80 results on '"Javier F. Palatnik"'
Search Results
2. Interplay among ZF-HD and GRF transcription factors during Arabidopsis leaf development
- Author
-
Antonella Ferela, Juan Manuel Debernardi, Santiago Rosatti, Daniela Liebsch, Carla Schommer, and Javier F Palatnik
- Subjects
Physiology ,Genetics ,Plant Science - Abstract
The growth-regulating factor (GRF) family of transcriptional factors are involved in the control of leaf size and senescence, inflorescence and root growth, grain size, and plant regeneration. However, there is limited information about the genes regulated by these transcriptional factors, which are in turn responsible for their functions. Using a meta-analysis approach, we identified genes encoding Arabidopsis (Arabidopsis thaliana) zinc-finger homeodomain (ZF-HD) transcriptional factors, as potential targets of the GRFs. We further showed that GRF3 binds to the promoter of one of the members of the ZF-HD family, HOMEOBOX PROTEIN 33 (HB33), and activates its transcription. Increased levels of HB33 led to different modifications in leaf cell number and size that were dependent on its expression levels. Furthermore, we found that expression of HB33 for an extended period during leaf development increased leaf longevity. To cope with the functional redundancy among ZF-HD family members, we generated a dominant repressor version of HB33, HB33-SRDX. Expression of HB33-SRDX from HB33 regulatory regions was seedling-lethal, revealing the importance of the ZF-HD family in plant development. Misexpression of HB33-SRDX in early leaf development caused a reduction in both cell size and number. Interestingly, the loss-of-function of HB33 in lines carrying a GRF3 allele insensitive to miR396 reverted the delay in leaf senescence characteristic of these plants. Our results revealed functions for ZF-HDs in leaf development and linked them to the GRF pathway.
- Published
- 2023
- Full Text
- View/download PDF
3. Potent inhibition of TCP transcription factors by miR319 ensures proper root growth in Arabidopsis
- Author
-
Julia L. Baulies, Edgardo G. Bresso, Camila Goldy, Javier F. Palatnik, and Carla Schommer
- Subjects
MicroRNAs ,Microscopy, Confocal ,Arabidopsis Proteins ,Arabidopsis ,Genetics ,Plant Science ,General Medicine ,Plants, Genetically Modified ,Transcriptome ,Plant Roots ,Agronomy and Crop Science ,Transcription Factors - Abstract
Proper root growth depends on the clearance of TCP transcripts from the root apical meristem by microRNA miR319. The evolutionarily conserved microRNA miR319 regulates genes encoding TCP transcription factors in angiosperms. The miR319-TCP module controls cell proliferation and differentiation in leaves and other aerial organs. The current model sustains that miR319 quantitatively tunes TCP activity during leaf growth and development, ultimately affecting its size. In this work we studied how this module participates in Arabidopsis root development. We found that misregulation of TCP activity through impairment of miR319 binding decreased root meristem size and root length. Cellular and molecular analyses revealed that high TCP activity affects cell number and cyclin expression but not mature cell length, indicating that, in roots, unchecking the expression of miR319-regulated TCPs significantly affects cell proliferation. Conversely, tcp multiple mutants showed no obvious effect on root growth, but strong defects in leaf morphogenesis. Therefore, in contrast to the quantitative regulation of the TCPs by miR319 in leaves, our data suggest that miR319 clears TCP transcripts from root cells. Hence, we provide new insights into the functions of the miR319-TCP regulatory system in Arabidopsis development, highlighting a different modus operandi for its action mechanism in roots and shoots.
- Published
- 2022
- Full Text
- View/download PDF
4. ARF2 represses expression of plant GRF transcription factors in a complementary mechanism to microRNA miR396
- Author
-
Juan M. Debernardi, Javier F. Palatnik, Matías Beltramino, and Antonella Ferela
- Subjects
0106 biological sciences ,Small RNA ,Regular Issue ,Genotype ,Physiology ,Mutant ,Arabidopsis ,Plant Development ,Plant Science ,01 natural sciences ,Conserved sequence ,Magnoliopsida ,03 medical and health sciences ,Plant Growth Regulators ,Gene Expression Regulation, Plant ,Sequence Analysis, Protein ,microRNA ,Genetics ,Transcription factor ,Psychological repression ,030304 developmental biology ,0303 health sciences ,biology ,Mechanism (biology) ,Genetic Variation ,biology.organism_classification ,Cell biology ,MicroRNAs ,Transcription Factors ,010606 plant biology & botany - Abstract
Members of the GROWTH REGULATING FACTOR (GRF) family of transcription factors play key roles in the promotion of plant growth and development. Many GRFs are post-transcriptionally repressed by microRNA (miRNA) miR396, an evolutionarily conserved small RNA, which restricts their expression to proliferative tissue. We performed a comprehensive analysis of the GRF family in eudicot plants and found that in many species all the GRFs have a miR396-binding site. Yet, we also identified GRFs with mutations in the sequence recognized by miR396, suggesting a partial or complete release of their post-transcriptional repression. Interestingly, Brassicaceae species share a group of GRFs that lack miR396 regulation, including Arabidopsis GRF5 and GRF6. We show that instead of miR396-mediated post-transcriptional regulation, the spatiotemporal control of GRF5 is achieved through evolutionarily conserved promoter sequences, and that AUXIN RESPONSE FACTOR 2 (ARF2) binds to such conserved sequences to repress GRF5 expression. Furthermore, we demonstrate that the unchecked expression of GRF5 in arf2 mutants is responsible for the increased cell number of arf2 leaves. The results describe a switch in the repression mechanisms that control the expression of GRFs and mechanistically link the control of leaf growth by miR396, GRFs, and ARF2 transcription factors.
- Published
- 2021
- Full Text
- View/download PDF
5. MicroRNA miR396, GRF transcription factors and GIF co-regulators: a conserved plant growth regulatory module with potential for breeding and biotechnology
- Author
-
Daniela Liebsch and Javier F. Palatnik
- Subjects
0106 biological sciences ,0301 basic medicine ,Regulation of gene expression ,Plant growth ,Plant Science ,Computational biology ,Breeding ,Biology ,Plants, Genetically Modified ,01 natural sciences ,MicroRNAs ,03 medical and health sciences ,Multicellular organism ,030104 developmental biology ,Gene Expression Regulation, Plant ,microRNA ,Adaptation ,Gene ,Transcription factor ,Function (biology) ,Biotechnology ,Transcription Factors ,010606 plant biology & botany - Abstract
Multicellular life relies on complex regulatory mechanisms ensuring proper growth and development. In plants, these mechanisms construct a body plan that is both reproducible, and highly flexible for adaptation to different environmental conditions. A crucial regulatory module - consisting of microRNA miR396, GROWTH REGULATING FACTORS (GRFs) and GRF-INTERACTING FACTORS (GIFs) - has been shown to control growth of multiple tissues and organs in a variety of species. Especially in the last few years, research has expanded our knowledge of miR396-GRF/GIF function to crops, where it affects agronomically important traits, and highlighted its role in coordinating growth with endogenous and environmental factors. Special properties make the miR396-GRF/GIF system highly efficient in growth regulation and a promising target for improving plant yield.
- Published
- 2020
- Full Text
- View/download PDF
6. Inhibition ofArabidopsis thalianaCIN‐like TCP transcription factors byAgrobacteriumT‐DNA‐encoded 6B proteins
- Author
-
Yerim Kwon, Jean-Michel Davière, Thomas Potuschak, Léon Otten, Nicolas Sierro, Pascal Genschik, Nikolai V. Ivanov, Javier F. Palatnik, and Carla Schommer
- Subjects
DNA, Bacterial ,6b oncogene ,0106 biological sciences ,0301 basic medicine ,jaw‐D phenotype ,Agrobacterium ,Mutant ,Arabidopsis ,TCP genes ,Plant Science ,Polymerase Chain Reaction ,01 natural sciences ,natural transformant ,Green fluorescent protein ,03 medical and health sciences ,Bacterial Proteins ,Two-Hybrid System Techniques ,Tobacco ,Genetics ,Arabidopsis thaliana ,Transcription factor ,Gene ,Nicotiana otophora ,Plant Diseases ,Microscopy, Confocal ,biology ,Arabidopsis Proteins ,Gene Expression Profiling ,Original Articles ,Cell Biology ,biology.organism_classification ,Cell biology ,Plant Leaves ,Transformation (genetics) ,030104 developmental biology ,Original Article ,Transcription Factors ,010606 plant biology & botany - Abstract
Summary Agrobacterium T‐DNA‐encoded 6B proteins cause remarkable growth effects in plants. Nicotiana otophora carries two cellular T‐DNAs with three slightly divergent 6b genes (TE‐1‐6b‐L, TE‐1‐6b‐R and TE‐2‐6b) originating from a natural transformation event. In Arabidopsis thaliana, expression of 2×35S:TE‐2‐6b, but not 2×35S:TE‐1‐6b‐L or 2×35S:TE‐1‐6b‐R, led to plants with crinkly leaves, which strongly resembled mutants of the miR319a/TCP module. This module is composed of MIR319A and five CIN‐like TCP (TEOSINTHE BRANCHED1, CYCLOIDEA and PROLIFERATING CELL NUCLEAR ANTIGEN BINDING FACTOR) genes (TCP2, TCP3, TCP4, TCP10 and TCP24) targeted by miR319a. The CIN‐like TCP genes encode transcription factors and are required for cell division arrest at leaf margins during development. MIR319A overexpression causes excessive growth and crinkly leaves. TE‐2‐6b plants did not show increased miR319a levels, but the mRNA levels of the TCP4 target gene LOX2 were decreased, as in jaw‐D plants. Co‐expression of green fluorescent protein (GFP)‐tagged TCPs with native or red fluorescent protein (RFP)‐tagged TE‐6B proteins led to an increase in TCP protein levels and formation of numerous cytoplasmic dots containing 6B and TCP proteins. Yeast double‐hybrid experiments confirmed 6B/TCP binding and showed that TE‐1‐6B‐L and TE‐1‐6B‐R bind a smaller set of TCP proteins than TE‐2‐6B. A single nucleotide mutation in TE‐1‐6B‐R enlarged its TCP‐binding repertoire to that of TE‐2‐6B and caused a crinkly phenotype in Arabidopsis. Deletion analysis showed that TE‐2‐6B targets the TCP4 DNA‐binding domain and directly interferes with transcriptional activation. Taken together, these results provide detailed insights into the mechanism of action of the N. otophora TE‐encoded 6b genes., Significance Statement It was found previously that the Agrobacterium‐derived TE‐2‐6b gene from Nicotiana otophora induces strong growth effects in Nicotiana tabacum. However, the molecular mechanism has remained unknown. We show here that TE‐2‐6b induces a jaw‐D‐like phenotype in Arabidopsis – known to result from a decrease in CIN‐like TCPs – and that different TE‐6B proteins interact with different TCP subsets, thus providing insights into the molecular mechanism by which TE‐6B proteins stimulate plant growth.
- Published
- 2019
- Full Text
- View/download PDF
7. The Arabidopsis GRAS-type SCL28 transcription factor controls the mitotic cell cycle and division plane orientation
- Author
-
Rodrigo Vena, Toon Cools, Ramiro E. Rodriguez, Camila Goldy, Lieven De Veylder, José Antonio Pedroza-Garcia, Javier F. Palatnik, Natalie W. Breakfield, and Philip N. Benfey
- Subjects
Transcriptome ,Multidisciplinary ,Mitotic cell cycle ,Cell division ,Gene expression ,Cell sorting ,Biology ,Cell cycle ,Mitosis ,Transcription factor ,Cell biology - Abstract
Gene expression is reconfigured rapidly during the cell cycle to execute the cellular functions specific to each phase. Studies conducted with synchronized plant cell suspension cultures have identified hundreds of genes with periodic expression patterns across the phases of the cell cycle, but these results may differ from expression occurring in the context of intact organs. Here, we describe the use of fluorescence-activated cell sorting to analyze the gene expression profile of G2/M cells in the growing root. To this end, we isolated cells expressing the early mitosis cell cycle marker CYCLINB1;1-GFP from Arabidopsis root tips. Transcriptome analysis of these cells allowed identification of hundreds of genes whose expression is reduced or enriched in G2/M cells, including many not previously reported from cell suspension cultures. From this dataset, we identified SCL28, a transcription factor belonging to the GRAS family, whose messenger RNA accumulates to the highest levels in G2/M and is regulated by MYB3R transcription factors. Functional analysis indicates that SCL28 promotes progression through G2/M and modulates the selection of cell division planes.
