1. Lattice strain in irradiated materials unveils a prevalent defect evolution mechanism
- Author
-
Alain Chartier, Diana Bachiller-Perea, Frédérico Garrido, Thomas Jourdan, Alexandre Boulle, S. Pellegrino, Jean-Paul Crocombette, Jayanth Channagiri, Tien-Hien Nguyen, Aurélien Debelle, Denise Carpentier, Lionel Thomé, Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Service de recherches de métallurgie physique (SRMP), Département des Matériaux pour le Nucléaire (DMN), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, IRCER - Axe 3 : organisation structurale multiéchelle des matériaux (IRCER-AXE3), Institut de Recherche sur les CERamiques (IRCER), Institut des Procédés Appliqués aux Matériaux (IPAM), Université de Limoges (UNILIM)-Université de Limoges (UNILIM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut des Procédés Appliqués aux Matériaux (IPAM), Université de Limoges (UNILIM)-Université de Limoges (UNILIM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME), Département de Physico-Chimie (DPC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Science des Procédés Céramiques et de Traitements de Surface (SPCTS), Université de Limoges (UNILIM)-Ecole Nationale Supérieure de Céramique Industrielle (ENSCI)-Institut des Procédés Appliqués aux Matériaux (IPAM), Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM PCI), and Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Univ. Paris-Sud
- Subjects
Diffraction ,computation ,Materials science ,Physics and Astronomy (miscellaneous) ,02 engineering and technology ,01 natural sciences ,Atomic units ,Ion ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Molecular dynamics ,strain ,0103 physical sciences ,General Materials Science ,010306 general physics ,ComputingMilieux_MISCELLANEOUS ,defects ,atomic scale ,Strain (chemistry) ,irradiation ,Relaxation (NMR) ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Microstructure ,X-ray diffraction ,Chemical physics ,Dislocation ,0210 nano-technology - Abstract
International audience; Modification of materials using ion beams has become a widespread route to improve or design materials for advanced applications, from ion doping for microelectronic devices to emulation of nuclear reactor environments. Yet, despite decades of studies, major issues regarding ion/solidinteractions are not solved, one of them being the lattice-strain development process in irradiated crystals. In this work, we address this question using a consistent approach that combines X-ray diffraction (XRD) measurements with both molecular dynamics (MD) and rate equation clusterdynamics (RECD) simulations. We investigate four distinct materials that differ notably in terms of crystalline structure and nature of the atomic bonding. We demonstrate that these materials exhibit a common behaviour with respect to the strain development process. In fact, a strain build-upfollowed by a strain relaxation is observed in the four investigated cases. The strain variation is unambiguously ascribed to a change in the defect configuration, as revealed by MD simulations. Strain development is due to the clustering of interstitial defects into dislocation loops, while the strain release is associated with the disappearance of these loops through their integration into a network of dislocation lines. RECD calculations of strain depth profiles, which are in agreement with experimental data, indicate that the driving force for the change in the defect nature is the defect clustering process. This study paves the way for quantitative predictions of the microstructure changes in irradiated materials.
- Published
- 2018
- Full Text
- View/download PDF