1. Saturation Modeling of Gas Hydrate Using Machine Learning with X-Ray CT Images
- Author
-
Sungil Kim, Kyungbook Lee, Minhui Lee, Taewoong Ahn, Jaehyoung Lee, Hwasoo Suk, and Fulong Ning
- Subjects
X-ray CT image ,gas hydrate sand sample ,saturation modeling ,machine learning ,random forest ,Technology - Abstract
This study conducts saturation modeling in a gas hydrate (GH) sand sample with X-ray CT images using the following machine learning algorithms: random forest (RF), convolutional neural network (CNN), and support vector machine (SVM). The RF yields the best prediction performance for water, gas, and GH saturation in the samples among the three methods. The CNN and SVM also exhibit sufficient performances under the restricted conditions, but require improvements to their reliability and overall prediction performance. Furthermore, the RF yields the lowest mean square error and highest correlation coefficient between the original and predicted datasets. Although the GH CT images aid in approximately understanding how fluids act in a GH sample, difficulties were encountered in accurately understanding the behavior of GH in a GH sample during the experiments owing to limited physical conditions. Therefore, the proposed saturation modeling method can aid in understanding the behavior of GH in a GH sample in real-time with the use of an appropriate machine learning method. Furthermore, highly accurate descriptions of each saturation, obtained from the proposed method, lead to an accurate resource evaluation and well-guided optimal depressurization for a target GH field production.
- Published
- 2020
- Full Text
- View/download PDF