James B. Grotberg, Estelle Escudier, Mathieu Bottier, Daniel Isabey, Gabriel Pelle, Jean Francois Papon, Bruno Louis, Emilie Bequignon, Sylvain Blanchon, Marcel Filoche, André Coste, Biomécanique cellulaire et respiratoire (BCR), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), INSERM U955, équipe 13, Service d'ORL et de Chirurgie Cervico-Faciale, CHI Créteil-CHI Créteil-Service d'ORL et de chirurgie cervico-faciale, Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpital Henri Mondor-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpital Henri Mondor-Institut Mondor de Recherche Biomédicale (IMRB), Institut National de la Santé et de la Recherche Médicale (INSERM)-IFR10-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut National de la Santé et de la Recherche Médicale (INSERM)-IFR10-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12), Service de pneumologie et allergologie pédiatrique [CHU Toulouse], CHU Toulouse [Toulouse], Service d'ORL et de chirurgie cervico-faciale, Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpital Henri Mondor, Service d'ORL [Créteil], Centre Hospitalier Intercommunal de Créteil (CHIC), Physiopathologie des maladies génétiques d'expression pédiatrique, Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM), Service de génétique et embryologie médicales [CHU Trousseau], CHU Trousseau [APHP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), University of Michigan [Ann Arbor], University of Michigan System, Service d’ORL et de chirurgie cervico-faciale [CHU Le Kremlin-Bicêtre], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-AP-HP Hôpital Bicêtre (Le Kremlin-Bicêtre), Laboratoire de physique de la matière condensée (LPMC), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), HAL UPMC, Gestionnaire, Service Pneumologie et allergologie pédiatrique [CHU Toulouse], Pôle Enfants [CHU Toulouse], Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Centre Hospitalier Universitaire de Toulouse (CHU Toulouse), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), and Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)
Mucociliary clearance is one of the major lines of defense of the respiratory system. The mucus layer coating the pulmonary airways is moved along and out of the lung by the activity of motile cilia, thus expelling the particles trapped in it. Here we compare ex vivo measurements of a Newtonian flow induced by cilia beating (using micro-beads as tracers) and a mathematical model of this fluid flow, presented in greater detail in a second companion article. Samples of nasal epithelial cells placed in water are recorded by high-speed video-microscopy and ciliary beat pattern is inferred. Automatic tracking of micro-beads, used as markers of the flow generated by cilia motion, enables us also to assess the velocity profile as a function of the distance above the cilia. This profile is shown to be essentially parabolic. The obtained experimental data are used to feed a 2D mathematical and numerical model of the coupling between cilia, fluid, and micro-bead motion. From the model and the experimental measurements, the shear stress exerted by the cilia is deduced. Finally, this shear stress, which can easily be measured in the clinical setting, is proposed as a new index for characterizing the efficiency of ciliary beating., Author summary Mucociliary clearance is the first line of defense of the human pulmonary airways. Mucus transporting debris, particles, microorganisms and pollutants is carried away by the coordinated motion of cilia beating at the surface of the airway epithelium. We present here an experimental, mathematical and numerical study aiming at defining a global index for assessing the efficiency of this beating. We measure experimentally the ciliary beat frequency, ciliary beat amplitude, and metachronal wavelength on ciliated edges obtained from nasal brushing. Properties of fluid motion are simultaneously extracted from micro-bead tracking next to the ciliated edge. A mathematical and numerical model is developed to describe the fluid motion induced by the cilia tips considered as a moving wall. Experimental and numerical results show that the bead velocity is a parabolic function of the distance to the wall. It allows us to infer the shear stress exerted by the cilia on fluid from micro-bead tracking. This quantity is proposed as a universal index characterizing the beating efficiency, which can be extracted in the current clinical setting.