8 results on '"Jaroslav Zadny"'
Search Results
2. Redox and optically active carbohelicene layers prepared by potentiodynamic polymerization
- Author
-
Jan Hrbac, Vit Pavelka, Jeanne Crassous, Jaroslav Zadny, Ladislav Fekete, Jan Pokorny, Petr Vanysek, Jan Storch, and Jan Vacek
- Subjects
Industrial electrochemistry ,TP250-261 ,Chemistry ,QD1-999 - Abstract
This short paper describes the preparation of thin layers based on carbohelicenes, which are inherently chiral polyaromatics existing in the enantiomeric forms P and M. Specifically, [5]-, [6]- and [7]helicene were subjected to redox cycling between −1.5 and 1.5 V vs. ferrocene/ferrocenium at a scan rate of 10 V/s. This way, enantiopure layers exhibiting redox activity were formed on the surfaces of the glassy carbon and ITO electrodes under anoxic and non-aqueous conditions. The properties of the prepared polymer layers were investigated using electrochemistry with Fe/Ru redox probes, circular dischroism, AFM, impedance measurement and Raman spectroscopy. With [6]helicene, the suggested electropolymerization procedure thus represents a proof-of-concept for the preparation of chiral carbonaceous surfaces. Keywords: Carbohelicene, Hexahelicene, Voltammetry, Enantiopure, Redox active, Chiral carbon
- Published
- 2020
- Full Text
- View/download PDF
3. Chiral Electrochemistry: Anodic Deposition of Enantiopure Helical Molecules
- Author
-
Jan Hrbac, Jan Vacek, Jan Storch, and Jaroslav Zadny
- Subjects
chemistry.chemical_classification ,Materials science ,Nanostructure ,010405 organic chemistry ,Nanotechnology ,General Chemistry ,Polymer ,010402 general chemistry ,Electrochemistry ,01 natural sciences ,0104 chemical sciences ,chemistry.chemical_compound ,Enantiopure drug ,Helicene ,chemistry ,Molecule ,Chirality (chemistry) ,Molecular imprinting - Abstract
Chirality is a fascinating phenomenon for recent electrochemistry and materials research, allowing for the preparation of detection platforms based on analyte enantiodiscrimination and the development of advanced chiroptical devices and chiral electrodes. In this Viewpoint, we highlight new directions in the field of chiral helical polyaromatic molecules (mainly helicenes) that are useful for the preparation of optically and redox-active polymers and/or self-assembled thin layers, nanostructures and functional electrode surfaces. Instead of the previously reported chiral materials prepared by molecular imprinting, a concept based on the preparation of inherently chiral helicene-based materials with (opto)electrochemical applicability is presented. A short overview of well-established electrochemical methods for the research of chiral molecules is also outlined.
- Published
- 2020
4. Chiroplasmon-active optical fiber probe for environment chirality estimation
- Author
-
Hana Walaska, Vasilii Burtsev, Oleksiy Lyutakov, Václav Švorčík, Jaroslav Zadny, Jan Storch, Elena Miliutina, Olga Guselnikova, and Anna Kushnarenko
- Subjects
inorganic chemicals ,Materials science ,Optical fiber ,Physics::Optics ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,law.invention ,chemistry.chemical_compound ,law ,Materials Chemistry ,Fiber ,Electrical and Electronic Engineering ,Optical rotation ,Instrumentation ,Plasmon ,chemistry.chemical_classification ,Quantitative Biology::Biomolecules ,organic chemicals ,Biomolecule ,technology, industry, and agriculture ,Metals and Alloys ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Coupling (electronics) ,chemistry ,Helicene ,Chemical physics ,0210 nano-technology ,Chirality (chemistry) - Abstract
The utilization of chiroplasmonic effects provides unique feasibility in the fields of enantioselective detection and recognition. In this work, the chiroplasmonic fiber probes were created through the coupling of a highly optically active dielectric medium with intrinsically non-chiral plasmon-active nanostructures. The specifically designed enantiomers of helicenes with a huge optical rotation were selectively immobilized to thin gold and silver layers deposited on an optical fiber core. The chirality transfer from helicene enantiomers to closed plasmon active noble metals films results in excitation of chiral plasmon waves with opposite rotation on gold or silver surfaces. The created chiroplasmon-active optical fiber probes were used for environmental chirality monitoring and found to be sensitive to the presence of left- or right-handed molecules (glucose enantiomers) or biomolecules conformation (β-Lactoglobulin) in surrounding solutions. Control experiments confirmed that observed chirality-related plasmon band shift can be attributed to the interaction of chiral plasmon waves with the external environment, but not to the immobilization of probing molecules on the fiber surface. Created structures allow us to simultaneously estimate the presence of optically active molecules, with both, point or conformation chirality, and provides the ability to studying chiral macromolecular structure of proteins.
