8 results on '"Jakobsgaard JE"'
Search Results
2. Six weeks of high-load resistance and low-load blood flow restricted training increase Na/K-ATPase sub-units α2 and β1 equally, but does not alter ClC-1 abundance in untrained human skeletal muscle.
- Author
-
Wang J, Rindom E, Groennebaek T, Sieljacks P, Jakobsgaard JE, Farup J, Vissing K, Pedersen TH, and de Paoli FV
- Subjects
- Humans, Sodium-Potassium-Exchanging ATPase metabolism, Muscle Fibers, Skeletal metabolism, Exercise physiology, Muscle Contraction, Protein Isoforms metabolism, Muscle, Skeletal metabolism, Resistance Training methods
- Abstract
Contractile function of skeletal muscle relies on the ability of muscle fibers to trigger and propagate action potentials (APs). These electrical signals are created by transmembrane ion transport through ion channels and membrane transporter systems. In this regard, the Cl
- ion channel 1 (ClC-1) and the Na+ /K- -ATPase (NKA) are central for maintaining ion homeostasis across the sarcolemma during intense contractile activity. Therefore, this randomized controlled trial aimed to investigate the changes in ClC-1 and specific NKA subunit isoform expression in response to six weeks (18 training sessions) of high-load resistance exercise (HLRE) and low-load blood flow restricted resistance exercise (BFRRE), respectively. HLRE was conducted as 4 sets of 12 repetitions of knee extensions performed at 70% of 1 repetition maximum (RM), while BFRRE was conducted as 4 sets of knee extensions at 30% of 1RM performed to volitional fatigue. Furthermore, the potential associations between protein expression and contractile performance were investigated. We show that muscle ClC-1 abundance was not affected by either exercise modality, whereas NKA subunit isoforms [Formula: see text]2 and [Formula: see text]1 increased equally by appx. 80-90% with BFRRE (p < 0.05) and 70-80% with HLRE (p < 0.05). No differential impact between exercise modalities was observed. At baseline, ClC-1 protein expression correlated inversely with dynamic knee extensor strength (r=-0.365, p = 0.04), whereas no correlation was observed between NKA subunit content and contractile performance at baseline. However, training-induced changes in NKA [Formula: see text]2 subunit (r = 0.603, p < 0.01) and [Formula: see text]1 subunit (r = 0.453, p < 0.05) correlated with exercise-induced changes in maximal voluntary contraction. These results suggest that the initial adaptation to resistance-based exercise does not involve changes in ClC-1 abundance in untrained skeletal muscle, and that increased content of NKA subunits may facilitate increases in maximal force production., (© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)- Published
- 2023
- Full Text
- View/download PDF
3. Protein signalling in response to ex vivo dynamic contractions is independent of training status in rat skeletal muscle.
- Author
-
Jakobsgaard JE, de Paoli FV, and Vissing K
- Subjects
- AMP-Activated Protein Kinases metabolism, Animals, Muscle, Skeletal physiology, Peptide Elongation Factor 2 metabolism, Phosphorylation, Rats, Muscle Contraction physiology, Signal Transduction physiology
- Abstract
New Findings: What is the central question of this study? Are myofibre protein signalling responses to ex vivo dynamic contractions altered by accustomization to voluntary endurance training in rats? What is the main finding and its importance? In response to ex vivo dynamic muscle contractions, canonical myofibre protein signalling pertaining to metabolic transcriptional regulation, as well as translation initiation and elongation, was not influenced by prior accustomization to voluntary endurance training in rats. Accordingly, intrinsic myofibre protein signalling responses to standardized contractile activity may be independent of prior exercise training in rat skeletal muscle., Abstract: Skeletal muscle training status may influence myofibre regulatory protein signalling in response to contractile activity. The current study employed a purpose-designed ex vivo dynamic contractile protocol to evaluate the effect of exercise-accustomization on canonical myofibre protein signalling for metabolic gene expression and for translation initiation and elongation. To this end, rats completed 8 weeks of in vivo voluntary running training versus no running control intervention, whereupon an ex vivo endurance-type dynamic contraction stimulus was conducted in isolated soleus muscle preparations from both intervention groups. Protein signalling response by phosphorylation was evaluated by immunoblotting at 0 and 3 h following ex vivo stimulation. Phosphorylation of AMP-activated protein kinase α-isoforms and its downstream target, acetyl-CoA carboxylase, as well as phosphorylation of eukaryotic elongation factor 2 (eEF2) was increased immediately following the dynamic contraction protocol (at 0 h). Signalling for translation initiation and elongation was evident at 3 h after dynamic contractile activity, as evidenced by increased phosphorylation of p70 S6 kinase and eukaryotic translation initiation factor 4E-binding protein 1, as well as a decrease in phosphorylation of eEF2 back to resting control levels. However, prior exercise training did not alter phosphorylation responses of the investigated signalling proteins. Accordingly, protein signalling responses to standardized endurance-type contractions may be independent of training status in rat muscle during ex vivo conditions. The present findings add to our current understanding of molecular regulatory events responsible for skeletal muscle plasticity., (© 2022 The Authors. Experimental Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.)
