1. The Influence of Electron Beam Sterilization on In Vivo Degradation of β-TCP/PCL of Different Composite Ratios for Bone Tissue Engineering
- Author
-
Jin-Ho Kang, Janelle Kaneda, Jae-Gon Jang, Kumaresan Sakthiabirami, Elaine Lui, Carolyn Kim, Aijun Wang, Sang-Won Park, and Yunzhi Peter Yang
- Subjects
3d printing ,β-tricalcium phosphate/polycaprolactone (β-tcp/pcl) composite ,bone tissue engineering ,electron beam sterilization ,Mechanical engineering and machinery ,TJ1-1570 - Abstract
We evaluated the effect of electron beam (E-beam) sterilization (25 kGy, ISO 11137) on the degradation of β-tricalcium phosphate/polycaprolactone (β-TCP/PCL) composite filaments of various ratios (0:100, 20:80, 40:60, and 60:40 TCP:PCL by mass) in a rat subcutaneous model for 24 weeks. Volumes of the samples before implantation and after explantation were measured using micro-computed tomography (micro-CT). The filament volume changes before sacrifice were also measured using a live micro-CT. In our micro-CT analyses, there was no significant difference in volume change between the E-beam treated groups and non-E-beam treated groups of the same β-TCP to PCL ratios, except for the 0% β-TCP group. However, the average volume reduction differences between the E-beam and non-E-beam groups in the same-ratio samples were 0.76% (0% TCP), 3.30% (20% TCP), 4.65% (40% TCP), and 3.67% (60% TCP). The E-beam samples generally had more volume reduction in all experimental groups. Therefore, E-beam treatment may accelerate degradation. In our live micro-CT analyses, most volume reduction arose in the first four weeks after implantation and slowed between 4 and 20 weeks in all groups. E-beam groups showed greater volume reduction at every time point, which is consistent with the results by micro-CT analysis. Histology results suggest the biocompatibility of TCP/PCL composite filaments.
- Published
- 2020
- Full Text
- View/download PDF