- Published
- 2021
- Full Text
- View/download PDF
5. Cover Feature: Chiral Electrochemistry: Anodic Deposition of Enantiopure Helical Molecules (ChemPlusChem 9/2020)
- Author
-
Jaroslav Zadny, Jan Hrbac, Jan Storch, and Jan Vacek
- Subjects
Materials science ,010405 organic chemistry ,General Chemistry ,010402 general chemistry ,Electrochemistry ,01 natural sciences ,0104 chemical sciences ,Anode ,Crystallography ,Enantiopure drug ,Molecule ,Cover (algebra) ,Chirality (chemistry) ,Deposition (chemistry) - Published
- 2020
- Full Text
- View/download PDF
6. Multiscale in modelling and validation for solar photovoltaics
- Author
-
Witold Jacak, Emmanuel Stratakis, J. C. Rimada, Hele Savin, Efrat Lifshitz, Mimoza Ristova, Mateja Hočevar, Radovan Kopecek, Blas Garrido, M. J. M. Gomes, Mircea Guina, Konstantinos Petridis, Alessio Gagliardi, David Fuertes Marrón, Ivana Capan, Jacky Even, Jaroslav Zadny, Pavel Tománek, V. Donchev, Stefan Birner, Janne Halme, Zoe Amin-Akhlaghi, Fatma Yuksel, Frederic Cortes Juan, Ahmed Neijm, Lejo k. Joseph, Søren Madsen, Abdurrahman Şengül, Marija Drev, Kristian Berland, Jose G. F. Coutinho, Knut Deppert, Diego Alonso-Álvarez, José Silva, Lucjan Jacak, Georg Pucker, Marco Califano, Violetta Gianneta, Nicholas J. Ekins-Daukes, Nikola Bednar, Urs Aeberhard, Shuxia Tao, Spyridon Kassavetis, Rasit Turan, Jelena Radovanović, Katarzyna Kluczyk, Ullrich Steiner, Ivana Savic, Maria E. Messing, Victor Neto, Stanko Tomić, Neil Beattie, Shengda Wang, Androula G. Nassiopoulou, Antonio Martí Vega, Denis Mencaraglia, M. Sendova-Vassileva, Ákos Nemcsics, Felipe Murphy Armando, Boukje Ehlen, Jean-François Guillemoles, Matthias Auf der Maur, James P. Connolly, Laurent Pedesseau, Clas Persson, Christin David, Lacramioara Popescu, Bostjan Cerne, N. Adamovic, Jean-Louis Lazzari, JM José Maria Ulloa, Urša Opara Krašovec, Irinela Chilibon, Jan Storch, Zoran Jakšić, Antti Tukiainen, Tareq Abu Hamed, Martin Loncaric, Laurentiu Fara, V. Kazukauskas, Jean-Paul Kleider, Javad Zarbakhsh, Dead Sea-Arava Science Center (DSASC), Institut für Energie- und Klimaforschung - Photovoltaik (IEK-5), Forschungszentrum Jülich GmbH | Centre de recherche de Juliers, Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association, Imperial College London, ZAMSTEC − Science, Technology and Engineering Consulting, Università degli Studi di Roma Tor Vergata [Roma], University of Northumbria at Newcastle [United Kingdom], University of Leeds, Rudjer Boskovic Institute [Zagreb], Laboratoire Génie électrique et électronique de Paris (GeePs), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Universitat Politècnica de València (UPV), Lund University [Lund], Institut des Fonctions Optiques pour les Technologies de l'informatiON (Institut FOTON), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS), University Politehnica of Bucharest [Romania] (UPB), Universidad Politécnica de Madrid (UPM), Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM), National Center for Scientific Research 'Demokritos' (NCSR), Centre of Physics of the University of Minho (CFUM), Institut de Recherche et Développement sur l'Energie Photovoltaïque (IRDEP), Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF), Tampere University of Technology [Tampere] (TUT), Aalto University, University of Ljubljana, Wroclaw University of Science and Technology, University of Belgrade [Belgrade], Aristotle University of Thessaloniki, Vilnius University [Vilnius], Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Aarhus University [Aarhus], University College Cork (UCC), Óbuda University [Budapest], Universidade de Aveiro, University of Oslo (UiO), Technological Educational Institute of Crete, Fondazione Bruno Kessler [Trento, Italy] (FBK), University of Havana (Universidad de la Habana) (UH), Ss. Cyril and Methodius University in Skopje (UKIM), Tyndall National Institute [Cork], Zonguldak Bülent Ecevit University (BEU), Universidade de Taubaté (UNITAU), Cavendish Laboratory, University of Cambridge [UK] (CAM), Institute of Chemical Process Fundamentals of the ASCR, Czech Republic, Foundation for Research and Technology - Hellas (FORTH), Eindhoven University of Technology [Eindhoven] (TU/e), Brno University of Technology [Brno] (BUT), University of Salford, Middle East Technical University [Ankara] (METU), Gebze Technical University, Czech Academy of Sciences [Prague] (CAS), Carinthia University of Applied Sciences, MP1406, European Cooperation in Science and Technology, Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Ss. Cyril and Methodius University in Skopje, Universidade do Minho, Dead Sea and Arava Science Center, Vienna University of Technology, Forschungszentrum Jülich, University of Rome Tor Vergata, Northumbria University, University of Oslo, nextnano GmbH, Rudjer Boskovic Institute, ZEL-EN d.o.o., National