114 results on '"Jacobi, H. -W"'
Search Results
2. Measurements and modeling of the vertical profile of specific surface area of an alpine snowpack
- Author
-
Morin, S., Domine, F., Dufour, A., Lejeune, Y., Lesaffre, B., Willemet, J.-M., Carmagnola, C.M., and Jacobi, H.-W.
- Published
- 2013
- Full Text
- View/download PDF
3. Overview of the MOSAiC expedition : Atmosphere
- Author
-
Shupe, M. D., Rex, M., Blomquist, B., G. Persson, P. O., Schmale, J., Uttal, T., Althausen, D., Angot, H., Archer, S., Bariteau, L., Beck, I., Bilberry, J., Bucci, S., Buck, C., Boyer, M., Brasseur, Z., Brooks, I. M., Calmer, R., Cassano, J., Castro, V., Chu, D., Costa, D., Cox, C. J., Creamean, J., Crewell, S., Dahlke, S., Damm, E., de Boer, G., Deckelmann, H., Dethloff, K., Dütsch, M., Ebell, K., Ehrlich, A., Ellis, J., Engelmann, R., Fong, A. A., Frey, M. M., Gallagher, M. R., Ganzeveld, L., Gradinger, R., Graeser, J., Greenamyer, V., Griesche, H., Griffiths, S., Hamilton, J., Heinemann, G., Helmig, D., Herber, A., Heuzé, C., Hofer, J., Houchens, T., Howard, D., Inoue, J., Jacobi, H. -W, Jaiser, R., Jokinen, T., Jourdan, O., Jozef, G., King, W., Kirchgaessner, A., Klingebiel, M., Krassovski, M., Krumpen, T., Lampert, A., Landing, W., Laurila, T., Lawrence, D., Lonardi, M., Loose, B., Lüpkes, C., Maahn, M., Macke, A., Maslowski, W., Marsay, C., Maturilli, M., Mech, M., Morris, S., Moser, M., Nicolaus, M., Ortega, P., Osborn, J., Pätzold, F., Perovich, D. K., Petäjä, T., Pilz, C., Pirazzini, R., Posman, K., Powers, H., Pratt, K. A., Preußer, A., Quéléver, L., Radenz, M., Rabe, B., Rinke, A., Sachs, T., Schulz, A., Siebert, H., Silva, T., Solomon, A., Sommerfeld, A., Spreen, G., Stephens, M., Stohl, A., Svensson, Gunilla, Uin, J., Viegas, J., Voigt, C., von der Gathen, P., Wehner, B., Welker, J. M., Wendisch, M., Werner, M., Xie, Z., Yue, F., Shupe, M. D., Rex, M., Blomquist, B., G. Persson, P. O., Schmale, J., Uttal, T., Althausen, D., Angot, H., Archer, S., Bariteau, L., Beck, I., Bilberry, J., Bucci, S., Buck, C., Boyer, M., Brasseur, Z., Brooks, I. M., Calmer, R., Cassano, J., Castro, V., Chu, D., Costa, D., Cox, C. J., Creamean, J., Crewell, S., Dahlke, S., Damm, E., de Boer, G., Deckelmann, H., Dethloff, K., Dütsch, M., Ebell, K., Ehrlich, A., Ellis, J., Engelmann, R., Fong, A. A., Frey, M. M., Gallagher, M. R., Ganzeveld, L., Gradinger, R., Graeser, J., Greenamyer, V., Griesche, H., Griffiths, S., Hamilton, J., Heinemann, G., Helmig, D., Herber, A., Heuzé, C., Hofer, J., Houchens, T., Howard, D., Inoue, J., Jacobi, H. -W, Jaiser, R., Jokinen, T., Jourdan, O., Jozef, G., King, W., Kirchgaessner, A., Klingebiel, M., Krassovski, M., Krumpen, T., Lampert, A., Landing, W., Laurila, T., Lawrence, D., Lonardi, M., Loose, B., Lüpkes, C., Maahn, M., Macke, A., Maslowski, W., Marsay, C., Maturilli, M., Mech, M., Morris, S., Moser, M., Nicolaus, M., Ortega, P., Osborn, J., Pätzold, F., Perovich, D. K., Petäjä, T., Pilz, C., Pirazzini, R., Posman, K., Powers, H., Pratt, K. A., Preußer, A., Quéléver, L., Radenz, M., Rabe, B., Rinke, A., Sachs, T., Schulz, A., Siebert, H., Silva, T., Solomon, A., Sommerfeld, A., Spreen, G., Stephens, M., Stohl, A., Svensson, Gunilla, Uin, J., Viegas, J., Voigt, C., von der Gathen, P., Wehner, B., Welker, J. M., Wendisch, M., Werner, M., Xie, Z., and Yue, F.
