any such tree can be mapped to a random, compact ultrametric tree called coalescent point process, endowed with a `uniform' measure on its boundary which is the limit as $t\to\infty$ of the properly rescaled counting measure of the population at time $t$. We prove that the clonal (i.e., carrying the same allele as the root) part of the boundary is a regenerative set that we characterize. We then study the allelic partition of the boundary through the measures of its blocks. We also study the dynamics of the clonal subtree, which is a Markovian increasing tree process as mutations are removed., 45 pages, 6 figures
- Published
- 2017
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.