1. Highly linear polarized emission at telecom bands in InAs/InP quantum dot-nanowires by geometry tailoring
- Author
-
Jaffal, Ali, Regreny, Philippe, Patriarche, Gilles, Gendry, Michel, and Chauvin, Nicolas
- Subjects
Condensed Matter - Materials Science ,Physics - Applied Physics - Abstract
Nanowire (NW)-based opto-electronic devices require certain engineering in the NW geometry to realize polarized-dependent light sources and photodetectors. We present a growth procedure to produce InAs/InP quantum dot-nanowires (QD-NWs) with an elongated top-view cross-section relying on the vapor-liquid-solid method using molecular beam epitaxy. By interrupting the rotation of the sample during the radial growth sequence of the InP shell, hexagonal asymmetric (HA) NWs with long/short cross-section axes were obtained instead of the usual symmetrical shape. Polarization-resolved photoluminescence measurements have revealed a significant influence of the asymmetric shaped NWs on the InAs QD emission polarization with the photons being mainly polarized parallel to the NW long cross-section axis. A degree of linear polarization (DLP) up to 91% is obtained, being at the state of the art for the reported DLP values from QD-NWs. More importantly, the growth protocol herein is fully compatible with the current applications of HA NWs covering a wide range of devices such as polarized light emitting diodes and photodetectors., Comment: 20 pages, 7 figures
- Published
- 2021
- Full Text
- View/download PDF