- Published
- 2021
- Full Text
- View/download PDF
8. A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants
- Author
-
David M. Tricoli, Maria F. Ercoli, Jorge Dubcovsky, Sadiye Hayta, Pamela C. Ronald, Juan M. Debernardi, and Javier F. Palatnik
- Subjects
Recombinant Fusion Proteins ,Biomedical Engineering ,Bioengineering ,Genetically Modified ,Genetically modified crops ,Biology ,Regenerative Medicine ,Applied Microbiology and Biotechnology ,Article ,03 medical and health sciences ,Chimera (genetics) ,0302 clinical medicine ,Genome editing ,Regeneration ,Gene ,Selectable marker ,Triticum ,030304 developmental biology ,Gene Editing ,0303 health sciences ,Extramural ,fungi ,food and beverages ,Oryza ,Triticale ,Plants ,Plants, Genetically Modified ,Fusion protein ,Cell biology ,Molecular Medicine ,030217 neurology & neurosurgery ,Biotechnology - Abstract
The potential of genome editing to improve the agronomic performance of crops is often limited by low plant regeneration efficiencies and few transformable genotypes. Here, we show that expression of a fusion protein combining wheat GROWTH-REGULATING FACTOR 4 (GRF4) and its cofactor GRF-INTERACTING FACTOR 1 (GIF1) substantially increases the efficiency and speed of regeneration in wheat, triticale and rice and increases the number of transformable wheat genotypes. GRF4-GIF1 transgenic plants were fertile and without obvious developmental defects. Moreover, GRF4-GIF1 induces efficient wheat regeneration in the absence of exogenous cytokinins, which facilitates selection of transgenic plants without selectable markers. We also combined GRF4-GIF1 with CRISPR-Cas9 genome editing, generating 30 edited wheat plants with disruptions in the gene Q (AP2L-A5). Finally, we show that a dicot GRF-GIF chimera improves regeneration efficiency in citrus, suggesting that this strategy can be applied to dicot crops., Editorial summary A method that increases plant regeneration efficiency extends gene editing to more species and genotypes
- Published
- 2020
9. A chimera including a GROWTH-REGULATING FACTOR (GRF) and its cofactor GRF-INTERACTING FACTOR (GIF) increases transgenic plant regeneration efficiency
- Author
-
Pamela C. Ronald, Jorge Dubcovsky, Maria F. Ercoli, Juan M. Debernardi, Sadiye Hayta, David M. Tricoli, and Javier F. Palatnik
- Subjects
chemistry.chemical_compound ,Chimera (genetics) ,chemistry ,Genome editing ,Transgene ,food and beverages ,Genetically modified crops ,Triticale ,Biology ,Fusion protein ,Selectable marker ,DNA ,Cell biology - Abstract
Genome editing allows precise DNA manipulation, but its potential is limited in many crops by low regeneration efficiencies and few transformable genotypes. Here, we show that expression of a chimeric protein including wheat GROWTH-REGULATING FACTOR 4 (GRF4) and its cofactor GRF-INTERACTING FACTOR 1 (GIF1) dramatically increases the efficiency and speed of regeneration in wheat, triticale and rice and expands the number of transformable wheat genotypes. Moreover, GRF4-GIF1 induces efficient wheat regeneration in the absence of exogenous cytokinins, which facilitates selection of transgenic plants without selectable markers. By combining GRF4-GIF1 and CRISPR-Cas9 technologies, we were able to generate large numbers of edited wheat plants. The GRF4-GIF1 transgenic plants were fertile and without obvious developmental defects, likely due to post-transcriptional regulatory mechanisms operating on GRF4 in adult tissues. Finally, we show that a dicot GRF-GIF chimera improves regeneration efficiency in citrus suggesting that this strategy can be expanded to dicot crops.
- Published
- 2020
- Full Text
- View/download PDF
10. Robust increase of leaf size by Arabidopsis thaliana GRF3-like transcription factors under different growth conditions
- Author
-
Camila Goldy, María Florencia Ercoli, Arantxa M. L. Rojas, Liesbeth Vercruyssen, María Elena Alvarez, Matías Beltramino, Dirk Inzé, Javier F. Palatnik, Ramiro E. Rodriguez, Florencia Nota, and Juan M. Debernardi
- Subjects
0106 biological sciences ,0301 basic medicine ,Arabidopsis thaliana ,Arabidopsis ,lcsh:Medicine ,01 natural sciences ,purl.org/becyt/ford/1 [https] ,GRFs ,Plant defense against herbivory ,lcsh:Science ,Multidisciplinary ,biology ,food and beverages ,Organ Size ,Bioquímica y Biología Molecular ,GRAIN-SIZE ,Cell biology ,MILD DROUGHT ,RNA, Plant ,GRF3-like ,Brassica oleracea ,DROUGHT STRESS ,CIENCIAS NATURALES Y EXACTAS ,MIR396 ,REGULATING ,Brassica ,Article ,RICE ORYZA-SATIVA ,CELL-PROLIFERATION ,Ciencias Biológicas ,03 medical and health sciences ,LEAF ,Leaf size ,purl.org/becyt/ford/1.6 [https] ,IMAGE-ANALYSIS ,Transcription factor ,Gene ,Arabidopsis Proteins ,fungi ,lcsh:R ,Biology and Life Sciences ,Oryza ,biology.organism_classification ,Plant Leaves ,MicroRNAs ,030104 developmental biology ,FACTORS ,ARABIDOPSIS-THALIANA ,lcsh:Q ,Soybeans ,MAIZE ,Transcription Factors ,010606 plant biology & botany - Abstract
An increase in crop yield is essential to reassure food security to meet the accelerating global demand. Several genetic modifications can increase organ size, which in turn might boost crop yield. Still, only in a few cases their performance has been evaluated under stress conditions. MicroRNA miR396 repress the expression of GROWTH-REGULATING FACTOR (GRF) genes that codes for transcription factors that promote organ growth. Here, we show that both Arabidopsis thaliana At-GRF2 and At-GRF3 genes resistant to miR396 activity (rGRF2 and rGRF3) increased organ size, but only rGRF3 can produce this effect without causing morphological defects. Furthermore, introduction of At-rGRF3 in Brassica oleracea can increase organ size, and when At-rGRF3 homologs from soybean and rice are introduced in Arabidopsis, leaf size is also increased. This suggests that regulation of GRF3 activity by miR396 is important for organ growth in a broad range of species. Plants harboring rGRF3 have larger leaves also under drought stress, a condition that stimulates miR396 accumulation. These plants also showed an increase in the resistance to virulent bacteria, suggesting that the size increment promoted by rGRF3 occurs without an obvious cost on plant defenses. Our findings indicate that rGRF3 can increase plant organ size under both normal and stress conditions and is a valuable tool for biotechnological applications. Fil: Beltramino, Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Ercoli, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Debernardi, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Goldy, Camila. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Rojas, Arantxa Maria Larisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Nota, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; Argentina Fil: Alvarez, Maria Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; Argentina Fil: Vercruyssen, Liesbeth. University of Ghent; Bélgica Fil: Inzé, Dirk. University of Ghent; Bélgica Fil: Palatnik, Javier Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Rodriguez Virasoro, Ramiro Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina
- Published
- 2018
- Full Text
- View/download PDF
11. comTAR: a web tool for the prediction and characterization of conserved microRNA targets in plants.
- Author
-
Uciel Chorostecki and Javier F. Palatnik
- Published
- 2014
- Full Text
- View/download PDF
12. GIF Transcriptional Coregulators Control Root Meristem Homeostasis
- Author
-
Ana Paula Perrone, María Florencia Ercoli, Antonella Ferela, Ramiro E. Rodriguez, Juan M. Debernardi, and Javier F. Palatnik
- Subjects
0301 basic medicine ,Cell division ,Lateral root ,food and beverages ,Cell Biology ,Plant Science ,Bioquímica y Biología Molecular ,Meristem ,Biology ,Chromatin remodeling ,Cell biology ,Chromatin ,BRM ,Ciencias Biológicas ,03 medical and health sciences ,030104 developmental biology ,GRF ,Stem cell ,Transcription factor ,Mitosis ,CIENCIAS NATURALES Y EXACTAS ,GIF - Abstract
In the root meristem, the quiescent center (QC) is surrounded by stem cells, which in turn generate the different cell types of the root. QC cells rarely divide under normal conditions but can replenish damaged stem cells. In the proximal meristem, the daughters of stem cells, which are referred to as transit-amplifying cells, undergo additional rounds of cell division prior to differentiation. Here, we describe the functions of GRF-INTERACTING FACTORs (GIFs), including ANGUSTIFOLIA3 (AN3), in Arabidopsis thaliana roots. GIFs have been shown to interact with GRF transcription factors and SWI/SNF chromatin remodeling complexes. We found that combinations of GIF mutants cause the loss of QC identity. However, despite their QC impairment, GIF mutants have a significantly enlarged root meristem with additional lateral root cap layers. We show that the increased expression of PLETHORA1 (PLT1) is at least partially responsible for the large root meristems of an3 mutants. Furthermore, we found that GIFs are necessary for maintaining the precise expression patterns of key developmental regulators and that AN3 complexes bind directly to the promoter regions of PLT1 as well as SCARECROW. We propose that AN3/GIFs participate in different pathways that control QC organization and the size of the meristem. Fil: Ercoli, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Ferela, Antonella. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Debernardi, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Perrone, Ana Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Rodriguez Virasoro, Ramiro Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Palatnik, Javier Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina
- Published
- 2018
- Full Text
- View/download PDF
13. Evolutionary Footprints Reveal Insights into Plant MicroRNA Biogenesis
- Author
-
Uciel Chorostecki, Arantxa M. L. Rojas, Cedric Notredame, Belén Moro, Arnaldo Luis Schapire, Javier F. Palatnik, and Juan M. Debernardi
- Subjects
0301 basic medicine ,Lin-4 microRNA precursor ,Small RNA ,RNA Stability ,Otras Ciencias Biológicas ,Plant Science ,Computational biology ,Biology ,Evolucion ,Conserved sequence ,Evolution, Molecular ,Ciencias Biológicas ,03 medical and health sciences ,Gene Expression Regulation, Plant ,plantas ,microRNA ,Large-Scale Biology Article ,Protein secondary structure ,Gene ,Genetics ,Regulation of gene expression ,food and beverages ,RNA ,precursores ,Cell Biology ,microRNAs ,MicroRNAs ,030104 developmental biology ,RNA, Plant ,Complementarity (molecular biology) ,CIENCIAS NATURALES Y EXACTAS ,Biogenesis - Abstract
MicroRNAs (miRNAs) are endogenous small RNAs that recognize target sequences by base complementarity and play a role in the regulation of target gene expression. They are processed from longer precursor molecules that harbor a fold-back structure. Plant miRNA precursors are quite variable in size and shape, and are recognized by the processing machinery in different ways. However, ancient miRNAs and their binding sites in target genes are conserved during evolution. Here, we designed a strategy to systematically analyze MIRNAs from different species generating a graphical representation of the conservation of the primary sequence and secondary structure. We found that plant MIRNAs have evolutionary footprints that go beyond the small RNA sequence itself, yet their location along the precursor depends on the specific MIRNA. We show that these conserved regions correspond to structural determinants recognized during the biogenesis of plant miRNAs. Furthermore, we found that the members of the miR166 family have unusual conservation patterns and demonstrated that the recognition of these precursors in vivo differs from other known miRNAs. Our results describe a link between the evolutionary conservation of plant MIRNAs and the mechanisms underlying the biogenesis of these small RNAs and show that the MIRNA pattern of conservation can be used to infer the mode of miRNA biogenesis. Fil: Chorostecki, Uciel Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Moro, Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Rojas, Arantxa Maria Larisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Debernardi, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Schapire, Arnaldo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Notredame, Cedric. The Barcelona Institute of Science and Technology; España. Universitat Pompeu Fabra; España Fil: Palatnik, Javier Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina. Universidad Nacional de Rosario. Centro de Estudios Interdisciplinarios; Argentina
- Published
- 2017
- Full Text
- View/download PDF
14. Identification of key sequence features required for microRNA biogenesis in plants
- Author
-
Nicolás G. Bologna, Arantxa M. L. Rojas, Julieta L. Mateos, Uciel Chorostecki, Rodolfo M. Rasia, Belén Moro, Javier F. Palatnik, Arnaldo Luis Schapire, Diego M. Moreno, Salvador I. Drusin, Edgardo G. Bresso, Bunge & Born Foundation, Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Barcelona Supercomputing Center
- Subjects
0106 biological sciences ,0301 basic medicine ,Ribonuclease III ,Base Pair Mismatch ,Arabidopsis ,General Physics and Astronomy ,Cell Cycle Proteins ,01 natural sciences ,Non-coding RNAs ,purl.org/becyt/ford/1 [https] ,RNA interference ,RNA Processing, Post-Transcriptional ,lcsh:Science ,Biogenesis ,Multidisciplinary ,miRNA biogenesis ,biology ,food and beverages ,MicroRNA ,Cell biology ,RNA, Plant ,Informàtica::Aplicacions de la informàtica::Bioinformàtica [Àrees temàtiques de la UPC] ,Plant molecular biology ,Science ,Molecular Dynamics Simulation ,Polymorphism, Single Nucleotide ,General Biochemistry, Genetics and Molecular Biology ,Article ,Biological pathway ,03 medical and health sciences ,Magnoliopsida ,microRNA ,Ribonuclease ,purl.org/becyt/ford/1.6 [https] ,Sequence (medicine) ,Arabidopsis Proteins ,fungi ,RNA ,General Chemistry ,biology.organism_classification ,Multicellular organism ,MicroRNAs ,030104 developmental biology ,RNAi ,biology.protein ,Nucleic Acid Conformation ,lcsh:Q ,Molecular Dynamics simulations ,Gene expression ,Plant sciences ,Genètica ,010606 plant biology & botany - Abstract
MicroRNAs (miRNAs) are endogenous small RNAs of ∼21 nt that regulate multiple biological pathways in multicellular organisms. They derive from longer transcripts that harbor an imperfect stem-loop structure. In plants, the ribonuclease type III DICER-LIKE1 assisted by accessory proteins cleaves the precursor to release the mature miRNA. Numerous studies highlight the role of the precursor secondary structure during plant miRNA biogenesis; however, little is known about the relevance of the precursor sequence. Here, we analyzed the sequence composition of plant miRNA primary transcripts and found specifically located sequence biases. We show that changes in the identity of specific nucleotides can increase or abolish miRNA biogenesis. Most conspicuously, our analysis revealed that the identity of the nucleotides at unpaired positions of the precursor plays a crucial role during miRNA biogenesis in Arabidopsis., We thank different agencies for funding: Bunge and Born fellow (to U.C.) and CONICET fellows (to A.M.L.R., S.I.D., J.L.M., N.B., B.M., E.G.B.); and J.F.P., R.M.R., and D.M.M. are members of CONICET. Research was supported by grants from the Argentinean Ministry of Science (PICT-2015-3557) and International Centre for Genetic Engineering and Biotechnology (ICGEB CRP/ARG17-01).
