Laetitia Benard, Jean-Paul Bessou, Jean-François Lemeland, Thierry Jouenne, Noëlle Barbier-Frebourg, Eric Beucher, Claude Bunel, Pierre-Yves Litzler, Sébastien Vilain, Service de chirurgie cadiovasculaire et thoracique [Rouen], Hôpital Charles Nicolle [Rouen]-CHU Rouen, Normandie Université (NU)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU), Biotechnologie des protéines recombinantes à visée santé, Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux, Polymères Biopolymères Surfaces (PBS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M), Institut de Chimie du CNRS (INC)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Polymères, biopolymères, membranes (PBM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), and Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN)
ObjectiveThe aim of this study was to analyze the interaction of surface free energy and roughness characteristics of different pyrolytic carbon heart valves with three bacterial species on biofilm formation.MethodsThree pyrolytic carbon heart valves (St Jude Medical [St Jude Medical Inc, Minneapolis, Minn], Sulzer Carbomedics [CarboMedics Inc, Austin, Tex], and MedicalCV [Medical Incorporated, Inver Grove Heights, Minn]) were tested. Roughness was measured by interferential microscopy and surface free energy by contact angle technique. To obtain a biofilm, prostheses were inserted into a bioreactor with Staphylococcus aureus P209, Staphylococcus epidermidis RP62A, or Pseudomonas aeruginosa PAO1. Adhesion was quantified by counting sessile bacteria. Morphologic characteristics of biofilms were evaluated with scanning electron microscopy.ResultsRoughness analysis revealed significant differences between the MedicalCV (35.18 ± 4.43 nm) valve and St Jude Medical (11.03 ± 3.11 nm; P < .0001) and Sulzer Carbomedics (8.80 ± 1.10 nm; P < .0001) valves. Analysis of surface free energy revealed a higher level for the MedicalCV valve (41.03 mJ · m−2) than for both the Sulzer Carbomedics (38.93 mJ · m−2) and St Jude Medical (31.51 mJ · m−2) models. These results showed a correlation between surface free energy and bacterial adhesion for S epidermidis and P aeruginosa species. Regardless of the support, we observed significant adhesion differences for the three bacterial species. S aureus was the most adherent species, S epidermidis was the least, and P aeruginosa was intermediate.ConclusionsOur results suggest that adhesion of S epidermidis and P aeruginosa are dependent on pyrolytic carbon surface free energy and roughness, although S aureus adhesion appears to be independent of these factors. Improvement of pyrolytic carbon physicochemical properties thus could lead to a reduction in valvular prosthetic infections.