- Abstract
With the Arctic rapidly changing, the needs to observe, understand, and model the changes are essential. To support these needs, an annual cycle of observations of atmospheric properties, processes, and interactions were made while drifting with the sea ice across the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. An international team designed and implemented the comprehensive program to document and characterize all aspects of the Arctic atmospheric system in unprecedented detail, using a variety of approaches, and across multiple scales. These measurements were coordinated with other observational teams to explore crosscutting and coupled interactions with the Arctic Ocean, sea ice, and ecosystem through a variety of physical and biogeochemical processes. This overview outlines the breadth and complexity of the atmospheric research program, which was organized into 4 subgroups: atmospheric state, clouds and precipitation, gases and aerosols, and energy budgets. Atmospheric variability over the annual cycle revealed important influences from a persistent large-scale winter circulation pattern, leading to some storms with pressure and winds that were outside the interquartile range of past conditions suggested by long-term reanalysis. Similarly, the MOSAiC location was warmer and wetter in summer than the reanalysis climatology, in part due to its close proximity to the sea ice edge. The comprehensiveness of the observational program for characterizing and analyzing atmospheric phenomena is demonstrated via a winter case study examining air mass transitions and a summer case study examining vertical atmospheric evolution. Overall, the MOSAiC atmospheric program successfully met its objectives and was the most comprehensive atmospheric measurement program to date conducted over the Arctic sea ice. The obtained data will support a broad range of coupled-system s
- Published
- 2022
- Full Text
- View/download PDF
4. Overview of the MOSAiC expedition:atmosphere
- Author
-
Shupe, M. D. (Matthew D.), Rex, M. (Markus), Blomquist, B. (Byron), Persson, P. O. (P. Ola G.), Schmale, J. (Julia), Uttal, T. (Taneil), Althausen, D. (Dietrich), Angot, H. (Helene), Archer, S. (Stephen), Bariteau, L. (Ludovic), Beck, I. (Ivo), Bilberry, J. (John), Bucci, S. (Silvia), Buck, C. (Clifton), Boyer, M. (Matt), Brasseur, Z. (Zoe), Brooks, I. M. (Ian M.), Calmer, R. (Radiance), Cassano, J. (John), Castro, V. (Vagner), Chu, D. (David), Costa, D. (David), Cox, C. J. (Christopher J.), Creamean, J. (Jessie), Crewell, S. (Susanne), Dahlke, S. (Sandro), Damm, E. (Ellen), de Boer, G. (Gijs), Deckelmann, H. (Holger), Dethloff, K. (Klaus), Duetsch, M. (Marina), Ebell, K. (Kerstin), Ehrlich, A. (Andre), Ellis, J. (Jody), Engelmann, R. (Ronny), Fong, A. A. (Allison A.), Frey, M. M. (Markus M.), Gallagher, M. R. (Michael R.), Ganzeveld, L. (Laurens), Gradinger, R. (Rolf), Graeser, J. (Juergen), Greenamyer, V. (Vernon), Griesche, H. (Hannes), Griffiths, S. (Steele), Hamilton, J. (Jonathan), Heinemann, G. (Guenther), Helmig, D. (Detlev), Herber, A. (Andreas), Heuze, C. (Celine), Hofer, J. (Julian), Houchens, T. (Todd), Howard, D. (Dean), Inoue, J. (Jun), Jacobi, H.