- Published
- 2020
15. Editorial overview: Cell signalling and gene regulation: Something new, something old, something borrowed, something blue
- Author
-
Jorge J. Casal and Javier F. Palatnik
- Subjects
Regulation of gene expression ,Cognitive science ,Plant Science ,Biology - Published
- 2018
- Full Text
- View/download PDF
16. Beyond Dicer's cut
- Author
-
Javier F, Palatnik
- Subjects
Ribonuclease III ,MicroRNAs ,RNA, Plant ,Arabidopsis ,Nucleic Acid Conformation ,RNA Polymerase II ,Plant Proteins - Published
- 2019
17. Dual function of HYPONASTIC LEAVES 1 during early skotomorphogenic growth in Arabidopsis
- Author
-
Roberta Crespo, Javier F. Palatnik, Rodolfo M. Rasia, Juan Manuel Sacnun, and Nahuel González-Schain
- Subjects
Ribonuclease III ,0106 biological sciences ,0301 basic medicine ,Small RNA ,Mutant ,Arabidopsis ,Regulator ,Cell Cycle Proteins ,Plant Science ,Biology ,Skotomorphogenesis ,01 natural sciences ,Hypocotyl ,03 medical and health sciences ,Gene Expression Regulation, Plant ,Genetics ,Arabidopsis thaliana ,Arabidopsis Proteins ,RNA-Binding Proteins ,Cell Biology ,Meristem ,biology.organism_classification ,Cell biology ,MicroRNAs ,Basic-Leucine Zipper Transcription Factors ,030104 developmental biology ,Seedling ,Phosphorylation ,Biogenesis ,Function (biology) ,010606 plant biology & botany - Abstract
MicroRNAs are small RNA molecules with big impact in many eukaryotic biological processes. In plants, their role as regulators of important developmental programs such as leaf size and shape, flower organs or phase transitions, among others, have been evidenced by mutants in specific miRNAs and by mutants in components of their biogenesis. However, we are still far from understanding the scope of this regulatory system so other crucial developmental phases might be influenced by the microRNA pathway.Skotomorphogenesis is an essential developmental program that takes place after seeds germinate underground in order to display a proper response when seedlings reach the light. In this work, we found that the core components of microRNA pathway, DCL1, HYL1 and SERRATE, promote hypocotyl elongation during skotomorphogenesis. Hook unfolding, another characteristic phenotype displayed by dark-grown seedlings is also regulated by these proteins but, surprisingly, they act in different ways. Thus, HYL1 represses hook unfolding while DCL1 and SE promote it since the hooks of mutants on each component are more or less open than those of wild-type during skotomorphogenesis, respectively. Genetic and physiological analyses on HYL1 mutants provide evidence that repression of hook unfolding is carried out through the HYL1 protein-protein interaction domain. Furthermore, the data indicates that phosphorylated HYL1 is necessary for this function. Molecular and genetic analyses also suggest that HYL1 regulates the activity of the master photomorphogenic regulator HY5 in darkness to ensure a proper early skotomorphogenic growth. In summary, while our data show a role for miRNAs in darkness, it also suggests a microprocessor-independent role of HYL1 as a repressor of hook unfolding assigning a biological function to phosphorylated HYL1. This work uncovers a previously unnoticed link between components of the miRNA biogenesis machinery, the skotomorphogenic growth and hook development in Arabidopsis.Author summarySeeds germinating underground display a specific developmental program, termed skotomorphogenesis, to ensure survival of the emerging seedlings until they reach the light. They rapidly elongate the hypocotyl and maintain the cotyledons closed, forming a hook with the hypocotyl in order to protect apical meristematic cells from mechanical damage. Such crucial events for the fate of the seedling are tightly regulated and although some transcriptional regulators and phytohormones are known to be implicated in this regulation, we are still far from a complete understanding of these biological processes. Our work provides new information on the diverse roles in skotomorphogenesis of the core components of microRNA biogenesis in Arabidopsis, HYL1, SE, and DCL1. We show that hypocotyl elongation is promoted by all these components, probably through the action of specific miRNAs. Hook development is also controlled by these components although, remarkably, HYL1 exerts its role in an opposite way to DCL1 and SE. Interestingly, we found that a specific HYL1 domain involved protein-protein interaction is required for this function, instead of other regions of the protein with known roles in the biogenesis of miRNAs. We propose that phosphorylated HYL1 help to maintain the hook closed during early skotomorphogenesis by repressing the activity of HY5, the transcriptional master regulator that triggers light responses.
- Published
- 2019
- Full Text
- View/download PDF
18. Keep calm and carry on: miRNA biogenesis under stress
- Author
-
Seong Wook Yang, Pablo Andrés Manavella, and Javier F. Palatnik
- Subjects
0106 biological sciences ,0301 basic medicine ,MICRORNAS ,BIOGENESIS ,Plant Science ,Computational biology ,Stimulus (physiology) ,Biology ,01 natural sciences ,Ciencias Biológicas ,purl.org/becyt/ford/1 [https] ,03 medical and health sciences ,Gene Expression Regulation, Plant ,Stress, Physiological ,microRNA ,Gene expression ,Genetics ,STRESS RESPONSE ,RNA Processing, Post-Transcriptional ,purl.org/becyt/ford/1.6 [https] ,Gene ,Transcription factor ,Plant Proteins ,Cell Biology ,Bioquímica y Biología Molecular ,Plants ,MicroRNAs ,030104 developmental biology ,RNA, Plant ,Developmental plasticity ,MiRNA biogenesis ,CIENCIAS NATURALES Y EXACTAS ,Biogenesis ,Metabolic Networks and Pathways ,010606 plant biology & botany ,Transcription Factors - Abstract
MicroRNAs (miRNAs) are major post-transcriptional regulators of gene expression. Their biogenesis relies on the cleavage of longer precursors by a nuclear localized processing machinery. The evolutionary preference of plant miRNAs to silence transcription factors turned these small molecules into key actors during growth and adaptive responses. Furthermore, during their life cycle plants are subject to changes in the environmental conditions surrounding them. In order to face these changes, plants display unique adaptive capacities based on an enormous developmental plasticity, where miRNAs play central roles. Many individual miRNAs have been shown to modulate the plant response to different environmental cues and stresses. In the last few years, increasing evidence has shown that not only individual genes encoding miRNAs but also the miRNA pathway as a whole is subject to regulation in response to external stimulus. In this review, we discuss the current knowledge about the miRNA pathway. We dissect the pathway to analyze the events leading to the generation of these small RNAs and emphasize the regulation of core components of the miRNA biogenesis machinery. Fil: Manavella, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina Fil: Yang, Seong W.. Yonsei University; Corea del Sur Fil: Palatnik, Javier Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina
- Published
- 2019
19. Detection of MicroRNA Processing Intermediates Through RNA Ligation Approaches
- Author
-
Belén, Moro, Arantxa M L, Rojas, and Javier F, Palatnik
- Subjects
DEAD-box RNA Helicases ,MicroRNAs ,Arabidopsis Proteins ,RNA, Plant ,Arabidopsis ,RNA Precursors ,RNA-Binding Proteins ,Serrate-Jagged Proteins - Abstract
MicroRNAs (miRNA) are small RNAs of 20-22 nt that regulate diverse biological pathways through the modulation of gene expression. miRNAs recognize target RNAs by base complementarity and guide them to degradation or translational arrest. They are transcribed as longer precursors with extensive secondary structures. In plants, these precursors are processed by a complex harboring DICER-LIKE1 (DCL1), which cuts on the precursor stem region to release the mature miRNA together with the miRNA*. In both plants and animals, the miRNA precursors contain spatial clues that determine the position of the miRNA along their sequences. DCL1 is assisted by several proteins, such as the double-stranded RNA binding protein, HYPONASTIC LEAVES1 (HYL1), and the zinc finger protein SERRATE (SE). The precise biogenesis of miRNAs is of utter importance since it determines the exact nucleotide sequence of the mature small RNAs and therefore the identity of the target genes. miRNA processing itself can be regulated and therefore can determine the final small RNA levels and activity. Here, we describe methods to analyze miRNA processing intermediates in plants. These approaches can be used in wild-type or mutant plants, as well as in plants grown under different conditions, allowing a molecular characterization of the miRNA biogenesis from the RNA precursor perspective.
- Published
- 2019
20. Identification of plant microRNA homologs.
- Author
-
Tobias Dezulian, Michael Remmert, Javier F. Palatnik, Detlef Weigel, and Daniel H. Huson
- Published
- 2006
- Full Text
- View/download PDF
21. Detection of MicroRNA Processing Intermediates Through RNA Ligation Approaches
- Author
-
Arantxa M. L. Rojas, Javier F. Palatnik, and Belén Moro
- Subjects
0106 biological sciences ,Zinc finger ,0303 health sciences ,Small RNA ,fungi ,food and beverages ,RNA ,RNA-binding protein ,Biology ,01 natural sciences ,Cell biology ,03 medical and health sciences ,Gene expression ,microRNA ,Gene ,Biogenesis ,030304 developmental biology ,010606 plant biology & botany - Abstract
MicroRNAs (miRNA) are small RNAs of 20-22 nt that regulate diverse biological pathways through the modulation of gene expression. miRNAs recognize target RNAs by base complementarity and guide them to degradation or translational arrest. They are transcribed as longer precursors with extensive secondary structures. In plants, these precursors are processed by a complex harboring DICER-LIKE1 (DCL1), which cuts on the precursor stem region to release the mature miRNA together with the miRNA*. In both plants and animals, the miRNA precursors contain spatial clues that determine the position of the miRNA along their sequences. DCL1 is assisted by several proteins, such as the double-stranded RNA binding protein, HYPONASTIC LEAVES1 (HYL1), and the zinc finger protein SERRATE (SE). The precise biogenesis of miRNAs is of utter importance since it determines the exact nucleotide sequence of the mature small RNAs and therefore the identity of the target genes. miRNA processing itself can be regulated and therefore can determine the final small RNA levels and activity. Here, we describe methods to analyze miRNA processing intermediates in plants. These approaches can be used in wild-type or mutant plants, as well as in plants grown under different conditions, allowing a molecular characterization of the miRNA biogenesis from the RNA precursor perspective.