- Published
- 2022
- Full Text
- View/download PDF
4. The Role of Plasma Extracellular Vesicles in Remote Ischemic Conditioning and Exercise-Induced Ischemic Tolerance.
- Author
-
Gu T, Just J, Stenz KT, Yan Y, Sieljacks P, Wang J, Groennebaek TS, Jakobsgaard JE, Rindom E, Herskind J, Gravholt A, Lassen TR, Jørgensen M, Bæk R, Gutiérrez-Jiménez E, Iversen NK, Rasmussen PM, Nyengaard JR, Jørgensen MM, de Paoli F, Bøtker HE, Kjems J, Vissing K, and Drasbek KR
- Subjects
- Animals, Disease Models, Animal, Endothelial Cells, Humans, Ischemia, Mice, Extracellular Vesicles, Reperfusion Injury
- Abstract
Ischemic conditioning and exercise have been suggested for protecting against brain ischemia-reperfusion injury. However, the endogenous protective mechanisms stimulated by these interventions remain unclear. Here, in a comprehensive translational study, we investigated the protective role of extracellular vesicles (EVs) released after remote ischemic conditioning (RIC), blood flow restricted resistance exercise (BFRRE), or high-load resistance exercise (HLRE). Blood samples were collected from human participants before and at serial time points after intervention. RIC and BFRRE plasma EVs released early after stimulation improved viability of endothelial cells subjected to oxygen-glucose deprivation. Furthermore, post-RIC EVs accumulated in the ischemic area of a stroke mouse model, and a mean decrease in infarct volume was observed for post-RIC EVs, although not reaching statistical significance. Thus, circulating EVs induced by RIC and BFRRE can mediate protection, but the in vivo and translational effects of conditioned EVs require further experimental verification.
- Published
- 2022
- Full Text
- View/download PDF
5. Skeletal muscle phenotype signaling with ex vivo endurance-type dynamic contractions in rat muscle.
- Author
-
Jakobsgaard JE, Andresen J, de Paoli FV, and Vissing K
- Subjects
- Animals, Female, Muscle Contraction, Muscle Fibers, Slow-Twitch, Phenotype, Rats, Rats, Wistar, Muscle Fibers, Fast-Twitch, Muscle, Skeletal
- Abstract
Skeletal muscle phenotype may influence the response sensitivity of myocellular regulatory mechanisms to contractile activity. To examine this, we employed an ex vivo endurance-type dynamic contraction model to evaluate skeletal muscle phenotype-specific protein signaling responses in rat skeletal muscle. Preparations of slow-twitch soleus and fast-twitch extensor digitorum longus skeletal muscle from 4-wk-old female Wistar rats were exposed to an identical ex vivo dynamic endurance-type contraction paradigm consisting of 40 min of stretch-shortening contractions under simultaneous low-frequency electrostimulation delivered in an intermittent pattern. Phosphorylation of proteins involved in metabolic signaling and signaling for translation initiation was evaluated at 0, 1, and 4 h after stimulation by immunoblotting. For both muscle phenotypes, signaling related to metabolic events was upregulated immediately after stimulation, with concomitant absence of signaling for translation-initiation. Signaling for translation-initiation was then activated in both muscle phenotypes at 1-4 h after stimulation, coinciding with attenuated metabolic signaling. The recognizable pattern of signaling responses support how our ex vivo dynamic muscle contraction model can be utilized to infer a stretch-shortening contraction pattern resembling stretch-shortening contraction of in vivo endurance exercise. Moreover, using this model, we observed that some specific signaling proteins adhering to metabolic events or to translation-initiation exhibited phosphorylation changes in a phenotype-dependent manner, whereas other signaling proteins exhibited phenotype-independent changes. These findings may aid the interpretation of myocellular signaling outcomes adhering to mixed muscle samples collected during human experimental trials. NEW & NOTEWORTHY The application of cyclic ex vivo dynamic muscle contractions delivered in an intermittent pattern may be suitable for the exploration of skeletal muscle regulatory responses to endurance-type contractile activity. In the present study, it is demonstrated that the response to such stimulus of some nodal myocellular signaling proteins related to either metabolic or anabolic signaling events may be influenced by muscle phenotype, whereas the response of others appears to be independent of phenotype.