-W. (Hans-Werner), Jaiser, R. (Ralf), Jokinen, T. (Tuija), Jourdan, O. (Olivier), Jozef, G. (Gina), King, W. (Wessley), Kirchgaessner, A. (Amelie), Klingebiel, M. (Marcus), Krassovski, M. (Misha), Krumpen, T. (Thomas), Lampert, A. (Astrid), Landing, W. (William), Laurila, T. (Tiia), Lawrence, D. (Dale), Lonardi, M. (Michael), Loose, B. (Brice), Luepkes, C. (Christof), Maahn, M. (Maximilian), Macke, A. (Andreas), Maslowski, W. (Wieslaw), Marsay, C. (Christopher), Maturilli, M. (Marion), Mech, M. (Mario), Morris, S. (Sara), Moser, M. (Manuel), Nicolaus, M. (Marcel), Ortega, P. (Paul), Osborn, J. (Jackson), Paetzold, F. (Falk), Perovich, D. K. (Donald K.), Petäjä, T. (Tuukka), Pilz, C. (Christian), Pirazzini, R. (Roberta), Posman, K. (Kevin), Powers, H. (Heath), Pratt, K. A. (Kerri A.), Preusser, A. (Andreas), Quelever, L. (Lauriane), Radenz, M. (Martin), Rabe, B. (Benjamin), Rinke, A. (Annette), Sachs, T. (Torsten), Schulz, A. (Alexander), Siebert, H. (Holger), Silva, T. (Tercio), Solomon, A. (Amy), Sommerfeld, A. (Anja), Spreen, G. (Gunnar), Stephens, M. (Mark), Stohl, A. (Andreas), Svensson, G. (Gunilla), Uin, J. (Janek), Viegas, J. (Juarez), Voigt, C. (Christiane), von der Gathen, P. (Peter), Wehner, B. (Birgit), Welker, J. M. (Jeffrey M.), Wendisch, M. (Manfred), Werner, M. (Martin), Xie, Z. (ZhouQing), Yue, F. (Fange), Shupe, M. D. (Matthew D.), Rex, M. (Markus), Blomquist, B. (Byron), Persson, P. O. (P. Ola G.), Schmale, J. (Julia), Uttal, T. (Taneil), Althausen, D. (Dietrich), Angot, H. (Helene), Archer, S. (Stephen), Bariteau, L. (Ludovic), Beck, I. (Ivo), Bilberry, J. (John), Bucci, S. (Silvia), Buck, C. (Clifton), Boyer, M. (Matt), Brasseur, Z. (Zoe), Brooks, I. M. (Ian M.), Calmer, R. (Radiance), Cassano, J. (John), Castro, V. (Vagner), Chu, D. (David), Costa, D. (David), Cox, C. J. (Christopher J.), Creamean, J. (Jessie), Crewell, S. (Susanne), Dahlke, S. (Sandro), Damm, E. (Ellen), de Boer, G. (Gijs), Deckelmann, H. (Holger), Dethloff, K. (Klaus), Duetsch, M. (Marina), Ebell, K. (Kerstin), Ehrlich, A. (Andre), Ellis, J. (Jody), Engelmann, R. (Ronny), Fong, A. A. (Allison A.), Frey, M. M. (Markus M.), Gallagher, M. R. (Michael R.), Ganzeveld, L. (Laurens), Gradinger, R. (Rolf), Graeser, J. (Juergen), Greenamyer, V. (Vernon), Griesche, H. (Hannes), Griffiths, S. (Steele), Hamilton, J. (Jonathan), Heinemann, G. (Guenther), Helmig, D. (Detlev), Herber, A. (Andreas), Heuze, C. (Celine), Hofer, J. (Julian), Houchens, T. (Todd), Howard, D. (Dean), Inoue, J. (Jun), Jacobi, H.-W. (Hans-Werner), Jaiser, R. (Ralf), Jokinen, T. (Tuija), Jourdan, O. (Olivier), Jozef, G. (Gina), King, W. (Wessley), Kirchgaessner, A. (Amelie), Klingebiel, M. (Marcus), Krassovski, M. (Misha), Krumpen, T. (Thomas), Lampert, A. (Astrid), Landing, W. (William), Laurila, T. (Tiia), Lawrence, D. (Dale), Lonardi, M. (Michael), Loose, B. (Brice), Luepkes, C. (Christof), Maahn, M. (Maximilian), Macke, A. (Andreas), Maslowski, W. (Wieslaw), Marsay, C. (Christopher), Maturilli, M. (Marion), Mech, M. (Mario), Morris, S. (Sara), Moser, M. (Manuel), Nicolaus, M. (Marcel), Ortega, P. (Paul), Osborn, J. (Jackson), Paetzold, F. (Falk), Perovich, D. K. (Donald K.), Petäjä, T. (Tuukka), Pilz, C. (Christian), Pirazzini, R. (Roberta), Posman, K. (Kevin), Powers, H. (Heath), Pratt, K. A. (Kerri A.), Preusser, A. (Andreas), Quelever, L. (Lauriane), Radenz, M. (Martin), Rabe, B. (Benjamin), Rinke, A. (Annette), Sachs, T. (Torsten), Schulz, A. (Alexander), Siebert, H. (Holger), Silva, T. (Tercio), Solomon, A. (Amy), Sommerfeld, A. (Anja), Spreen, G. (Gunnar), Stephens, M. (Mark), Stohl, A. (Andreas), Svensson, G. (Gunilla), Uin, J. (Janek), Viegas, J. (Juarez), Voigt, C. (Christiane), von der Gathen, P. (Peter), Wehner, B. (Birgit), Welker, J. M. (Jeffrey M.), Wendisch, M. (Manfred), Werner, M. (Martin), Xie, Z. (ZhouQing), and Yue, F. (Fange)