- Published
- 2019
- Full Text
- View/download PDF
22. Analysis of Expression Gradients of Developmental Regulators in Arabidopsis thaliana Roots
- Author
-
María Florencia, Ercoli, Rodrigo, Vena, Camila, Goldy, Javier F, Palatnik, and Ramiro E, Rodríguez
- Subjects
Microscopy, Confocal ,Arabidopsis Proteins ,Gene Expression Regulation, Plant ,Arabidopsis ,Image Processing, Computer-Assisted ,Plant Roots ,Software - Abstract
The regulatory mechanisms involved in plant development include many signals, some of them acting as graded positional cues regulating gene expression in a concentration-dependent manner. These regulatory molecules, that can be considered similar to animal morphogens, control cell behavior in developing organs. A suitable experimental approach to study expression gradients in plants is quantitative laser scanning confocal microscopy (LSCM) using Arabidopsis thaliana root tips as a model system. In this chapter, we outline a detailed method for image acquisition using LSCM, including detailed microscope settings and image analysis using FIJI as software platform.
- Published
- 2018
23. Efficiency and precision of microRNA biogenesis modes in plants
- Author
-
Irina P. Suarez, Rodolfo M. Rasia, Claudia Höbartner, Uciel Chorostecki, Blake C. Meyers, Siwaret Arikit, Belén Moro, and Javier F. Palatnik
- Subjects
0301 basic medicine ,Small RNA ,Transcription, Genetic ,precursor ,Arabidopsis ,RNA-binding protein ,Biology ,Polymerase Chain Reaction ,Protein Structure, Secondary ,purl.org/becyt/ford/1 [https] ,Ciencias Biológicas ,03 medical and health sciences ,Transcription (biology) ,Gene Expression Regulation, Plant ,microRNA ,plantas ,Genetics ,Transgenes ,RNA Processing, Post-Transcriptional ,purl.org/becyt/ford/1.6 [https] ,Transcription factor ,Gene Library ,RNA, Double-Stranded ,2. Zero hunger ,Regulation of gene expression ,Binding Sites ,Arabidopsis Proteins ,Gene regulation, Chromatin and Epigenetics ,food and beverages ,RNA ,Computational Biology ,RNA-Binding Proteins ,microARN ,Bioquímica y Biología Molecular ,Plants, Genetically Modified ,procesamiento ,Phosphoric Monoester Hydrolases ,Cell biology ,RNA silencing ,MicroRNAs ,030104 developmental biology ,Seedlings ,Mutation ,CIENCIAS NATURALES Y EXACTAS - Abstract
Many evolutionarily conserved microRNAs (miRNAs) in plants regulate transcription factors with key functions in development. Hence, mutations in the core components of the miRNA biogenesis machinery cause strong growth defects. An essential aspect of miRNA biogenesis is the precise excision of the small RNA from its precursor. In plants, miRNA precursors are largely variable in size and shape and can be processed by different modes. Here, we optimized an approach to detect processing intermediates during miRNA biogenesis. We characterized a miRNA whose processing is triggered by a terminal branched loop. Plant miRNA processing can be initiated by internal bubbles, small terminal loops or branched loops followed by dsRNA segments of 15-17 bp. Interestingly, precision and efficiency vary with the processing modes. Despite the various potential structural determinants present in a single a miRNA precursor, DCL1 is mostly guided by a predominant structural region in each precursor in wildtype plants. However, our studies in fiery1, hyl1 and se mutants revealed the existence of cleavage signatures consistent with the recognition of alternative processing determinants. The results provide a general view of the mechanisms underlying the specificity of miRNA biogenesis in plants. Fil: Moro, Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Chorostecki, Uciel Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Arikit, Siwaret. Kasetsart University; Tailandia Fil: Suarez, Irina Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Hobartner, Claudia. Universität Würzburg; Alemania Fil: Rasia, Rodolfo Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Meyers, Blake C.. Donald Danforth Plant Science Center; Estados Unidos. University of Missouri; Estados Unidos Fil: Palatnik, Javier Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina
- Published
- 2018
24. Spatial control of gene expression by miR319-regulated TCP transcription factors in leaf development
- Author
-
Uciel Chorostecki, Ramiro E. Rodriguez, Javier F. Palatnik, Edgardo G. Bresso, and Carla Schommer
- Subjects
0301 basic medicine ,Cell division ,biology ,Physiology ,hoja ,Mutant ,Plant Science ,Bioquímica y Biología Molecular ,biology.organism_classification ,factores de transcripcion ,Cell biology ,Ciencias Biológicas ,03 medical and health sciences ,030104 developmental biology ,Transcription (biology) ,Arabidopsis ,Gene expression ,Botany ,Genetics ,Gene family ,margen ,TCP ,Transcription factor ,Gene ,CIENCIAS NATURALES Y EXACTAS - Abstract
The characteristic leaf shapes we see in all plants are in good part the outcome of the combined action of several transcription factor networks that translate into cell division activity during the early development of the organ. We show here that wild-type leaves have distinct transcriptomic profiles in center and marginal regions. Certain transcripts are enriched in margins, including those of CINCINNATA-like TCPs (TEOSINTE BRANCHED, CYCLOIDEA and PCF1/2) and members of the NGATHA and STYLISH gene families. We study in detail the contribution of microRNA319 (miR319)-regulated TCP transcription factors to the development of the center and marginal regions of Arabidopsis (Arabidopsis thaliana) leaves. We compare in molecular analyses the wild type, the tcp2 tcp4 mutant that has enlarged flat leaves, and the tcp2 tcp3 tcp4 tcp10 mutant with strongly crinkled leaves. The different leaf domains of the tcp mutants show changed expression patterns for many photosynthesisrelated genes, indicating delayed differentiation, especially in the marginal parts of the organ. At the same time, we found an up-regulation of cyclin genes and other genes that are known to participate in cell division, specifically in the marginal regions of tcp2 tcp3 tcp4 tcp10. Using GUS reporter constructs, we confirmed extended mitotic activity in the tcp2 tcp3 tcp4 tcp10 leaf, which persisted in small defined foci in the margins when the mitotic activity had already ceased in wild-type leaves. Our results describe the role of miR319-regulated TCP transcription factors in the coordination of activities in different leaf domains during organ development. Fil: Bresso, Edgardo G.. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario, Argentina; Argentina Fil: Chorostecki, Uciel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario; Argentina Fil: Rodriguez, Ramiro E.. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Palatnik, Javier Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario; Argentina Fil: Schommer, Carla. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario; Argentina
- Published
- 2018
25. MicroRNA miR396 Regulates the Switch between Stem Cells and Transit-Amplifying Cells in Arabidopsis Roots
- Author
-
María Florencia Ercoli, Juan M. Debernardi, Martin A. Mecchia, Toon Cools, Ramiro E. Rodriguez, Martín Sabatini, Natalie W. Breakfield, Philip N. Benfey, Javier F. Palatnik, and Lieven De Veylder
- Subjects
Confocal Microscopy ,Cell division ,Otras Ciencias Biológicas ,Meristem ,Cell ,Arabidopsis ,Plant Science ,Development ,Biology ,Plant Roots ,Ciencias Biológicas ,purl.org/becyt/ford/1 [https] ,Gene Expression Regulation, Plant ,microRNA ,medicine ,Stem Cell Niche ,purl.org/becyt/ford/1.6 [https] ,Transcription factor ,Research Articles ,Arabidopsis Proteins ,Stem Cells ,MicroRNA ,Cell Biology ,Cell cycle ,Plants, Genetically Modified ,biology.organism_classification ,Cell biology ,MicroRNAs ,medicine.anatomical_structure ,Root ,Stem cell ,CIENCIAS NATURALES Y EXACTAS ,Cell Division ,Transcription Factors - Abstract
To ensure an adequate organ mass, the daughters of stem cells progress through a transit-amplifying phase displaying rapid cell division cycles before differentiating. Here, we show that Arabidopsis thaliana microRNA miR396 regulates the transition of root stem cells into transit-amplifying cells by interacting with GROWTH-REGULATING FACTORs (GRFs). The GRFs are expressed in transit-amplifying cells but are excluded from the stem cells through inhibition by miR396. Inactivation of the GRFs increases the meristem size and induces periclinal formative divisions in transit-amplifying cells. The GRFs repress PLETHORA (PLT) genes, regulating their spatial expression gradient. Conversely, PLT activates MIR396 in the stem cells to repress the GRFs. We identified a pathway regulated by GRF transcription factors that represses stem cell-promoting genes in actively proliferating cells, which is essential for the progression of the cell cycle and the orientation of the cell division plane. If unchecked, the expression of the GRFs in the stem cell niche suppresses formative cell divisions and distorts the organization of the quiescent center. We propose that the interactions identified here between miR396 and GRF and PLT transcription factors are necessary to establish the boundary between the stem cell niche and the transit-amplifying region. Fil: Rodriguez Virasoro, Ramiro Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Ercoli, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Debernardi, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Breakfield, Natalie W.. University of Duke; Estados Unidos Fil: Mecchia, Martin Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Sabatini, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Cools, Toon. University of Ghent; Bélgica Fil: De Veylder, Lieven. University of Ghent; Bélgica Fil: Benfey, Philip N.. University of Duke; Estados Unidos Fil: Palatnik, Javier Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina
- Published
- 2015
- Full Text
- View/download PDF
26. Analysis of Expression Gradients of Developmental Regulators in Arabidopsis thaliana Roots
- Author
-
Camila Goldy, María Florencia Ercoli, Ramiro E. Rodriguez, Rodrigo Vena, and Javier F. Palatnik
- Subjects
0301 basic medicine ,biology ,food and beverages ,biology.organism_classification ,Control cell ,Expression (mathematics) ,Cell biology ,Regulatory molecules ,03 medical and health sciences ,Plant development ,030104 developmental biology ,Gene expression ,Confocal laser scanning microscopy ,Image acquisition ,Arabidopsis thaliana - Abstract
The regulatory mechanisms involved in plant development include many signals, some of them acting as graded positional cues regulating gene expression in a concentration-dependent manner. These regulatory molecules, that can be considered similar to animal morphogens, control cell behavior in developing organs. A suitable experimental approach to study expression gradients in plants is quantitative laser scanning confocal microscopy (LSCM) using Arabidopsis thaliana root tips as a model system. In this chapter, we outline a detailed method for image acquisition using LSCM, including detailed microscope settings and image analysis using FIJI as software platform.
