1. Ex vivo organ culture of adipose tissue for in situ mobilization of adipose-derived stem cells and defining the stem cell niche
- Author
-
Young Chul Youn, Min Jeong Seo, Soon Ho Cheong, Sung Hee Son, Kang Joo Choi, Young Il Yang, Jane Shelby, Min Young Choi, Ji Yeon Seo, Hyeong In Kim, and Won Hee Jang
- Subjects
Adult ,Stromal cell ,Physiology ,Clinical Biochemistry ,CD34 ,Adipose tissue ,Biology ,Organ culture ,Organ Culture Techniques ,Humans ,Stem Cell Niche ,Cells, Cultured ,Cell Proliferation ,Fibrin ,Tissue Scaffolds ,Stem Cells ,Mesenchymal stem cell ,Cell Differentiation ,Cell Biology ,Middle Aged ,Cell biology ,Endothelial stem cell ,Phenotype ,Adipose Tissue ,Immunology ,CD146 ,Stromal Cells ,Stem cell ,Biomarkers - Abstract
In spite of the advances in the knowledge of adipose-derived stem cells (ASCs), in situ location of ASCs and the niche component of adipose tissue (AT) remain controversial due to the lack of an appropriate culture system. Here we describe a fibrin matrix-supported three-dimensional (3D) organ culture system for AT which sustains the ASC niche and allows for in situ mobilization and expansion of ASCs in vitro. AT fragments were completely encapsulated within the fibrin matrix and cultured under dynamic condition. The use of organ culture of AT resulted in a robust outgrowth and proliferation in the fibrin matrix. The outgrown cells were successfully recovered from fibrin by urokinase treatment. These outgrown cells fulfilled the criteria of mesenchymal stem cells, adherence to plastic, multilineage differentiation, and cell surface molecule expression. In vitro label retaining assay revealed that newly divided cells during the culture resided in interstitium between adipocytes and capillary endothelial cells. These interstitial stromal cells proliferated and outgrew into the fibrin matrix. Both in situ mobilized and outgrown cells expressed CD146 and alpha-smooth muscle actin (SMA), but no endothelial cell markers (CD31 and CD34). The structural integrity and spatial approximation of CD31(-)/CD34(-)/CD146(+)/SMA(+) interstitial stromal cells, adipocytes, and capillary endothelial cells were well preserved during in vitro culture. Our results suggest that ASCs are natively associated with the capillary wall and more specifically, belong to a subset of pericytes. Furthermore, organ culture of AT within a fibrin matrix-supported 3D environment can recapitulate the ASC niche in vitro.
- Published
- 2010
- Full Text
- View/download PDF