Institute of Research and Development for Optoelectronics, Université Paris-Saclay, Polytechnic University of Valencia, University of Aveiro, Madrid Institute for Advanced Studies in Nanoscience, Lund University, Sofia University St. Kliment Ohridski, Trimo Grp, Boukje.com Consulting, Centre National de la Recherche Scientifique (CNRS), University Politehnica of Bucharest, Technical University of Munich, University of Barcelona, Institute of Nanoscience and Nanotechnology, The University of Tokyo, Tampere University of Technology, Department of Applied Physics, Wrocław University of Science and Technology, University of Belgrade, ISC Konstanz eV, Vilnius University, Aix-Marseille Université, Technion-Israel Institute of Technology, Aarhus University, Polytechnic University of Madrid, University College Cork, Demokritos National Centre for Scientific Research, Silvaco Europe Ltd, Óbuda University, Hellenic Mediterranean University, Fondazione Bruno Kessler, University of Havana, SS Cyril and Methodius University in Skopje, Department of Electronics and Nanoengineering, Bulgarian Academy of Sciences, Bulent Ecevit University, Adolphe Merkle Institute, Czech Academy of Sciences, Foundation for Research and Technology - Hellas, Eindhoven University of Technology, Brno University of Technology, Middle East Technical University, Aalto-yliopisto, Zonguldak Bülent Ecevit Üniversitesi, Center for Computational Energy Research, and Computational Materials Physics
- Subjects
Nano structures ,lcsh:TJ807-830 ,Modelling and validation ,02 engineering and technology ,semiconductors ,01 natural sciences ,7. Clean energy ,Settore ING-INF/01 - Elettronica ,Environmental footprints ,law.invention ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Semiconductor materials ,WAVE BASIS-SET ,law ,Photovoltaics ,CARRIER MULTIPLICATION ,Multi-scale simulation ,multi-scale modelling ,Telecomunicaciones ,COLLOIDAL QUANTUM DOTS ,device simulation ,NANOMETER-SCALE ,Photovoltaic cells ,Physics ,Photovoltaic system ,Nanostructured materials ,Renewable energy resources ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Multiscale modeling ,Electronic, Optical and Magnetic Materials ,Characterization (materials science) ,Renewable energy ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,ELECTRONIC-STRUCTURE ,SDG 12 – Verantwoordelijke consumptie en productie ,Energías Renovables ,Physical Sciences ,TIGHT-BINDING ,Systems engineering ,Electrónica ,0210 nano-technology ,NEAR-FIELD ,solar cells ,third generation photovoltaics ,nano structures ,Solar cells ,J500 ,Ciências Naturais::Ciências Físicas ,F300 ,H600 ,Third generation photovoltaics ,ta221 ,Renewable energy source ,Ciências Físicas [Ciências Naturais] ,lcsh:Renewable energy sources ,GREENS-FUNCTION ,Solar power generation ,Different length scale ,Physics, Applied ,OPTICAL-RESPONSE ,0103 physical sciences ,Solar cell ,SDG 7 - Affordable and Clean Energy ,Electrical and Electronic Engineering ,010306 general physics ,Device simulations ,Ecological footprint ,Science & Technology ,ta114 ,Renewable Energy, Sustainability and the Environment ,business.industry ,TOTAL-ENERGY CALCULATIONS ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,Environmental technology ,Nanostructures ,Multiple exciton generation ,13. Climate action ,Conversion efficiency ,business ,SDG 12 - Responsible Consumption and Production ,SDG 7 – Betaalbare en schone energie - Abstract
Photovoltaics is amongst the most important technologies for renewable energy sources, and plays a key role in the development of a society with a smaller environmental footprint. Key parameters for solar cells are their energy conversion efficiency, their operating lifetime, and the cost of the energy obtained from a photovoltaic system compared to other sources. The optimization of these aspects involves the exploitation of new materials and development of novel solar cell concepts and designs. Both theoretical modeling and characterization of such devices require a comprehensive view including all scales from the atomic to the macroscopic and industrial scale. The different length scales of the electronic and optical degrees of freedoms specifically lead to an intrinsic need for multiscale simulation, which is accentuated in many advanced photovoltaics concepts including nanostructured regions. Therefore, multiscale modeling has found particular interest in the photovoltaics community, as a tool to advance the field beyond its current limits. In this article, we review the field of multiscale techniques applied to photovoltaics, and we discuss opportunities and remaining challenges. © T. Abu Hamed et al., published by EDP Sciences, 2018., European Cooperation in Science and Technology: MP1406, The authors are grateful for the financial support by the COST Action MP1406 “MultiscaleSolar.”
