1. Expression analysis of human pterygium shows a predominance of conjunctival and limbal markers and genes associated with cell migration.
- Author
-
Jaworski CJ, Aryankalayil-John M, Campos MM, Fariss RN, Rowsey J, Agarwalla N, Reid TW, Dushku N, Cox CA, Carper D, and Wistow G
- Subjects
- Biomarkers metabolism, Cell Movement drug effects, Cells, Cultured, Clusterin genetics, Clusterin metabolism, Conjunctiva drug effects, Cornea drug effects, Cornea metabolism, Cornea pathology, Down-Regulation drug effects, Down-Regulation genetics, Eye Proteins genetics, Eye Proteins metabolism, Fluorescent Antibody Technique, Gene Library, Gene Regulatory Networks, Humans, Keratins genetics, Keratins metabolism, Limbus Corneae drug effects, Polyamines pharmacology, Pterygium pathology, RNA, Messenger genetics, RNA, Messenger metabolism, Cell Movement genetics, Conjunctiva metabolism, Conjunctiva pathology, Gene Expression Profiling, Limbus Corneae metabolism, Limbus Corneae pathology, Pterygium genetics
- Abstract
Purpose: Pterygium is a vision-impairing fibrovascular lesion that grows across the corneal surface and is associated with sunlight exposure. To increase our understanding of the cells types involved in pterygium, we have used expressed sequence tag analysis to examine the transcriptional repertoire of isolated pterygium and to identify marker genes for tissue origin and cell migration., Methods: An unnormalized unamplified cDNA library was prepared from 15 pooled specimens of surgically removed pterygia as part of the NEIBank project. Gene expression patterns were compared with existing data for human cornea, limbus, and conjunctiva, and expression of selected genes was verified by immunofluorescence localization in normal eye ocular surface and in pterygium., Results: Sequence analysis of 2,976 randomly selected clones produced over 1,800 unique clusters, potentially representing single genes. The most abundant complementary DNAs from pterygium include clusterin, keratins 13 (Krt13) and 4 (Krt4), S100A9/calgranulin B, and spermidine/spermine N1-acetyltransferase (SAT1). Markers for both conjunctiva (such as keratin 13/4 and AQP3) and corneal epithelium (such as keratin 12/3 and AQP5) were present. Immunofluorescence of Krt12 and 13 in the normal ocular surface showed specificity of Krt12 in cornea and Krt13 in conjunctival and limbal epithelia, with a fairly sharp boundary at the limbal-corneal border. In the pterygium there was a patchy distribution of both Krt12 and 13 up to a normal corneal epithelial region specific for Krt12. Immunoglobulins were also among the prominently expressed transcripts. Several of the genes expressed most abundantly in excised pterygium, particularly S100A9 and SAT1, have roles in cell migration. SAT1 exerts its effects through control of polyamine levels. IPENSpm, a polyamine analogue, showed a significant ability to reduce migration in primary cultures of pterygium. A number of genes highly expressed in cornea were not found in pterygium (several small leucine-rich proteoglycan family members) or were expressed at considerably lower levels (ALDH3A1 and decorin)., Conclusions: The expression pattern of keratins and other markers in pterygium most closely resemble those of conjunctival and limbal cells; some corneal markers are present, notably Krt12, but at lower levels than equivalent conjunctival markers. Our data are consistent with the model of pterygium developing from the migration of conjunctival- and limbal-like cells into corneal epithelium. Identification of genes with roles in cell migration suggests potential therapeutic targets. In particular, the ability of polyamine analogues to reduce migration in primary cultures of pterygium presents a possible approach to slowing pterygium growth.
- Published
- 2009