- Abstract
With the Arctic rapidly changing, the needs to observe, understand, and model the changes are essential. To support these needs, an annual cycle of observations of atmospheric properties, processes, and interactions were made while drifting with the sea ice across the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. An international team designed and implemented the comprehensive program to document and characterize all aspects of the Arctic atmospheric system in unprecedented detail, using a variety of approaches, and across multiple scales. These measurements were coordinated with other observational teams to explore crosscutting and coupled interactions with the Arctic Ocean, sea ice, and ecosystem through a variety of physical and biogeochemical processes. This overview outlines the breadth and complexity of the atmospheric research program, which was organized into 4 subgroups: atmospheric state, clouds and precipitation, gases and aerosols, and energy budgets. Atmospheric variability over the annual cycle revealed important influences from a persistent large-scale winter circulation pattern, leading to some storms with pressure and winds that were outside the interquartile range of past conditions suggested by long-term reanalysis. Similarly, the MOSAiC location was warmer and wetter in summer than the reanalysis climatology, in part due to its close proximity to the sea ice edge. The comprehensiveness of the observational program for characterizing and analyzing atmospheric phenomena is demonstrated via a winter case study examining air mass transitions and a summer case study examining vertical atmospheric evolution. Overall, the MOSAiC atmospheric program successfully met its objectives and was the most comprehensive atmospheric measurement program to date conducted over the Arctic sea ice. The obtained data will support a broad range of coupled
- Published
- 2022
5. CAPRAM2.3: A Chemical Aqueous Phase Radical Mechanism for Tropospheric Chemistry
- Author
-
Herrmann, H., Ervens, B., Jacobi, H.-W., Wolke, R., Nowacki, P., and Zellner, R.
- Published
- 2000
- Full Text
- View/download PDF
6. Abstracts of the 6th FECS Conference 1998 Lectures
- Author
-
Rowland, F. Sherwood, Blake, Donald R., Larsen, B. R., Lindskog, Anne, Peterson, Peter J., Williams, W. Peter, Wallington, T. J., Pilling, M. J., Carslaw, N., Creasey, D. J., Heard, D. E., Jacobs, P., Lee, J., Lewis, A. C., McQuaid, J. B., Stockwell, William R., Frank, Hartmut, Sacco, P., Cocheo, V., Lynge, E., Andersen, A., Nilsson, R., Barlow, L., Pukkala, E., Nordlinder, R., Boffetta, P., Grandjean, P., Heikkil, P., Hürte, L. G., Jakobsson, R., Lundberg, I., Moen, B., Partanen, T., Riise, T., Borowiak, A., De Saeger, E., Schnitzler, K. G., Gravenhorst, G., Jacobi, H. W., Moelders, S., Lammel, G., Busch, G., Beese, F. O., Dentener, F. J., Feichter, J., Fraedrich, K., Roelofs, G. J., Friedrich, R., Reis, S., Voehringer, F., Simpson, D., Moussiopoulos, N., Sahm, P., Tourlou, P. M., Salmons, R., Papameletiou, D., Maqueda, J. M., Suhr, Per