1. Dynamic Covalent Bond-Based Polymer Chains Operating Reversibly with Temperature Changes
- Author
-
Sojeong Roh, Yeonjeong Nam, My Thi Ngoc Nguyen, Jae-Hee Han, and Jun Seop Lee
- Subjects
dynamic covalent bonds ,reversibility ,temperature control ,equilibrium ,synthesis ,application ,Organic chemistry ,QD241-441 - Abstract
Dynamic bonds can facilitate reversible formation and dissociation of connections in response to external stimuli, endowing materials with shape memory and self-healing capabilities. Temperature is an external stimulus that can be easily controlled through heat. Dynamic covalent bonds in response to temperature can reversibly connect, exchange, and convert chains in the polymer. In this review, we introduce dynamic covalent bonds that operate without catalysts in various temperature ranges. The basic bonding mechanism and the kinetics are examined to understand dynamic covalent chemistry reversibly performed by equilibrium control. Furthermore, a recent synthesis method that implements dynamic covalent coupling based on various polymers is introduced. Dynamic covalent bonds that operate depending on temperature can be applied and expand the use of polymers, providing predictions for the development of future smart materials.
- Published
- 2024
- Full Text
- View/download PDF