- Published
- 2018
- Full Text
- View/download PDF
27. miR396 affects mycorrhization and root meristem activity in the legumeMedicago truncatula
- Author
-
Ramiro E. Rodriguez, Jérémie Bazin, Jean-Philippe Combier, Juan M. Debernardi, Pilar Bustos-Sanmamed, Caroline Hartmann, Martin Crespi, Javier F. Palatnik, Christine Lelandais-Brière, Céline Sorin, and Ghazanfar Abbas Khan
- Subjects
0106 biological sciences ,Meristem ,Gene Expression ,Plant Science ,Plant Root Nodulation ,Plant Roots ,01 natural sciences ,Ciencias Biológicas ,03 medical and health sciences ,Gene Expression Regulation, Plant ,Genes, Reporter ,Mycorrhizae ,Medicago truncatula ,Botany ,Medicago ,Genetics ,Biomass ,Promoter Regions, Genetic ,Symbiosis ,Ciencias de las Plantas, Botánica ,Legume ,Cell Proliferation ,Plant Proteins ,030304 developmental biology ,0303 health sciences ,biology ,Fungi ,Computational Biology ,Cell Biology ,Plants, Genetically Modified ,root ,biology.organism_classification ,MicroRNAs ,GRF ,RNA Interference ,Sequence Alignment ,CIENCIAS NATURALES Y EXACTAS ,Sinorhizobium meliloti ,Transcription Factors ,010606 plant biology & botany - Abstract
The root system is crucial for acquisition of resources from the soil. In legumes, the efficiency of mineral and water uptake by the roots may be reinforced due to establishment of symbiotic relationships with mycorrhizal fungi and interactions with soil rhizobia. Here, we investigated the role of miR396 in regulating the architecture of the root system and in symbiotic interactions in the model legume Medicago truncatula. Analyses with promoter–GUS fusions suggested that the mtr-miR396a and miR396b genes are highly expressed in root tips, preferentially in the transition zone, and display distinct expression profiles during lateral root and nodule development. Transgenic roots of composite plants that over-express the miR396b precursor showed lower expression of six growth-regulating factor genes (MtGRF) and two bHLH79-like target genes, as well as reduced growth and mycorrhizal associations. miR396 inactivation by mimicry caused contrasting tendencies, with increased target expression, higher root biomass and more efficient colonization by arbuscular mycorrhizal fungi. In contrast to MtbHLH79, repression of three GRF targets by RNA interference severely impaired root growth. Early activation of mtr-miR396b, concomitant with post-transcriptional repression of MtGRF5 expression, was also observed in response to exogenous brassinosteroids. Growth limitation in miR396 over-expressing roots correlated with a reduction in cell-cycle gene expression and the number of dividing cells in the root apical meristem. These results link the miR396 network to the regulation of root growth and mycorrhizal associations in plants. Fil: Bazin, Jeremie. Centre National de la Recherche Scientifique. Institut des Sciences du Veg etal; Francia. Universite Paris Diderot - Paris 7; Francia Fil: Khan. Ghazanfar Abbas. Centre National de la Recherche Scientifique. Institut des Sciences du Veg etal; Francia Fil: Combier, Jean Philippe. Laboratoire de Recherche en Sciences Veg etales; Francia. Centre National de la Recherche Scientifique; Francia Fil: Bustos Sanmamed, Maria del Pilar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina. Centre National de la Recherche Scientifique. Institut des Sciences du Veg etal; Francia Fil: Debernardi, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Rodriguez, Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Sorin, Celine. Centre National de la Recherche Scientifique. Institut des Sciences du Veg etal; Francia. Universite Paris Diderot - Paris 7; Francia Fil: Palatnik, Javier Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Hartmann, Caroline. Centre National de la Recherche Scientifique. Institut des Sciences du Veg etal; Francia. Universite Paris Diderot - Paris 7; Francia Fil: Crespi, Martin. Centre National de la Recherche Scientifique. Institut des Sciences du Veg etal; Francia Fil: Lelandais Briere, Christine. Centre National de la Recherche Scientifique. Institut des Sciences du Veg etal; Francia. Universite Paris Diderot - Paris 7; Francia
- Published
- 2013
- Full Text
- View/download PDF
28. Morphogenesis of simple leaves: regulation of leaf size and shape
- Author
-
Javier F. Palatnik, Ramiro E. Rodriguez, and Juan M. Debernardi
- Subjects
Regulation of gene expression ,biology ,Meristem ,fungi ,Arabidopsis ,Morphogenesis ,Plant Development ,food and beverages ,Cell Biology ,biology.organism_classification ,Cell biology ,Plant Leaves ,Gene Expression Regulation, Plant ,Botany ,Arabidopsis thaliana ,Leaf morphogenesis ,Leaf size ,Photosynthesis ,Molecular Biology ,Leaf development ,Process (anatomy) ,Plant Shoots ,Cell Proliferation ,Developmental Biology - Abstract
Plants produce new organs throughout their life span. Leaves first initiate as rod-like structures protruding from the shoot apical meristem, while they need to pass through different developmental stages to become the flat organ specialized in photosynthesis. Leaf morphogenesis is an active process regulated by many genes and pathways that can generate organs with a wide variety of sizes and shapes. Important differences in leaf architecture can be seen among different species, but also in single individuals. A key aspect of leaf morphogenesis is the precise control of cell proliferation. Modification or manipulation of this process may lead to leaves with different sizes and shapes, and changes in the organ margins and curvature. Many genes required for leaf development have been identified in Arabidopsis thaliana, and the mechanisms underlying leaf morphogenesis are starting to be unraveled at the molecular level.
- Published
- 2013
- Full Text
- View/download PDF
29. MicroRNA miR396 and RDR6 synergistically regulate leaf development
- Author
-
Javier F. Palatnik, Martin A. Mecchia, Ramiro E. Rodriguez, Carla Schommer, and Juan M. Debernardi
- Subjects
Embryology ,Transgene ,Mutant ,Meristem ,Morphogenesis ,Arabidopsis ,Biology ,Ciencias Biológicas ,Gene Expression Regulation, Plant ,Gene Regulatory Networks ,Enhancer ,Transcription factor ,ta-siRNA ,Genetics ,Regulation of gene expression ,microRNA ,Arabidopsis Proteins ,fungi ,miR396 ,Biología del Desarrollo ,food and beverages ,biology.organism_classification ,Plants, Genetically Modified ,RNA-Dependent RNA Polymerase ,Plant Leaves ,MicroRNAs ,GRF ,Mutation ,rdr6 ,TCP ,CIENCIAS NATURALES Y EXACTAS ,Transcription Factors ,Developmental Biology - Abstract
The miroRNA (miRNA) miR396 regulates Growth-Regulating Factors (GRFs), a plant specific family of transcription factors. Overexpression of miR396 causes a decrease in the GRFs that has been shown to affect cell proliferation in the meristem and developing leaves. To bring further insights into the function of the miR396 regulatory network we performed a mutant enhancer screen of a stable Arabidopsis transgenic line expressing 35S:miR396b, which has a reduction in leaf size. From this screen we recovered several mutants enhancing this phenotype and displaying organs with lotus- or needle-like shape. Analysis of these plants revealed mutations in as2 and rdr6. While 35S:miR396b in an as2 context generated organs with lotus-like shape, the overexpression of the miRNA in an rdr6 mutant background caused more important developmental defects, including pin-like organs and lobed leaves. Combination of miR396 overexpressors, and rdr6 and as2 mutants show additional organ defects, suggesting that the three pathways act in concert. Genetic interactions during leaf development were observed in a similar way between miR396 overexpression and mutants in RDR6, SGS3 or AGO7, which are known to participate in trans-acting siRNA (ta-siRNA) biogenesis. Furthermore, we found that miR396 can cause lotus- and pin-like organs per se, once a certain expression threshold is overcome. In good agreement, mutants accumulating high levels of TCP4, which induces miR396, interacted with the AS1/AS2 pathway to generate lotus-like organs. The results indicate that the miR396 regulatory network and the ta-siRNA biogenesis pathway synergistically interact during leaf development and morphogenesis. Fil: Mecchia, Martin Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Debernardi, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Rodriguez Virasoro, Ramiro Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Schommer, Carla. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Palatnik, Javier Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina
- Published
- 2013
- Full Text
- View/download PDF
30. Control of cell proliferation by microRNAs in plants
- Author
-
Javier F. Palatnik, Carla Schommer, and Ramiro E. Rodriguez
- Subjects
0301 basic medicine ,Otras Ciencias Biológicas ,Arabidopsis ,Plant Science ,Proliferacion ,Biology ,Organ development ,Plantas ,Ciencias Biológicas ,03 medical and health sciences ,Gene Expression Regulation, Plant ,microRNA ,Arabidopsis thaliana ,Control (linguistics) ,Diferenciacion ,Cell Proliferation ,Regulation of gene expression ,MicroARNs ,Cell growth ,Arabidopsis Proteins ,food and beverages ,Organ Size ,biology.organism_classification ,Cell biology ,MicroRNAs ,030104 developmental biology ,CIENCIAS NATURALES Y EXACTAS - Abstract
Plants have the ability to generate different and new organs throughout their life cycle. Organ growth is mostly determined by the combinatory effects of cell proliferation and cell expansion. Still, organ size and shape are adjusted constantly by environmental conditions and developmental timing. The plasticity of plant development is further illustrated by the diverse organ forms found in nature. MicroRNAs (miRNAs) are known to control key biological processes in plants. In this review, we will discuss recent findings showing the participation of miRNA networks in the regulation of cell proliferation and organ growth. It has become clear that miRNA networks play both integrative and specific roles in the control of organ development in Arabidopsis thaliana. Furthermore, recent work in different species demonstrated a broad role for miR396 in the control of organ size, and that specific tuning of the miR396 network can improve crop yield. Fil: Rodriguez Virasoro, Ramiro Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Schommer, Carla. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Palatnik, Javier Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina. Universidad Nacional de Rosario. Centro de Estudios Interdisciplinarios; Argentina
- Published
- 2016
31. Identification of new microRNA-regulated genes by conserved targeting in plant species
- Author
-
Anabella F. Lodeyro, Ana Paula Martin, Carla Schommer, Javier F. Palatnik, Valeria A. Crosa, Néstor Carrillo, Nicolás G. Bologna, and Uciel Chorostecki
- Subjects
Expressed Sequence Tags ,Genetics ,Expressed sequence tag ,Base Sequence ,fungi ,Arabidopsis ,food and beverages ,Sequence alignment ,Gene Regulation, Chromatin and Epigenetics ,Biology ,biology.organism_classification ,Conserved sequence ,MicroRNAs ,Multicellular organism ,Gene Expression Regulation, Plant ,RNA, Plant ,microRNA ,RNA, Messenger ,Sequence Alignment ,Gene ,Transcription factor ,Conserved Sequence ,Solanaceae - Abstract
MicroRNAs (miRNAs) are major regulators of gene expression in multicellular organisms. They recognize their targets by sequence complementarity and guide them to cleavage or translational arrest. It is generally accepted that plant miRNAs have extensive complementarity to their targets and their prediction usually relies on the use of empirical parameters deduced from known miRNA-target interactions. Here, we developed a strategy to identify miRNA targets which is mainly based on the conservation of the potential regulation in different species. We applied the approach to expressed sequence tags datasets from angiosperms. Using this strategy, we predicted many new interactions and experimentally validated previously unknown miRNA targets in Arabidopsis thaliana. Newly identified targets that are broadly conserved include auxin regulators, transcription factors and transporters. Some of them might participate in the same pathways as the targets known before, suggesting that some miRNAs might control different aspects of a biological process. Furthermore, this approach can be used to identify targets present in a specific group of species, and, as a proof of principle, we analyzed Solanaceae-specific targets. The presented strategy can be used alone or in combination with other approaches to find miRNA targets in plants.
- Published
- 2012
- Full Text
- View/download PDF
32. A Mechanistic Link betweenSTMandCUC1during Arabidopsis Development
- Author
-
Daniel H. Gonzalez, Javier F. Palatnik, Ana Paula Martin, Ivana L. Viola, and Silvana V. Spinelli
- Subjects
Physiology ,Molecular Sequence Data ,STM ,miR164 ,Arabidopsis ,Plant Science ,CUC ,Ciencias Biológicas ,Gene Expression Regulation, Plant ,microRNA ,Genetics ,Arabidopsis thaliana ,Primordium ,Binding site ,Promoter Regions, Genetic ,Gene ,Transcription factor ,Feedback, Physiological ,Homeodomain Proteins ,Base Sequence ,biology ,Arabidopsis Proteins ,Development and Hormone Action ,fungi ,food and beverages ,Bioquímica y Biología Molecular ,Meristem ,biology.organism_classification ,Cell biology ,MicroRNAs ,Genome, Plant ,CIENCIAS NATURALES Y EXACTAS ,Protein Binding - Abstract
The KNOXI transcription factor SHOOT MERISTEMLESS (STM) is required to establish and maintain the Arabidopsis (Arabidopsis thaliana) apical meristem, yet little is known about its direct targets. Using different approaches we demonstrate that the induction of STM causes a significant up-regulation of the organ boundary gene CUP SHAPED COTYLEDON1 (CUC1), which is specific and independent of other meristem regulators. We further show that the regulation of CUC1 by STM is direct and identify putative binding sites in its promoter. Continuous expression of STM in Arabidopsis leaf primordia also causes the activation of CUC2-3, as well as microRNA MIR164a, which provides a negative feedback loop by posttranscriptionally regulating CUC1 and CUC2. The results bring new insights into the mechanistic links between KNOXI and CUC transcription factors and contribute to the understanding of the regulatory network controlled by STM. Fil: Spinelli, Silvana Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Martin, Ana Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Viola, Ivana Lorena. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Departamento de Ciencias Biológicas. Cátedra de Biología Celular y Molecular; Argentina Fil: Gonzalez, Daniel Hector. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Departamento de Ciencias Biológicas. Cátedra de Biología Celular y Molecular; Argentina Fil: Palatnik, Javier Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina
- Published
- 2011
- Full Text
- View/download PDF
33. Control of cell proliferation in Arabidopsis thaliana by microRNA miR396
- Author
-
Carla Schommer, Juan M. Debernardi, Martin A. Mecchia, Detlef Weigel, Ramiro E. Rodriguez, and Javier F. Palatnik
- Subjects
Cell division ,Meristem ,Arabidopsis ,Gene Expression Regulation, Plant ,Arabidopsis thaliana ,Molecular Biology ,Transcription factor ,In Situ Hybridization ,Research Articles ,Cell Proliferation ,Oligonucleotide Array Sequence Analysis ,biology ,Arabidopsis Proteins ,Cell growth ,fungi ,Gene Expression Regulation, Developmental ,food and beverages ,Cell cycle ,Plants, Genetically Modified ,biology.organism_classification ,Cell Cycle Gene ,Molecular biology ,Plant Leaves ,MicroRNAs ,Trans-Activators ,Plant Shoots ,Transcription Factors ,Developmental Biology - Abstract
Cell proliferation is an important determinant of plant form, but little is known about how developmental programs control cell division. Here, we describe the role of microRNA miR396 in the coordination of cell proliferation in Arabidopsis leaves. In leaf primordia, miR396 is expressed at low levels that steadily increase during organ development. We found that miR396 antagonizes the expression pattern of its targets, the GROWTH-REGULATING FACTOR (GRF) transcription factors. miR396 accumulates preferentially in the distal part of young developing leaves, restricting the expression of GRF2 to the proximal part of the organ. This, in turn, coincides with the activity of the cell proliferation marker CYCLINB1;1. We show that miR396 attenuates cell proliferation in developing leaves, through the repression of GRF activity and a decrease in the expression of cell cycle genes. We observed that the balance between miR396 and the GRFs controls the final number of cells in leaves. Furthermore, overexpression of miR396 in a mutant lacking GRF-INTERACTING FACTOR 1 severely compromises the shoot meristem. We found that miR396 is expressed at low levels throughout the meristem, overlapping with the expression of its target, GRF2. In addition, we show that miR396 can regulate cell proliferation and the size of the meristem. Arabidopsis plants with an increased activity of the transcription factor TCP4, which reduces cell proliferation in leaves, have higher miR396 and lower GRF levels. These results implicate miR396 as a significant module in the regulation of cell proliferation in plants.