B., Bell, W., Paton-Walsh, C., Woods, P. T., Partridge, R. H., Slemr, J., Slemr, F., Schmidbauer, N., Ravishankara, A. R., Jenkin, Michael E., de Leeuw, G., van Eijk, A. M. J., Flossmann, A. I., Wobrock, W., Mestayer, P. G., Tranchant, B., Ljungström, E., Karlsson, R., Larsen, S. E., Roemer, M., Builtjes, P. J. H., Koffi, Brigitte, Koffi, Ernest N’Dri, De Saeger, Emile, Ro-Poulsen, H., Mikkelsen, T. N., Hummelshøj, P., Hovmand, M. F., Simoneit, Bernd R. T., van der Meulen, A., Meyer, Michael B., Berndt, T., Böge, O., Stratmann, F., Cass, Glen R., Harrison, Roy M., Shi, Ji Ping, Hoffmann, T., Warscheid, B., Bandur, R., Marggraf, U., Nigge, W., Kamens, Richard, Jang, Myoseon, Strommen, Mike, Chien, Chao-Jung, Leach, Keri, Ammann, M., Kalberer, M., Arens, F., Lavanchy, V., Gâggeler, H. W., Baltensperger, U., Davies, J. A., Cox, R. A., Alonso, S. García, Pastor, R. Pérez, Argüello, Gustavo A., Willner, Helge, Berndt, T., Böge, O., Bogillo, V. I., Pokrovskiy, V. A., Kuraev, O. V., Gozhyk, P. F., Bolzacchini, E., Bruschi, M., Fantucci, P., Meinardi, S., Orlandi, M., Rindone, B., Bolzacchini, Ezio, Bohn, Birger, Rindone, Bruno, Bruschi, Maurizo, Zetzsch, Cornelius, Brussol, C., Duane, M., Larsen, B., Carlier, P., Kotzias, D., Caracena, A. Baeza, Aznar, A. Miñana, Ferradás, E. González, Christensen, C. S., Skov, H., Hummelshøj, P., Jensen, N. O., Lohse, C., Cocheo, V., Sacco, P., Chatzis, C., Cocheo, V., Sacco, P., Boaretto, C., Quaglio, F., Zaratin, L., Pagani, D., Cocheo, L., Cocheo, Vincenzo, Asnar, Agustin Minana, Baldan, Annerita, Ballesta, Pascual P., Boaretto, Caterina, Caracena, Antonia B., Ferradas, Enrique Gonzalez, Gonzalez-Flesca, Nobert, Goelen, Eddie, Hansen, Asger B., Sacco, Paolo, De Saeger, Emile, Skov, Henrik, Consonni, V., Gramatica, P., Santagostino, A., Galvani, P., Bolzacchini, E., Consonni, Viviana, Gramatica, Paola, Todeschini, Roberto, Dippel, G., Reinhardt, H., Zellner, R., Dämmer, K., Bednarek, G., Breil, M., Zellner, R., Febo, A., Allegrini, I., Giliberti, C., Perrino, C., Fogg, P. G. T., Geiger, H., Barnes, I., Becker, K. H., Maurer, T., Geyskens, F., Bormans, R., Lambrechts, M., Goelen, E., Giese, Martina, Frank, Hartmut, Glasius, M., Hornung, P., Jacobsen, J. K., Klausen, H. S., Klitgaard, K. C., Møller, C. K., Petersen, A. P. F., Petersen, L. S., Wessel, S., Hansen, T. S., Lohse, C., Boaretto, E., Heinemeier, J., Glasius, M., Di Bella, D., Lahaniati, M., Calogirou, A., Jensen, N. R., Hjorth, J., Kotzias, D., Larsen, B. R., Gonzalez-Flesca, N., Cicolella, A., Bates, M., Bastin, E., Gurbanov, M. A., Akhmedly, K. M., Balayev, V. S., Haselmann, K. F., Ketola, R., Laturnus, F., Lauritsen, F. R., Grøn, C., Herrmann, H., Ervens, B., Reese, A., Umschlag, Th., Wicktor, F., Zellner, R., Herrmann, H., Umschlag, Th., Müller, K., Bolzacchini, E., Meinardi, S., Rindone, B., Jenkin, Michael E., Hayman, Garry D., Jensen, N. O., Courtney, M., Hummelshøj, P., Christensen, C. S., Larsen, B. R., Johnson, Matthew S., Hegelund, Flemming, Nelander, Bengt, Kirchner, Frank, Klotz, B., Barnes, Ian, Sørensen, S., Becker, K. H., Etzkorn, T., Platt, U., Wirtz, K., Martín-Reviejo, M., Laturnus, Frank, Martinez, E., Cabañas, B., Aranda, A., Martín, P., Salgado, S., Rodriguez, D., Masclet, P., Jaffrezo, J. L., Hillamo, R., Mellouki, A., Le Calvé, S., Le