- Published
- 2021
- Full Text
- View/download PDF
6. Six Weeks of Low-Load Blood Flow Restricted and High-Load Resistance Exercise Training Produce Similar Increases in Cumulative Myofibrillar Protein Synthesis and Ribosomal Biogenesis in Healthy Males.
- Author
-
Sieljacks P, Wang J, Groennebaek T, Rindom E, Jakobsgaard JE, Herskind J, Gravholt A, Møller AB, Musci RV, de Paoli FV, Hamilton KL, Miller BF, and Vissing K
- Abstract
Purpose: High-load resistance exercise contributes to maintenance of muscle mass, muscle protein quality, and contractile function by stimulation of muscle protein synthesis (MPS), hypertrophy, and strength gains. However, high loading may not be feasible in several clinical populations. Low-load blood flow restricted resistance exercise (BFRRE) may provide an alternative approach. However, the long-term protein synthetic response to BFRRE is unknown and the myocellular adaptations to prolonged BFRRE are not well described. Methods: To investigate this, 34 healthy young subjects were randomized to 6 weeks of low-load BFRRE, HLRE, or non-exercise control (CON). Deuterium oxide (D
2 O) was orally administered throughout the intervention period. Muscle biopsies from m. vastus lateralis were collected before and after the 6-week intervention period to assess long-term myofibrillar MPS and RNA synthesis as well as muscle fiber-type-specific cross-sectional area (CSA), satellite cell content, and myonuclei content. Muscle biopsies were also collected in the immediate hours following single-bout exercise to assess signaling for muscle protein degradation. Isometric and dynamic quadriceps muscle strength was evaluated before and after the intervention. Results: Myofibrillar MPS was higher in BFRRE (1.34%/day, p < 0.01) and HLRE (1.12%/day, p < 0.05) compared to CON (0.96%/day) with no significant differences between exercise groups. Muscle RNA synthesis was higher in BFRRE (0.65%/day, p < 0.001) and HLRE (0.55%/day, p < 0.01) compared to CON (0.38%/day) and both training groups increased RNA content, indicating ribosomal biogenesis in response to exercise. BFRRE and HLRE both activated muscle degradation signaling. Muscle strength increased 6-10% in BFRRE ( p < 0.05) and 13-23% in HLRE ( p < 0.01). Dynamic muscle strength increased to a greater extent in HLRE ( p < 0.05). No changes in type I and type II muscle fiber-type-specific CSA, satellite cell content, or myonuclei content were observed. Conclusions: These results demonstrate that BFRRE increases long-term muscle protein turnover, ribosomal biogenesis, and muscle strength to a similar degree as HLRE. These findings emphasize the potential application of low-load BFRRE to stimulate muscle protein turnover and increase muscle function in clinical populations where high loading is untenable.- Published
- 2019
- Full Text
- View/download PDF
7. Skeletal Muscle Mitochondrial Protein Synthesis and Respiration Increase With Low-Load Blood Flow Restricted as Well as High-Load Resistance Training.
