1. Magnetic Field Evolution of the Solar Active Region 13664
- Author
-
Jarolim, Robert, Veronig, Astrid, Purkhart, Stefan, Zhang, Peijin, and Rempel, Matthias
- Subjects
Astrophysics - Solar and Stellar Astrophysics - Abstract
On 2024 May 10/11, the strongest geomagnetic storm since November 2003 has occurred, with a peak Dst index of -412 nT. The storm was caused by NOAA Active Region (AR) 13664, which was the source of a large number of coronal mass ejections and flares, including 12 X-class flares. Starting from about May 7, AR 13664 showed a steep increase in its size and (free) magnetic energy, along with increased flare activity. In this study, we perform 3D magnetic field extrapolations with the NF2 nonlinear-force free code based on physics informed neural networks (Jarolim et al. 2023). In addition, we introduce the computation of the vector potential to achieve divergence-free solutions. We extrapolate vector magnetograms from SDO/HMI at the full 12 minute cadence from 2024 May 5-00:00 to 11-04:36 UT, in order to understand the active regions magnetic evolution and the large eruptions it produced. The computed change in magnetic energy and free magnetic energy shows a clear correspondence to the flaring activity. Regions of free magnetic energy and depleted magnetic energy indicate the flare origin and are in good correspondence with observations in Extreme Ultraviolet. Our results suggest that the modeled solar flares are related to significant topological reconfigurations. We provide a detailed analysis of the X4.0-class flare on May 10, where we show that the interaction between separated magnetic domains is directly linked to major flaring events. With this study, we provide a comprehensive data set of the magnetic evolution of AR 13664 and make it publicly available for further analysis.
- Published
- 2024