Bras, G., Moriarty, J., O’Donnell, S., Wenger, J., Sidebottom, H., Mingarrol, M. T. Bomboi, Cosin, S., Pastor, R. Pérez, Alonso, S. García, Sanz, M. J., Bravo, I., Gonzalez, D., Pérez, M. A., Mustafaev, Islam, Mammadova, Saida, Noda, J., Hallquist, M., Langer, S., Ljungström, E., Nohara, K., Kutsuna, S., Ibusuki, T., Oehme, Michael, Kölliker, Stephan, Brombacher, Stephan, Merz, Leo, Pastor, R. Pérez, Alonso, S. García, Cabezas, A. Quejido, Peeters, J., Vereecken, L., El Yazal, J., Pfeffer, Hans-Ulrich, Breuer, Ludger, Platz, J., Nielsen, O. J., Sehested, J., Wallington, T. J., Ball, J. C., Hurley, M. D., Straccia, A. M., Schneider, W. F., Pérez-Casany, M. P., Nebot-Gil, I., Sánchez-Marín, J., Putz, E., Folberth, G., Pfister, G., Weissflog, L., Elansky, N. P., Sørensen, Søren, Barnes, Ian, Becker, K. H., Shao, M., Heiden, A. C., Kley, D., Rockel, P., Wildt, J., Silva, G. V. A., Vasconcelos, M. T., Fernandes, E. O., Santos, A. M. S., Skov, Henrik, Hansen, Asger, Løfstrøm, Per, Lorenzen, Gitte, Stabel, J. R., Wolkoff, P., Pedersen, T., Strom, A. B., Skov, Henrik, Hertel, Ole, Jensen, Finn Palmgren, Hjorth, Jens, Galle, Bosse, Wallin, Svante, Theloke, J., Libuda, H. G., Zabel, F., Touaty, Muriel, Bonsang, Bernard, Ullerstam, M., Langer, S., Ljungström, E., Wenger, John, Bonard, Amélie, Manning, Marcus, Nolan, Sinéad, O’Sullivan, Niamh, Sidebottom, Howard, Wenger, John, Collins, Eoin, Moriarty, Jennie, O’Donnell, Sinéad, Sidebottom, Howard, Wenger, John, Collins, Eoin, Moriarty, Jennie, O’Donnell, Sinéad, Sidebottom, Howard, Wenger, John, Sidebottom, Howard, Chadwick, Paul, O’Leary, Barbara, Treacy, Jack, Wolkoff, Peder, Clausen, Per A., Wilkins, Cornelius K., Hougaard, Karin S., Nielsen, Gunnar D., Zilinskis, Viktors, Jansons, Guntis, Peksens, Aigars, Lazdins, Agris, Arinci, Y. V., Erdöl, N., Ekinci, E., Okutan, H., Manlafalioglu, I., Bakeas, Evangelos B., Siskos, Panayotis A., Viras, Loizos G., Smirnioudi, Vasiliki N., Bottenheim, Jan W., Biesenthal, Thomas, Gong, Wanmin, Makar, Paul, Delmas, Véronique, Menard, Tamara, Tatry, Véronique, Moussafir, Jacques, Thomas, Dominique, Coppalle, Alexis, Ellermann, Thomas, Hertel, Ole, Skov, Henrik, Frohn, Lise, Manscher, Ole H., Friis, Jørgen, Girgzdiene, Rasa, Girgzdys, Aloyzas, Gurevich, N. A., Gårdfeldt, Katarina, Langer, Sarka, Hermans, C., Vandaele, A. C., Carleer, M., Fally, S., Colin, R., Bernath, P. F., Jenouvrier, A., Coquart, B., Mérienne, M. -F., Hertel, Ole, Frohn, Lise, Skov, Henrik, Ellermann, Thomas, Huntrieser, H., Schlager, H., Feigl, C., Kemp, Kåre, Palmgren, Finn, Kiilsholm, Sissi, Rasmussen, Alix, Sørensen, Jens Havskov, Klemm, Otto, Lange, Holger, Larsen, René Wugt, Larsen, Niels Wessel, Nicolaisen, Flemming, Sørensen, Georg Ole, Beukes, Jon Are, Larsen, Poul Bo, Jensen, Steen Solvang, Fenger, Jes, de Leeuw, Gerrit, Kunz, Gerard, Cohen, Leo, Schlünzen, Heinke, Muller, Frank, Schulz, Michael, Tamm, Susanne, Geernaert, Gary, Hertel, Ole, Pedersen, Britta, Geernaert, Lise Lotte Sørensen, Lund, Søren, Vignati, Elisabetta, Jickells, Tim, Spokes, Lucinda, Matei, C., Jinga, O. A., Jinga, D. C., Moliner, R., Braekman-Danheux, C., Fontana, A., Suelves, I., Thieman, T., Vassilev, S., Skov, Henrik, Hertel, Ole, Zlatev, Zahari, Brandt, Jørgen, Bastrup-Birk, Annemarie, Ellermann, Thomas, Frohn, Lise, Vandaele, A. C., Hermans, C., Carleer, M., Tsouli, A., Colin, R., Windsperger, Andreas