1. Using eddy-covariance to measure the effects of COVID-19 restrictions on CO2 emissions in a neighborhood of Indianapolis, IN
- Author
-
Eli Vogel, Kenneth James Davis, Kai Wu, Natasha Lynn Miles, Scott James Richardson, Kevin Robert Gurney, Vanessa Monteiro, Geoffrey Scott Roest, Helen Colette Ruhlin Kenion, and Jason Patrick Horne
- Subjects
Flux ,disaggregation ,coronavirus ,footprint ,Hestia ,INFLUX ,Environmental sciences ,GE1-350 - Abstract
Eddy-covariance (EC) flux measurements in Indianapolis were used to quantify the impact of the COVID-19 lockdown on CO and CO2 emissions from a highway and a suburban neighborhood. CO2 fluxes were measured for 6 weeks pre-lockdown (January 22, 2020–March 3, 2020) and during lockdown (March 25, 2020– May 5, 2020) using EC instrumentation at 41 m AGL. Fossil fuel CO2 emissions (CO2ff) were estimated by calculating eddy diffusivity to obtain CO flux and then scaling by the CO:CO2ff emissions ratio (RCO). Flux measurements segregated by wind direction were compared to hourly emissions from the 2020 Hestia inventory model. The lockdown CO2ff average weekday emissions from the highway estimated by EC decreased by 51.5 ± 10.9% (11.2 ± 2.2 µmol m−2 s−1) compared to pre-lockdown, similar to Hestia’s estimate 56 ± 7% (12 ± 1 µmol m−2 s−1). The EC measurements detected a significant (2.2 ± 0.7 µmol m−2 s−1) but smaller magnitude decrease in CO2ff emissions from the suburban neighborhood. The daily cycles of CO2ff emissions were significantly correlated with Hestia estimates from the highway but not from the suburbs. This study demonstrates that EC flux towers and high-resolution inventory models in regions with mixed and spatially heterogeneous sources can quantify abrupt changes in sector- and source-specific CO2 fluxes.
- Published
- 2024
- Full Text
- View/download PDF