- Published
- 2018
- Full Text
- View/download PDF
7. Synthesis and characterization of a helicene-based imidazolium salt and its application in organic molecular electronics
- Author
-
Jan Storch, Milos Krbal, Tomáš Strašák, Jaroslav Zadny, Pavel Matejka, Michal Dušek, Jan Vacek, Vladimír Církva, Jan Sykora, and Martin Kubala
- Subjects
Magnetic Resonance Spectroscopy ,Inorganic chemistry ,Molecular Conformation ,Salt (chemistry) ,Crystallography, X-Ray ,Catalysis ,chemistry.chemical_compound ,Bromide ,Polymer chemistry ,Polycyclic Compounds ,Organic electronics ,chemistry.chemical_classification ,Chemistry ,Organic Chemistry ,Imidazoles ,Substrate (chemistry) ,Molecular electronics ,Water ,General Chemistry ,Nuclear magnetic resonance spectroscopy ,Silicon Dioxide ,Organic semiconductor ,Helicene ,Quantum Theory ,Salts ,Electronics - Abstract
Herein we demonstrate the synthesis of a helicene-based imidazolium salt. The salt was prepared by starting from racemic 2-methyl[6]helicene, which undergoes radical bromination to yield 2-(bromomethyl)[6]helicene. Subsequent treatment with 1-butylimidazole leads to the corresponding salt 1-butyl-3-(2-methyl[6]helicenyl)-imidazolium bromide. The prepared salt was subsequently characterized by using NMR spectroscopy and X-ray analysis, various optical spectrometric techniques, and computational chemistry tools. Finally, the imidazolium salt was immobilized onto a SiO2 substrate as a crystalline or amorphous deposit. The deposited layers were used for the development of organic molecular semiconductor devices and the construction of a fully reversible humidity sensor.
- Published
- 2014
8. Post-Synthetic Derivatization of Graphitic Carbon Nitride with Methanesulfonyl Chloride: Synthesis, Characterization and Photocatalysis
- Author
-
Petr Praus, Aneta Smýkalová, Kryštof Foniok, Petr Velíšek, Daniel Cvejn, Jaroslav Žádný, and Jan Storch
- Subjects
graphitic carbon nitride ,derivatization ,sulfur ,mesyl chloride ,photocatalysis ,Chemistry ,QD1-999 - Abstract
Bulk graphitic carbon nitride (CN) was synthetized by heating of melamine at 550 °C, and the exfoliated CN (ExCN) was prepared by heating of CN at 500 °C. Sulfur-doped CN was synthesized by heating of thiourea (S-CN) and by a novel procedure based on the post-synthetic derivatization of CN with methanesulfonyl (CH3SO2−) chloride (Mes-CN and Mes-ExCN). The obtained nanomaterials were investigated by common characterization methods and their photocatalytic activity was tested by means of the decomposition of acetic orange 7 (AO7) under ultraviolet A (UVA) irradiation. The content of sulfur in the modified CN decreased in the sequence of Mes-ExCN > Mes-CN > S-CN. The absorption of light decreased in the opposite manner, but no influence on the band gap energies was observed. The methanesulfonyl (mesyl) groups connected to primary and secondary amine groups were confirmed by high resolution mass spectrometry (HRMS). The photocatalytic activity decreased in the sequence of Mes-ExCN > ExCN > CN ≈ Mes-CN > S-CN. The highest activity of Mes-ExCN and ExCN was explained by the highest amounts of adsorbed Acetic Orange 7 (AO7). In addition, in the case of Mes-ExCN, chloride ions incorporated in the CN lattice enhanced the photocatalytic activity as well.
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.