- Published
- 2010
- Full Text
- View/download PDF
34. List of Contributors
- Author
-
Agustín L. Arce, Nicolas Arnaud, Cordelia Bolle, Matías Capella, Raquel L. Chan, Pilar Cubas, Juan Manuel Debernardi, Farah Deeba, María Florencia Ercoli, Marçal Gallemí, Maria Dolores Gomez, Beatriz Gonçalves, Daniel H. Gonzalez, Eduardo González-Grandío, Lydia Gramzow, Sarah Hake, David J. Hannapel, Jong Chan Hong, Aeni Hosaka-Sasaki, Yuji Iwata, Shoshi Kikuchi, Nozomu Koizumi, Patrick Laufs, Yuan Li, Gary J. Loake, Leila Lo Leggio, Jaime F. Martínez-García, Aude Maugarny, Toshifumi Nagata, Michael Nicolas, Javier F. Palatnik, Miguel A. Perez-Amador, Roel C. Rabara, Pamela A. Ribone, Charles I. Rinerson, Ramiro E. Rodriguez, Paul J. Rushton, Qingxi J. Shen, Karen Skriver, Sophia L. Stone, Günter Theißen, Prateek Tripathi, Katsutoshi Tsuda, Francisco Vera-Sirera, Ivana L. Viola, Jia-Wei Wang, Ditte H. Welner, Kazuhiko Yamasaki, and Shuichi Yanagisawa
- Published
- 2016
- Full Text
- View/download PDF
35. Growth-Regulating Factors, A Transcription Factor Family Regulating More than Just Plant Growth
- Author
-
Javier F. Palatnik, Juan M. Debernardi, María Florencia Ercoli, and Ramiro E. Rodriguez
- Subjects
Genetics ,chemistry.chemical_compound ,chemistry ,Transcription (biology) ,microRNA ,Protein domain ,Gene family ,Biology ,Transcription factor ,Nuclear localization sequence ,Chromatin remodeling ,DNA - Abstract
The GROWTH-REGULATING FACTOR ( GRF ) family of transcription factors (TFs) is a small gene family found in land plants and is defined by the presence of two highly conserved protein domains: WRC (Trp–Arg–Cys) and QLQ (Gln–Leu–Gln). The WRC domain contains a nuclear localization signal and a zinc (Zn) finger motif involved in DNA binding. The QLQ domain mediates the interaction between GRFs and transcriptional coactivator GRF-INTERACTING FACTORs ( GIFs ), which in turn recruit SWI/SNF chromatin remodeling complexes to modulate transcription. Many GRF transcripts are posttranscriptionally regulated by microRNA miR396. As a result, GRFs usually show their maximum activity in proliferating tissues. In this chapter we summarize not only the role of GRFs in leaf growth, but also more recently discovered functions in reproductive development, senescence, and developmental plasticity in response to external cues.
- Published
- 2016
- Full Text
- View/download PDF
36. Control of cell proliferation and elongation by miR396
- Author
-
Arantxa M. L. Rojas, María Florencia Ercoli, Javier F. Palatnik, Ramiro E. Rodriguez, and Juan M. Debernardi
- Subjects
0301 basic medicine ,MIR396 ,Otras Ciencias Biológicas ,Short Communication ,Green Fluorescent Proteins ,Meristem ,Arabidopsis ,Mitosis ,CELL ELONGATION ,Plant Science ,Biology ,Ciencias Biológicas ,03 medical and health sciences ,GROWTH-REGULATING FACTORS ,Downregulation and upregulation ,ROOT ,Gene Expression Regulation, Plant ,microRNA ,Psychological repression ,Transcription factor ,Cyclin ,Cell Proliferation ,Cell growth ,Plants, Genetically Modified ,Cell biology ,MicroRNAs ,030104 developmental biology ,CELL PROLIFERATION ,CIENCIAS NATURALES Y EXACTAS - Abstract
The combinatory effects of cell proliferation and cell elongation determines the rate at which organs growth. In the root meristematic zone cells both divide and expand, while post-mitotic cells in the elongation zone only expands until they reach their final size. The transcription factors of the GROWTH-REGULATING FACTOR (GRF) class promote cell proliferation in various plant organs. Their expression is restricted to cells with a high proliferative capacity, yet strong downregulation of the GRF activity compromise the plant survival. Part of expression pattern of the GRFs is ensured by the post-transcriptional repression mediated by the conserved microRNA miR396. Here we show the quantitative effects in root growth caused by GRF depletion in a series of transgenic lines with different miR396 levels. We show that high miRNA levels affect cell elongation and proliferation in roots. Detailed analysis suggests that cell proliferation is restricted due to a reduction in cell cycle speed that might result from defects in the accumulation of mitotic cyclins. The results provide insights into the participation of the miRNA-GRF regulatory network in root development. Fil: Ercoli, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Rojas, Arantxa Maria Larisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Debernardi, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Palatnik, Javier Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Rodriguez Virasoro, Ramiro Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina
- Published
- 2016
- Full Text
- View/download PDF
37. Transgenic Tobacco Plants Overexpressing Chloroplastic Ferredoxin-NADP(H) Reductase Display Normal Rates of Photosynthesis and Increased Tolerance to Oxidative Stress
- Author
-
Vanesa B. Tognetti, Javier F. Palatnik, Estela M. Valle, Matias D. Zurbriggen, Hugo O. Poli, Ramiro E. Rodriguez, Mohammad-Reza Hajirezaei, Néstor Carrillo, Martin Peisker, Anabella F. Lodeyro, and Henning Tschiersch
- Subjects
Paraquat ,Chloroplasts ,Light ,Physiology ,Nicotiana tabacum ,macromolecular substances ,Plant Science ,Photosynthesis ,Photosystem I ,environment and public health ,Gene Expression Regulation, Plant ,Tobacco ,Genetics ,Ferredoxin ,biology ,Herbicides ,Peas ,food and beverages ,Carbon Dioxide ,Plants, Genetically Modified ,biology.organism_classification ,Ferredoxin-NADP Reductase ,Chloroplast ,Oxidative Stress ,Chloroplast stroma ,Biochemistry ,Thylakoid ,bacteria ,Ferredoxin—NADP(+) reductase ,Research Article - Abstract
Ferredoxin-NADP(H) reductase (FNR) catalyzes the last step of photosynthetic electron transport in chloroplasts, driving electrons from reduced ferredoxin to NADP+. This reaction is rate limiting for photosynthesis under a wide range of illumination conditions, as revealed by analysis of plants transformed with an antisense version of the FNR gene. To investigate whether accumulation of this flavoprotein over wild-type levels could improve photosynthetic efficiency and growth, we generated transgenic tobacco (Nicotiana tabacum) plants expressing a pea (Pisum sativum) FNR targeted to chloroplasts. The alien product distributed between the thylakoid membranes and the chloroplast stroma. Transformants grown at 150 or 700 μmol quanta m−2 s−1 displayed wild-type phenotypes regardless of FNR content. Thylakoids isolated from plants with a 5-fold FNR increase over the wild type displayed only moderate stimulation (approximately 20%) in the rates of electron transport from water to NADP+. In contrast, when donors of photosystem I were used to drive NADP+ photoreduction, the activity was 3- to 4-fold higher than the wild-type controls. Plants expressing various levels of FNR (from 1- to 3.6-fold over the wild type) failed to show significant differences in CO2 assimilation rates when assayed over a range of light intensities and CO2 concentrations. Transgenic lines exhibited enhanced tolerance to photooxidative damage and redox-cycling herbicides that propagate reactive oxygen species. The results suggest that photosynthetic electron transport has several rate-limiting steps, with FNR catalyzing just one of them.
- Published
- 2006
- Full Text
- View/download PDF
38. Specific Effects of MicroRNAs on the Plant Transcriptome
- Author
-
Rebecca Schwab, Markus Schmid, Markus Riester, Carla Schommer, Detlef Weigel, and Javier F. Palatnik
- Subjects
0106 biological sciences ,Small interfering RNA ,Transcription, Genetic ,Trans-acting siRNA ,Computational biology ,Biology ,01 natural sciences ,General Biochemistry, Genetics and Molecular Biology ,Transcriptome ,Vegetative phase change ,03 medical and health sciences ,Gene Expression Regulation, Plant ,microRNA ,Gene silencing ,Mode of action ,Molecular Biology ,Base Pairing ,030304 developmental biology ,Oligonucleotide Array Sequence Analysis ,Plant Proteins ,Genetics ,0303 health sciences ,Base Sequence ,MRNA cleavage ,Gene Expression Profiling ,Reproducibility of Results ,food and beverages ,Cell Biology ,Plants, Genetically Modified ,MicroRNAs ,Phenotype ,RNA, Plant ,Nucleic Acid Conformation ,010606 plant biology & botany ,Developmental Biology - Abstract
SummaryMost plant microRNAs (miRNAs) have perfect or near-perfect complementarity with their targets. This is consistent with their primary mode of action being cleavage of target mRNAs, similar to that induced by perfectly complementary small interfering RNAs (siRNAs). However, there are natural targets with up to five mismatches. Furthermore, artificial siRNAs can have substantial effects on so-called off-targets, to which they have only limited complementarity. By analyzing the transcriptome of plants overexpressing different miRNAs, we have deduced a set of empirical parameters for target recognition. Compared to artificial siRNAs, authentic plant miRNAs appear to have much higher specificity, which may reflect their coevolution with the remainder of the transcriptome. We also demonstrate that miR172, previously thought to act primarily by translational repression, can efficiently guide mRNA cleavage, although the effects on steady-state levels of target transcripts are obscured by strong feedback regulation. This finding unifies the view of plant miRNA action.
- Published
- 2005
- Full Text
- View/download PDF
39. Transgenic tobacco plants expressing antisense ferredoxin-NADP(H) reductase transcripts display increased susceptibility to photo-oxidative damage
- Author
-
Estela M. Valle, Javier F. Palatnik, Vanesa B. Tognetti, Nicolás E. Blanco, Mohammad-Reza Hajirezaei, Martha Gattuso, Néstor Carrillo, Hugo O. Poli, Uwe Sonnewald, and Ramiro E. Rodriguez
- Subjects
inorganic chemicals ,Chloroplasts ,Photoinhibition ,Ribulose-Bisphosphate Carboxylase ,Gene Expression ,Plant Science ,Reductase ,Biology ,Genes, Plant ,Photosynthesis ,environment and public health ,Tobacco ,Genetics ,RNA, Antisense ,Ferredoxin ,Singlet Oxygen ,RuBisCO ,food and beverages ,Cell Biology ,Plants, Genetically Modified ,Photobiology ,Ferredoxin-NADP Reductase ,Chloroplast ,Light intensity ,Phenotype ,Biochemistry ,RNA, Plant ,Thylakoid ,biology.protein - Abstract
Ferredoxin-NADP(H) reductase (FNR) catalyses the final step of the photosynthetic electron transport in chloroplasts. Using an antisense RNA strategy to reduce expression of this flavoenzyme in transgenic tobacco plants, it has been demonstrated that FNR mediates a rate-limiting step of photosynthesis under both limiting and saturating light conditions. Here, we show that these FNR-deficient plants are abnormally prone to photo-oxidative injury. When grown under autotrophic conditions for 3 weeks, specimens with 20-40% extant reductase undergo leaf bleaching, lipid peroxidation and membrane damage. The magnitude of the effect was proportional to the light intensity and to the extent of FNR depletion, and was accompanied by morphological changes involving accumulation of aberrant plastids with defective thylakoid stacking. Damage was initially confined to chloroplast membranes, whereas Rubisco and other stromal proteins began to decline only after several weeks of autotrophic growth, paralleled by partial recovery of NADPH levels. Exposure of the transgenic plants to moderately high irradiation resulted in rapid loss of photosynthetic capacity and accumulation of singlet oxygen in leaves. The collected results suggest that the extensive photo-oxidative damage sustained by plants impaired in FNR expression was caused by singlet oxygen building up to toxic levels in these tissues, as a direct consequence of the over-reduction of the electron transport chain in FNR-deficient chloroplasts.