- Author
-
Groennebaek T, Jespersen NR, Jakobsgaard JE, Sieljacks P, Wang J, Rindom E, Musci RV, Bøtker HE, Hamilton KL, Miller BF, de Paoli FV, and Vissing K
- Abstract
Purpose: It is well established that high-load resistance exercise (HLRE) can stimulate myofibrillar accretion. Additionally, recent studies suggest that HLRE can also stimulate mitochondrial biogenesis and respiratory function. However, in several clinical situations, the use of resistance exercise with high loading may not constitute a viable approach. Low-load blood flow restricted resistance exercise (BFRRE) has emerged as a time-effective low-load alternative to stimulate myofibrillar accretion. It is unknown if BFRRE can also stimulate mitochondrial biogenesis and respiratory function. If so, BFRRE could provide a feasible strategy to stimulate muscle metabolic health. Methods: To study this, 34 healthy previously untrained individuals (24 ± 3 years) participated in BFRRE, HLRE, or non-exercise control intervention (CON) 3 times per week for 6 weeks. Skeletal muscle biopsies were collected; (1) before and after the 6-week intervention period to assess mitochondrial biogenesis and respiratory function and; (2) during recovery from single-bout exercise to assess myocellular signaling events involved in transcriptional regulation of mitochondrial biogenesis. During the 6-week intervention period, deuterium oxide (D
2 O) was continuously administered to the participants to label newly synthesized skeletal muscle mitochondrial proteins. Mitochondrial respiratory function was assessed in permeabilized muscle fibers with high-resolution respirometry. Mitochondrial content was assessed with a citrate synthase activity assay. Myocellular signaling was assessed with immunoblotting. Results: Mitochondrial protein synthesis rate was higher with BFRRE (1.19%/day) and HLRE (1.15%/day) compared to CON (0.92%/day) ( P < 0.05) but similar between exercise groups. Mitochondrial respiratory function increased to similar degree with both exercise regimens and did not change with CON. For instance, coupled respiration supported by convergent electron flow from complex I and II increased 38% with BFRRE and 24% with HLRE ( P < 0.01). Training did not alter citrate synthase activity compared to CON. BFRRE and HLRE elicited similar myocellular signaling responses. Conclusion: These results support recent findings that resistance exercise can stimulate mitochondrial biogenesis and respiratory function to support healthy skeletal muscle and whole-body metabolism. Intriquingly, BFRRE produces similar mitochondrial adaptations at a markedly lower load, which entail great clinical perspective for populations in whom exercise with high loading is untenable.- Published
- 2018
- Full Text
- View/download PDF
8. Impact of blood flow-restricted bodyweight exercise on skeletal muscle adaptations.
- Author
-
Jakobsgaard JE, Christiansen M, Sieljacks P, Wang J, Groennebaek T, de Paoli F, and Vissing K
- Abstract
This study ascertains the ability of bodyweight blood flow-restricted (BFR) exercise training to promote skeletal muscle adaptations of significance for muscle accretion and metabolism. Six healthy young individuals (three males and three females) performed six weeks of bodyweight BFR training. Each session consisted of five sets of sit-to-stand BFR exercise to volitional failure with 30-second inter-set recovery. Prior to, and at least 72 h after training, muscle biopsies were taken from m. vastus lateralis to assess changes in fibre type-specific cross-sectional area (CSA), satellite cell (SC) and myonuclei content and capillarization, as well as mitochondrial protein expression. Furthermore, magnetic resonance imaging was used to assess changes in whole thigh muscle CSA. Finally, isometric knee extensor muscle strength was evaluated. An increase in knee extensor whole muscle CSA was observed at middle and distal localizations after training (3·2% and 3·5%, respectively) (P<0·05), and a trend was observed towards an increase in type I fibre CSA, whereas muscle strength did not increase. Additionally, the number of SCs and myonuclei associated with type I fibres increased by 65·7% and 20%, respectively (P<0·05). No significant changes were observed in measures of muscle capillarization and mitochondrial proteins. In conclusion, six weeks of bodyweight-based BFR exercise promoted myocellular adaptations related to muscle accretion, but not metabolic properties. Moreover, the study revealed that an appropriate total training volume needs further investigation before recommending bodyweight BFR to patient populations., (© 2018 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.)
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.