5 results on '"Jaycox J"'
Search Results
2. Ultra-low-noise tunnel junction dc SQUID with a tightly coupled planar input coil.
- Author
-
Ketchen, M. B. and Jaycox, J. M.
- Published
- 1982
- Full Text
- View/download PDF
3. Impact of COVID-19 vaccination on symptoms and immune phenotypes in vaccine-naïve individuals with Long COVID.
- Author
-
Grady CB, Bhattacharjee B, Silva J, Jaycox J, Lee LW, Monteiro VS, Sawano M, Massey D, Caraballo C, Gehlhausen JR, Tabachnikova A, Mao T, Lucas C, Peña-Hernandez MA, Xu L, Tzeng TJ, Takahashi T, Herrin J, Güthe DB, Akrami A, Assaf G, Davis H, Harris K, McCorkell L, Schulz WL, Grffin D, Wei H, Ring AM, Guan L, Cruz CD, Iwasaki A, and Krumholz HM
- Abstract
Background: Long COVID contributes to the global burden of disease. Proposed root cause hypotheses include the persistence of SARS-CoV-2 viral reservoir, autoimmunity, and reactivation of latent herpesviruses. Patients have reported various changes in Long COVID symptoms after COVID-19 vaccinations, leaving uncertainty about whether vaccine-induced immune responses may alleviate or worsen disease pathology., Methods: In this prospective study, we evaluated changes in symptoms and immune responses after COVID-19 vaccination in 16 vaccine-naïve individuals with Long COVID. Surveys were administered before vaccination and then at 2, 6, and 12 weeks after receiving the first vaccine dose of the primary series. Simultaneously, SARS-CoV-2-reactive TCR enrichment, SARS-CoV-2-specific antibody responses, antibody responses to other viral and self-antigens, and circulating cytokines were quantified before vaccination and at 6 and 12 weeks after vaccination., Results: Self-report at 12 weeks post-vaccination indicated 10 out of 16 participants had improved health, 3 had no change, 1 had worse health, and 2 reported marginal changes. Significant elevation in SARS-CoV-2-specific TCRs and Spike protein-specific IgG were observed 6 and 12 weeks after vaccination. No changes in reactivities were observed against herpes viruses and self-antigens. Within this dataset, higher baseline sIL-6R was associated with symptom improvement, and the two top features associated with non-improvement were high IFN-β and CNTF, among soluble analytes., Conclusions: Our study showed that in this small sample, vaccination improved the health or resulted in no change to the health of most participants, though few experienced worsening. Vaccination was associated with increased SARS-CoV-2 Spike protein-specific IgG and T cell expansion in most individuals with Long COVID. Symptom improvement was observed in those with baseline elevated sIL-6R, while elevated interferon and neuropeptide levels were associated with a lack of improvement.
- Published
- 2024
- Full Text
- View/download PDF
4. Distinguishing features of Long COVID identified through immune profiling.
- Author
-
Klein J, Wood J, Jaycox J, Lu P, Dhodapkar RM, Gehlhausen JR, Tabachnikova A, Tabacof L, Malik AA, Kamath K, Greene K, Monteiro VS, Peña-Hernandez M, Mao T, Bhattacharjee B, Takahashi T, Lucas C, Silva J, Mccarthy D, Breyman E, Tosto-Mancuso J, Dai Y, Perotti E, Akduman K, Tzeng TJ, Xu L, Yildirim I, Krumholz HM, Shon J, Medzhitov R, Omer SB, van Dijk D, Ring AM, Putrino D, and Iwasaki A
- Abstract
SARS-CoV-2 infection can result in the development of a constellation of persistent sequelae following acute disease called post-acute sequelae of COVID-19 (PASC) or Long COVID
1-3 . Individuals diagnosed with Long COVID frequently report unremitting fatigue, post-exertional malaise, and a variety of cognitive and autonomic dysfunctions1-3 ; however, the basic biological mechanisms responsible for these debilitating symptoms are unclear. Here, 215 individuals were included in an exploratory, cross-sectional study to perform multi-dimensional immune phenotyping in conjunction with machine learning methods to identify key immunological features distinguishing Long COVID. Marked differences were noted in specific circulating myeloid and lymphocyte populations relative to matched control groups, as well as evidence of elevated humoral responses directed against SARS-CoV-2 among participants with Long COVID. Further, unexpected increases were observed in antibody responses directed against non-SARS-CoV-2 viral pathogens, particularly Epstein-Barr virus. Analysis of circulating immune mediators and various hormones also revealed pronounced differences, with levels of cortisol being uniformly lower among participants with Long COVID relative to matched control groups. Integration of immune phenotyping data into unbiased machine learning models identified significant distinguishing features critical in accurate classification of Long COVID, with decreased levels of cortisol being the most significant individual predictor. These findings will help guide additional studies into the pathobiology of Long COVID and may aid in the future development of objective biomarkers for Long COVID.- Published
- 2022
- Full Text
- View/download PDF
5. Lack of association between pandemic chilblains and SARS-CoV-2 infection.
- Author
-
Gehlhausen JR, Little AJ, Ko CJ, Emmenegger M, Lucas C, Wong P, Klein J, Lu P, Mao T, Jaycox J, Wang E, Ugwu N, Muenker C, Mekael D, Klein RQ, Patrignelli R, Antaya R, McNiff J, Damsky W, Kamath K, Shon J, Ring AM, Yildirim I, Omer S, Ko AI, Aguzzi A, and Iwasaki A
- Subjects
- Adult, COVID-19 epidemiology, Chilblains epidemiology, Chilblains virology, Connecticut epidemiology, Female, Humans, Male, Middle Aged, Retrospective Studies, SARS-CoV-2 immunology, Young Adult, COVID-19 complications, Chilblains immunology
- Abstract
An increased incidence of chilblains has been observed during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic and attributed to viral infection. Direct evidence of this relationship has been limited, however, as most cases do not have molecular evidence of prior SARS-CoV-2 infection with PCR or antibodies. We enrolled a cohort of 23 patients who were diagnosed and managed as having SARS-CoV-2-associated skin eruptions (including 21 pandemic chilblains [PC]) during the first wave of the pandemic in Connecticut. Antibody responses were determined through endpoint titration enzyme-linked immunosorbent assay and serum epitope repertoire analysis. T cell responses to SARS-CoV-2 were assessed by T cell receptor sequencing and in vitro SARS-CoV-2 antigen-specific peptide stimulation assays. Immunohistochemical and PCR studies of PC biopsies and tissue microarrays for evidence of SARS-CoV-2 were performed. Among patients diagnosed and managed as "covid toes" during the pandemic, we find a percentage of prior SARS-CoV-2 infection (9.5%) that approximates background seroprevalence (8.5%) at the time. Immunohistochemistry studies suggest that SARS-CoV-2 staining in PC biopsies may not be from SARS-CoV-2. Our results do not support SARS-CoV-2 as the causative agent of pandemic chilblains; however, our study does not exclude the possibility of SARS-CoV-2 seronegative abortive infections., Competing Interests: The authors declare no competing interest., (Copyright © 2022 the Author(s). Published by PNAS.)
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.