- Published
- 2003
- Full Text
- View/download PDF
40. Status of antioxidant metabolites and enzymes in a catalase-deficient mutant of barley (Hordeum vulgare L.)
- Author
-
Estela M. Valle, Antonio Dı́az Paleo, Alberto Acevedo, Maria L. Federico, Javier F. Palatnik, Leonardo D. Gomez, Mariana Melchiorre, and Néstor Carrillo
- Subjects
biology ,Mutant ,Plant Science ,General Medicine ,Glutathione ,Superoxide dismutase ,chemistry.chemical_compound ,L-ascorbate peroxidase ,Biochemistry ,chemistry ,Catalase ,Glutamine synthetase ,Genetics ,biology.protein ,Hordeum vulgare ,Agronomy and Crop Science ,Peroxidase - Abstract
We have investigated the antioxidant status in RPr79/4, a CAT-deficient mutant of barley, and in its motherline, cv. Maris Mink. Seedlings of the CAT-deficient mutant that were grown in a growth chamber under a 14-h photoperiod (200 mol quanta m −2 s −1 ), exhibited higher concentrations of glutathione and ascorbate peroxidase as compared to wild-type plants. An additional mitochondrial MnSOD isoenzyme, was also detected in RPr79/4. When seedlings of the CAT-deficient mutant were grown at higher light intensities (370 mol quanta m − 2 s − 1 ), a Cu/ZnSOD isoform and the cytosolic glutamine synthetase isoenzyme were concomitantly induced. Taken together, these results suggest that several defense mechanisms operating in different subcellular compartments respond in concert to compensate for CAT deficiency in barley seedlings exposed to oxidative stress. © 2002 Elsevier Science Ireland Ltd. All rights reserved.
- Published
- 2002
- Full Text
- View/download PDF
41. The Flavoenzyme Ferredoxin (Flavodoxin)-NADP(H) Reductase Modulates NADP(H) Homeostasis during the soxRS Response of Escherichia coli
- Author
-
Javier F. Palatnik, Adriana R. Krapp, Néstor Carrillo, Hugo O. Poli, Ramiro E. Rodriguez, and Dar|$$|Aa|fio H. Paladini
- Subjects
Paraquat ,Flavodoxin ,Physiology and Metabolism ,Mutant ,Reductase ,Biology ,medicine.disease_cause ,Microbiology ,Bacterial Proteins ,Escherichia coli ,medicine ,Homeostasis ,NADH, NADPH Oxidoreductases ,Molecular Biology ,Ferredoxin ,Herbicides ,Escherichia coli Proteins ,Gene Expression Regulation, Bacterial ,biology.organism_classification ,Molecular biology ,Oxidative Stress ,Regulon ,Biochemistry ,Trans-Activators ,biology.protein ,NAD+ kinase ,NADP ,Bacteria ,Transcription Factors - Abstract
Escherichia coli cells from strain fpr , deficient in the soxRS -induced ferredoxin (flavodoxin)-NADP(H) reductase (FPR), display abnormal sensitivity to the bactericidal effects of the superoxide-generating reagent methyl viologen (MV). Neither bacteriostatic effects nor inactivation of oxidant-sensitive hydrolyases could be detected in fpr cells exposed to MV. FPR inactivation did not affect the MV-driven soxRS response, whereas FPR overexpression led to enhanced stimulation of the regulon, with concomitant oxidation of the NADPH pool. Accumulation of a site-directed FPR mutant that uses NAD(H) instead of NADP(H) had no effect on soxRS induction and failed to protect fpr cells from MV toxicity, suggesting that FPR contributes to NADP(H) homeostasis in stressed bacteria.
- Published
- 2002
- Full Text
- View/download PDF
42. Repression of Cell Proliferation by miR319-Regulated TCP4
- Author
-
Edgardo G. Bresso, Javier F. Palatnik, Ramiro E. Rodriguez, Juan M. Debernardi, and Carla Schommer
- Subjects
Senescence ,proliferation ,Otras Ciencias Biológicas ,Molecular Sequence Data ,Arabidopsis ,Regulator ,Mitosis ,Cell Count ,Cyclopentanes ,Plant Science ,Acetates ,Biology ,Genes, Plant ,Models, Biological ,Ciencias Biológicas ,Gene Expression Regulation, Plant ,Genes, Reporter ,microRNA ,Oxylipins ,Promoter Regions, Genetic ,Molecular Biology ,Gene ,Transcription factor ,Psychological repression ,ICK1 ,Cell Proliferation ,Base Sequence ,Arabidopsis Proteins ,Cell growth ,KRP1 ,miR396 ,food and beverages ,Organ Size ,Cell cycle ,miR319 ,Cell biology ,Plant Leaves ,Repressor Proteins ,MicroRNAs ,GRF ,TCP ,CIENCIAS NATURALES Y EXACTAS ,Protein Binding ,Transcription Factors - Abstract
Leaf development has been extensively studied on a genetic level. However, little is known about the interplay between the developmental regulators and the cell cycle machinery—a link that ultimately affects leaf form and size. miR319 is a conserved microRNA that regulates TCP transcription factors involved in multiple developmental pathways, including leaf development and senescence, organ curvature, and hormone biosynthesis and signaling. Here, we analyze the participation of TCP4 in the control of cell proliferation. A small increase in TCP4 activity has an immediate impact on leaf cell number, by significantly reducing cell proliferation. Plants with high TCP4 levels have a strong reduction in the expression of genes known to be active in G2-M phase of the cell cycle. Part of these effects is mediated by induction of miR396, which represses Growth-Regulating Factor (GRF) transcription factors. Detailed analysis revealed TCP4 to be a direct regulator of MIR396b. However, we found that TCP4 can control cell proliferation through additional pathways, and we identified a direct connection between TCP4 and ICK1/KRP1, a gene involved in the progression of the cell cycle. Our results show that TCP4 can activate different pathways that repress cell proliferation Fil: Schommer, Carla. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Debernardi, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Bresso, Edgardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Rodriguez Virasoro, Ramiro Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Palatnik, Javier Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina
- Published
- 2014
43. Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development
- Author
-
Jose M. Muiño, Salma Balazadeh, Kerstin Kaufmann, Jian Jin, Frank Wellmer, Alice Pajoro, Martin A. Mecchia, Muhammad Arif, José Luis Riechmann, José Tomás Matus, Pedro Madrigal, Gerco C. Angenent, Paweł Krajewski, Diarmuid S. Ó’Maoiléidigh, Juan M. Debernardi, Javier F. Palatnik, Madrigal, Pedro [0000-0003-1959-8199], and Apollo - University of Cambridge Repository
- Subjects
0106 biological sciences ,molecular-basis ,Arabidopsis ,dna ,01 natural sciences ,purl.org/becyt/ford/1 [https] ,Gene Expression Regulation, Plant ,MADS box ,chip-seq ,MADS-box ,Regulation of gene expression ,Genetics ,0303 health sciences ,floral organ identity ,EPS-1 ,miR396 ,food and beverages ,Gene Expression Regulation, Developmental ,Bioquímica y Biología Molecular ,Chromatin ,ABC model of flower development ,GRF ,Laboratory of Molecular Biology ,Homeotic gene ,CIENCIAS NATURALES Y EXACTAS ,570 Biowissenschaften ,Biologie ,Protein Binding ,MADS Domain Proteins ,arabidopsis-thaliana ,Flowers ,Biology ,Ciencias Biológicas ,03 medical and health sciences ,ddc:570 ,expression ,Laboratorium voor Moleculaire Biologie ,zinc-finger ,BIOS Plant Development Systems ,genomic regions ,purl.org/becyt/ford/1.6 [https] ,Transcription factor ,Gene ,ChIA-PET ,Institut für Biochemie und Biologie ,030304 developmental biology ,Chromatin Remodelling ,Homeodomain Proteins ,Arabidopsis Proteins ,Research ,fungi ,Chromatin Assembly and Disassembly ,target genes ,protein ,010606 plant biology & botany ,Transcription Factors - Abstract
Background Development of eukaryotic organisms is controlled by transcription factors that trigger specific and global changes in gene expression programs. In plants, MADS-domain transcription factors act as master regulators of developmental switches and organ specification. However, the mechanisms by which these factors dynamically regulate the expression of their target genes at different developmental stages are still poorly understood. Results We characterized the relationship of chromatin accessibility, gene expression, and DNA binding of two MADS-domain proteins at different stages of Arabidopsis flower development. Dynamic changes in APETALA1 and SEPALLATA3 DNA binding correlated with changes in gene expression, and many of the target genes could be associated with the developmental stage in which they are transcriptionally controlled. We also observe dynamic changes in chromatin accessibility during flower development. Remarkably, DNA binding of APETALA1 and SEPALLATA3 is largely independent of the accessibility status of their binding regions and it can precede increases in DNA accessibility. These results suggest that APETALA1 and SEPALLATA3 may modulate chromatin accessibility, thereby facilitating access of other transcriptional regulators to their target genes. Conclusions Our findings indicate that different homeotic factors regulate partly overlapping, yet also distinctive sets of target genes in a partly stage-specific fashion. By combining the information from DNA-binding and gene expression data, we are able to propose models of stage-specific regulatory interactions, thereby addressing dynamics of regulatory networks throughout flower development. Furthermore, MADS-domain TFs may regulate gene expression by alternative strategies, one of which is modulation of chromatin accessibility., This work was supported by an NWO-VIDI grant to KK, and a Marie-Curie-ITN network grant SYSFLO (FP7/2007-2011, grant agreement no. 237909) to AP, PM, PK, and GCA. KK wishes to thank the Alexander-von-Humboldt foundation for support. This work was also supported by grants from Spanish Ministerio de Ciencia e Innovación (BFU2011-22734 to JLR). JTM and JJ were recipients of EMBO postdoctoral fellowships.
- Published
- 2014
44. Structure and RNA Interactions of the Plant MicroRNA Processing-Associated Protein HYL1
- Author
-
Lionel Imbert, Nicolás G. Bologna, Rodolfo M. Rasia, Julieta L. Mateos, Paula Burdisso, Jérôme Boisbouvier, and Javier F. Palatnik
- Subjects
Ribonuclease III ,Genetics ,Base Sequence ,Arabidopsis Proteins ,RNA-induced silencing complex ,RNA-Binding Proteins ,RNA ,Cell Cycle Proteins ,Computational biology ,Biology ,Non-coding RNA ,Biochemistry ,Protein Structure, Tertiary ,MicroRNAs ,RNA silencing ,RNA editing ,RNA Interference ,Signal recognition particle RNA ,Post-transcriptional regulation ,Small nuclear RNA ,RNA, Double-Stranded - Abstract
HYL1 is a double-stranded RNA binding protein involved in microRNA processing in plants. HYL1 enhances the efficiency and precision of the RNase III protein DCL1 and participates in microRNA strand selection. In this work, we dissect the contributions of the domains of HYL1 to the binding of RNA targets. We found that the first domain is the main contributor to RNA binding. Mapping of the interaction regions by nuclear magnetic resonance on the structure of HYL1 RNA-binding domains showed that the difference in binding capabilities can be traced to sequence divergence in β2-β3 loop. The possible role of each domain is discussed in light of previous experimental data.