M., Turi, Kristina, Dworak, Oliver, Zellweger, C., Weingartner, E., Rüttimann, R., Hofer, P., Baltensperger, U., Ziv, A., Iakovleva, E., Palmgren, F., Berkovicz, R., Skov, H., Alastuey, A., Querol, X., Chaves, A., Lopez-Soler, A., Ruiz, C., Andrees, J. M., Allegrini, I., Febo, A., Giusto, M., Angeloni, M., Di Filippo, P., D’Innocenzio, F., Lepore, L., Marconi, A., Arshinov, M. Yu., Belan, B. D., Davydov, D. K., Kovaleskii, V. K., Plotinov, A. P., Pokrovskii, E. V., Sklyadneva, T. K., Tolmachev, G. N., Arshinov, M. Yu., Belan, B. D., Sklyadneva, T. K., Behnke, Wolfgang, Elend, Manfred, Krüger, Ulrich, Zetzsch, Cornelius, Belan, B. D., Arshinov, M. Yu., Davydov, D. K., Kovalevskii, V. K., Plotnikov, A. P., Pokrovskii, E. V., Rasskazchikova, T. M., Sklyadneva, T. K., Tolmachev, G. N., Belan, B. D., Arshinov, M. Yu., Simonenkov, D. V., Tolmachev, G. N., Bilde, Merete, Aker, Pamela M., Börensen, C., Kirchner, U., Scheer, V., Vogt, R., Ellermann, T., Geernaert, L. L. S., Pryor, S. C., Barthelmie, R. J., Feilberg, Anders, Nielsen, Torben, Kamens, Richard M., Freitas, M. C., Marques, A. P., Reis, M. A., Alves, L. C., Ilyinskikh, N. N., Ilyinskikh, I. N., Ilyinskikh, E. N., Johansen, Keld, Stavnsbjerg, Peter, Gabrielsson, Pär, Bak, Flemming, Andersen, Erik, Autrup, Herman, Kamens, Richard, Jang, Myoseon, Strommen, Michael, Leach, Keri, Kirchner, U., Scheer, V., Börensen, C., Vogt, R., Igor, Komov, Svjatoslav, Galiy, Anatoliy, Burlak, Komov, I. L., Istchenko, A. A., Lourenço, M. G., MacTavish, D., Sirois, A., Masclet, Pierre, Jaffrezo, Jean Luc, van der Meulen, A., Milukaite, A., Morkunas, V., Jurgutis, P., Mikelinskiene, A., Nielsen, Torben, Feilberg, Anders, Binderup, Mona Lise, Pineda, M., Palacios, J. M., Garcia, E., Cilleruelo, C., Moliner, R., Popovitcheva, O. B., Trukhin, M. E., Persiantseva, N. M., Buriko, Yu, Starik, A. M., Demirdjian, B., Suzanne, J., Probst, T. U., Rietz, B., Alfassi, Z. B., Pokrovskiy, V. A., Zenobi, R., Bogatyr’ov, V. M., Gun’ko, V. M., Querol, X., Alastuey, A., Lopez-Soler, A., Mantilla, E., Plana, F., Artiño, B., Rauterberg-Wulff, A., Israël, G. W., Rocha, Teresa A. P., Duarte, Armando C., Röhrl, Andreas, Lammel, Gerhard, Spindler, G., Müller, K., Herrmann, H., Strommen, Michael R., Vignati, Elisabetta, de Leeuw, Gerrit, and Berkowicz, Ruwim
- Published
- 1998
- Full Text
- View/download PDF
7. Snow research in Svalbard: current status and knowledge gaps
- Author
-
Gallet, J-C, Björkman, M, Borstad, C, Hodson, A, Jacobi, H-W, Larose, C, Luks, B, Spolaor, A, Urazgildeeva, A, Zdanowicz, C, Institut des Géosciences de l’Environnement (IGE), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Recherche pour le Développement (IRD)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), and Jacobi, Hans-Werner
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,sea-ice ,[SDU.OCEAN] Sciences of the Universe [physics]/Ocean, Atmosphere ,glaciology ,[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology ,ecology ,snow ,cryosphere ,climate ,ComputingMilieux_MISCELLANEOUS ,[SDU.STU.GL] Sciences of the Universe [physics]/Earth Sciences/Glaciology - Abstract
International audience
- Published
- 2019
8. Impact of recent climate change in the Arctic on snow physicalparameters retrieval using SAR data (Svalbard)
- Author
-
Dedieu, J.-P., Negrello, C., Jacobi, H.-W., Baladima, F., Duguay, Y., Bernard, E., Boike, Julia, Gallet, J.-C., Westermann, S., and Wendleder, A.