- Published
- 2010
- Full Text
- View/download PDF
45. Changes in amino acid composition and nitrogen metabolizing enzymes in ripening fruits of Lycopersicon esculentum Mill
- Author
-
Estela M. Valle, Silvana B. Boggio, Hans W. Heldt, and Javier F. Palatnik
- Subjects
0106 biological sciences ,Plant Science ,01 natural sciences ,Lycopersicon ,03 medical and health sciences ,Glutamine synthetase ,Botany ,Genetics ,Cultivar ,030304 developmental biology ,chemistry.chemical_classification ,0303 health sciences ,biology ,Glutamate dehydrogenase ,food and beverages ,Ripening ,General Medicine ,biology.organism_classification ,Enzyme assay ,Amino acid ,Horticulture ,chemistry ,biology.protein ,Agronomy and Crop Science ,Solanaceae ,010606 plant biology & botany - Abstract
The free amino acid content of tomato (Lycopersicon esculentum Mill.) fruits from cultivars Platense, Vollendung and Cherry were determined during ripening. It was found that glutamate markedly increased in red fruits of the three cultivars under study. At this stage, the cv Cherry had the highest relative glutamate molar content (52%) of all the analyzed tomato fruit cultivars. Measurements of nitrogen-assimilating enzyme activities of these fruits showed a decrease in glutamine synthetase (GS, EC 6.3.1.2) during fruit ripening and a concomitant increase in NADH-glutamate dehydrogenase (GDH, EC 1.4.1.3) and aspartate aminotransferase (EC 2.6.1.1) activities. Western blot analysis of protein extracts revealed that while GS was principally present in green fruit extracts, GDH was almost exclusively observed in the extracts of red fruits. These results suggest a reciprocal pattern of induction between GS and GDH during tomato fruit ripening.
- Published
- 2000
- Full Text
- View/download PDF
46. Identification of mRNA-binding proteins during development: Characterization of Bufo arenarum cellular nucleic acid binding protein
- Author
-
Silvia E. Arranz, Nora B. Calcaterra, Javier F. Palatnik, Diego Martin Bustos, and Marcelo O. Cabada
- Subjects
medicine.diagnostic_test ,biology ,urogenital system ,Immunoprecipitation ,Blotting, Western ,RNA-Binding Proteins ,RNA ,Cell Biology ,Toad ,Oogenesis ,Molecular biology ,DNA-Binding Proteins ,Western blot ,Biochemistry ,Cytoplasm ,Polyclonal antibodies ,biology.animal ,Bufo arenarum ,medicine ,biology.protein ,Animals ,RNA, Messenger ,Subcellular Fractions ,Developmental Biology - Abstract
Ultraviolet irradiation was used to covalently cross-link poly(A)+RNA and associated proteins in eggs and embryos of the toad Bufo arenarum. Four major proteins with apparent sizes of 60, 57, 45 and 30-24 kDa were identified. It was observed that the same mRNA-binding proteins were isolated from eggs to gastrula and neural stages of development. The 30 kDa polypeptide, p30, appeared as the main ultraviolet (UV) cross-linked protein in the developmental stages analyzed. By means of polyclonal antibodies, it was determined that this polypeptide has a cytoplasmic localization and it was detected in liver, eggs and embryos. The presence of p30 was also analyzed by western blot during oogenesis and development. The 30 kDa polypeptide was present in all stages analyzed but it could not be detected in stages I-II of oogenesis. At the neural stage, the relative amount of p30 began to decrease, reaching its lowest levels after stages 26-30 (tail-bud in Bufo arenarum). On the basis of purification, immunoprecipitation and western blot assays the 30 kDa protein was identified as the Bufo arenarum cellular nucleic acid binding protein.
- Published
- 1999
- Full Text
- View/download PDF
47. comTAR: a web tool for the prediction and characterization of conserved microRNA targets in plants
- Author
-
Javier F. Palatnik and Uciel Chorostecki
- Subjects
Statistics and Probability ,Otras Ciencias Biológicas ,Computational biology ,Biology ,computer.software_genre ,Biochemistry ,Web tool ,blancos ,Conserved sequence ,Ciencias Biológicas ,purl.org/becyt/ford/1 [https] ,Magnoliopsida ,microRNA ,plantas ,Animals ,Base sequence ,Plant metabolism ,RNA, Messenger ,purl.org/becyt/ford/1.6 [https] ,Molecular Biology ,Conserved Sequence ,Internet ,Base Sequence ,prediccion ,RNA ,Computer Science Applications ,Computational Mathematics ,MicroRNAs ,Computational Theory and Mathematics ,RNA, Plant ,Complementarity (molecular biology) ,Plant species ,Data mining ,computer ,Software ,CIENCIAS NATURALES Y EXACTAS - Abstract
Motivation: MicroRNAs (miRNAs) are major regulators of gene expression in plants and animals. They recognize their target messenger RNAs (mRNAs) by sequence complementarity and guide them to cleavage or translational arrest. So far, the prediction of plant miRNA–target pairs generally relies on the use of empirical parameters deduced from known miRNA–target interactions. Results: We developed comTAR, a web tool for the prediction of miRNA targets that is mainly based on the conservation of the potential regulation in different species. We used data generated from a pipeline applied to transcript datasets of 33 angiosperms that was used to build a database of potential miRNA targets of different plant species. The database contains information describing each miRNA–target pair, their function and evolutionary conservation, while the results are displayed in a user-friendly interface. The tool also allows the search using new miRNAs. Fil: Chorostecki, Uciel Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Palatnik, Javier Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina
- Published
- 2014
48. Post-transcriptional control of GRF transcription factors by microRNA miR396 and GIF co-activator affects leaf size and longevity
- Author
-
Kerstin Kaufmann, Dirk Inzé, Juan M. Debernardi, Martin A. Mecchia, Ramiro E. Rodriguez, Cezary Smaczniak, Javier F. Palatnik, and Liesbeth Vercruyssen
- Subjects
Transgene ,growth ,Mutant ,Plant Science ,arabidopsis-thaliana ,tandem affinity purification ,Gene Expression Regulation, Plant ,Arabidopsis ,Gene expression ,Genetics ,Arabidopsis thaliana ,chromatin-remodeling complexes ,Laboratorium voor Moleculaire Biologie ,Allele ,Transcription factor ,Post-transcriptional regulation ,Cellular Senescence ,protein complexes ,biology ,small rnas ,Arabidopsis Proteins ,fungi ,food and beverages ,organ size ,Cell Biology ,shoot development ,biology.organism_classification ,gene-expression ,Plant Leaves ,MicroRNAs ,cell-division ,Trans-Activators ,Laboratory of Molecular Biology ,Protein Binding ,Transcription Factors - Abstract
The growth-regulating factors (GRFs) are plant-specific transcription factors. They form complexes with GRF-interacting factors (GIFs), a small family of transcriptional co-activators. In Arabidopsis thaliana, seven out of the nine GRFs are controlled by microRNA miR396. Analysis of Arabidopsis plants carrying a GRF3 allele insensitive to miR396 revealed a strong boost in the number of cells in leaves, which was further enhanced synergistically by an additional increase of GIF1 levels. Genetic experiments revealed that GRF3 can still increase cell number in gif1 mutants, albeit to a much lesser extent. Genome-wide transcript profiling indicated that the simultaneous increase of GRF3 and GIF1 levels causes additional effects in gene expression compared to either of the transgenes alone. We observed that GIF1 interacts in vivo with GRF3, as well as with chromatin-remodeling complexes, providing a mechanistic explanation for the synergistic activities of a GRF3-GIF1 complex. Interestingly, we found that, in addition to the leaf size, the GRF system also affects the organ longevity. Genetic and molecular analysis revealed that the functions of GRFs in leaf growth and senescence can be uncoupled, demonstrating that the miR396-GRF-GIF network impinges on different stages of leaf development. Our results integrate the post-transcriptional control of the GRF transcription factors with the progression of leaf development.
- Published
- 2014
49. Oxidative Stress Causes Ferredoxin-NADP+ Reductase Solubilization from the Thylakoid Membranes in Methyl Viologen-Treated Plants
- Author
-
Néstor Carrillo, Estela M. Valle, and Javier F. Palatnik
- Subjects
Paraquat ,inorganic chemicals ,Chloroplasts ,Physiology ,Mehler reaction ,macromolecular substances ,Plant Science ,Oxidative phosphorylation ,Reductase ,Biology ,medicine.disease_cause ,Models, Biological ,environment and public health ,chemistry.chemical_compound ,Escherichia coli ,Genetics ,medicine ,Cloning, Molecular ,Triticum ,Organelles ,food and beverages ,Intracellular Membranes ,Recombinant Proteins ,Ferredoxin-NADP Reductase ,Plant Leaves ,Chloroplast ,Oxidative Stress ,Solubility ,chemistry ,Biochemistry ,Thylakoid ,bacteria ,Oxidative stress ,Ferredoxin—NADP(+) reductase ,Research Article - Abstract
The flavoenzyme ferredoxin-NADP+ reductase (FNR) is a member of the cellular defense barrier against oxidative damage in Escherichia coli. We evaluated the responses of chloroplast FNR to methyl viologen, a superoxide radical propagator, in wheat (Triticum aestivum L.) plants and chloroplasts. Treatments with the herbicide showed little effect on the levels of FNR protein or transcripts, indicating that expression of this reductase is not up-regulated by oxidants in plants. Viologens and peroxides caused solubilization of active FNR from the thylakoids into the stroma, converting the enzyme from a membrane-bound NADPH producer to a soluble NADPH consumer. This response appeared specific for FNR, since other thylakoid proteins were unaffected by the treatments. The reductase-binding protein was released together with FNR, suggesting that it might be the target of oxidative modification. Stromal accumulation of a functional NADPH reductase in response to oxidative stress is formally analogous to the induction of FNR synthesis observed in E. coli under similar conditions. FNR solubilization may be playing a crucial role in maintaining the NADPH/NADP+ homeostasis of the stressed plastid. The unchecked accumulation of NADPH might otherwise increase the risks of oxidative damage through a rise in the Mehler reaction rates and/or the production of hydroxyl radicals.
- Published
- 1997
- Full Text
- View/download PDF
50. Multiple RNA recognition patterns during microRNA biogenesis in plants
- Author
-
Javier F. Palatnik, Uciel Chorostecki, Jixian Zhai, Blake C. Meyers, Jérôme Boisbouvier, Nicolás G. Bologna, Arnaldo Luis Schapire, Instituto de Biología Molecular y Celular de Rosario [Rosario] (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas [Buenos Aires] (CONICET)-Universidad Nacional de Rosario [Santa Fe], Institut de biologie structurale (IBS - UMR 5075 ), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
0106 biological sciences ,BIOGENESIS ,Arabidopsis ,Computational biology ,01 natural sciences ,Conserved sequence ,purl.org/becyt/ford/1 [https] ,Evolution, Molecular ,Ciencias Biológicas ,03 medical and health sciences ,Gene Expression Regulation, Plant ,microRNA ,Genetics ,RNA Precursors ,Arabidopsis thaliana ,RNA Processing, Post-Transcriptional ,purl.org/becyt/ford/1.6 [https] ,Genetics (clinical) ,Conserved Sequence ,030304 developmental biology ,2. Zero hunger ,Regulation of gene expression ,0303 health sciences ,biology ,Base Sequence ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,Mechanism (biology) ,Research ,RNA ,food and beverages ,Plants ,Bioquímica y Biología Molecular ,biology.organism_classification ,MicroRNA biogenesis ,MicroRNAs ,RNA, Plant ,Nucleic Acid Conformation ,Biogenesis ,CIENCIAS NATURALES Y EXACTAS ,010606 plant biology & botany - Abstract
MicroRNAs (miRNAs) derive from longer precursors with fold-back structures. While animal miRNA precursors have homogenous structures, plant precursors comprise a collection of fold-backs with variable size and shape. Here, we design an approach to systematically analyze miRNA processing intermediates and characterize the biogenesis of most of the evolutionarily conserved miRNAs present in Arabidopsis thaliana. We found that plant miRNAs are processed by four mechanisms, depending on the sequential direction of the processing machinery and the number of cuts required to release the miRNA. Classification of the precursors according to their processing mechanism revealed specific structural determinants for each group. We found that the complexity of the miRNA processing pathways occurs in both ancient and evolutionarily young sequences and that members of the same family can be processed in different ways. We observed that different structural determinants compete for the processing machinery and that alternative miRNAs can be generated from a single precursor. The results provide an explanation for the structural diversity of miRNA precursors in plants and new insights toward the understanding of the biogenesis of small RNAs. Fil: Bologna, Nicolas Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Schapire, Arnaldo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Zhai, Jixian. University of Delaware. Department of Plant & Soil Sciences; Estados Unidos. Delaware Biotechnology Institute; Estados Unidos Fil: Chorostecki, Uciel Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina Fil: Boisbouvier, Jerome. Institut de Biologie Structurale Jean-Pierre Ebel; Francia Fil: Meyers, Blake C.. University of Delaware. Department of Plant & Soil Sciences; Estados Unidos. Delaware Biotechnology Institute; Estados Unidos Fil: Palatnik, Javier Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentina
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.