- Published
- 2019
9. An Overview of Snow Photochemistry: Evidence, Mechanisms and Impacts
- Author
-
Grannas, A. M, Jones, A. E, Dibb, J, Ammann, M, Anastasio, C, Beine, H. J, Bergin, M, Bottenheim, J, Boxe, C. S, Carver, G, Chen, G, Crawford, J. H, Domine, F, Frey, M. M, Guzman, M. I, Heard, D. E, Helmig, D, Hoffmann, M. R, Honrath, R. E, Huey, L. G, Hutterli, M, Jacobi, H.-W, Klan, P, McConnell, J, and Plane, J
- Subjects
Meteorology And Climatology - Abstract
It has been shown that sunlit snow and ice plays an important role in processing atmospheric species. Photochemical production of a variety of chemicals has recently been reported to occur in snow/ice and the release of these photochemically generated species may significantly impact the chemistry of the overlying atmosphere. Nitrogen oxide and oxidant precursor fluxes have been measured in a number of snow covered environments, where in some cases the emissions significantly impact the overlying boundary layer. For example, photochemical ozone production (such as that occurring in polluted mid-latitudes) of 3-4 ppbv/day has been observed at South Pole, due to high OH and NO levels present in a relatively small boundary layer. Field and laboratory experiments have determined that the origin of the observed NOx flux is the photochemistry of nitrate within the snowpack, however some details of the mechanism have not yet been elucidated. A variety of low molecular weight organic compounds have been shown to be emitted from sunlit snowpacks, the source of which has been proposed to be either direct or indirect photo-oxidation of natural organic materials present in the snow. Although myriad studies have observed active processing of species within irradiated snowpacks, the fundamental chemistry occurring remains poorly understood. Here we consider the nature of snow at a fundamental, physical level; photochemical processes within snow and the caveats needed for comparison to atmospheric photochemistry; our current understanding of nitrogen, oxidant, halogen and organic photochemistry within snow; the current limitations faced by the field and implications for the future.
- Published
- 2007
10. Impacts of snowpack emissions on deduced levels of OH and peroxy radicals at Summit, Greenland
- Author
-
Yang, J., Honrath, R.E., Peterson, M.C., Dibb, J.E., Sumner, A.L., Shepson, P.B., Frey, M., Jacobi, H.-W., Swanson, A., and Blake, N.
- Published
- 2002
- Full Text
- View/download PDF
11. Improvement of snow physical parameters retrieval using SAR data in the Arctic (Svalbard)
- Author
-
Dedieu, J. P., Negrello, C., Jacobi, H. W., Duguay, Y., Boike, Julia, Bernard, E., Westermann, S., Gallet, J. C., Wendleder, A., Dedieu, J. P., Negrello, C., Jacobi, H. W., Duguay, Y., Boike, Julia, Bernard, E., Westermann, S., Gallet, J. C., and Wendleder, A.
- Abstract
Arctic snow cover dynamics offer a changing face in terms of temporal duration and water equivalent, due to recent climate change conditions (Callaghan et al., 2011; Lemke & Jacobi, 2011). In this context, innovative methods are helpful to enhance management of the snow-pack resource for climate research, hydrology and human activities. The characteristics of Arctic snow are different from “temperate” snow (i.e. the Alps), in terms of thickness, internal structure, thermal conductivity, and metamorphism. Ground observation often indicates wind slab at the snow surface, internal rounded grains, depth hoar at the bottom, and often internal ice layer or at the interface with ground surface (Dominé et al., 2016). This work is part of the “Precip-A2” project (OSUG, Grenoble-France), focusing on snow and its interaction with the atmosphere, especially in terms of chemistry, radiative processes and precipitation. The the focused area is Ny-Ålesund, Svalbard, Norway (N 78°55’ / E 11° 55’). One subtask of the project is dedicated to X-band radar measurements (ground and spaceborne) to retrieve physical properties of arctic snow. Active radar (SAR) images are used in this project, as they do not suffer of clouds coverage and polar night, unlike optical sensors. Snow mapping at the melting season is well documented, due to the liquid water content at the snow surface (Nagler et al., 2000), dry snow height retrieval is only possible at the moment under the full polarimetric mode of the Radarsat-2 satellite, Canada (Dedieu et al., 2014; 2017).The aims of our specific task is to improve an innovative and recent method to retrieve snow depth from SAR image decomposition (Leinss, 2014), and to validate the output results with a consistent ground network, including a large international partnership (Fr, De, No, It). A set of 10 SAR images was provided by the German Space Agency (DLR) during winter 2017 from the TerraSAR-X sensor (3.1 cm, 9.6 GHz) in dual co-pol HH, VV (2.5 m resolut
- Published
- 2018
12. Peroxyacetyl nitrate (PAN) concentrations in the Antarctic troposphere measured during the photochemical experiment at Neumayer (PEAN'99)
- Author
-
Jacobi, H.-W, Weller, R, Jones, A.E, Anderson, P.S, and Schrems, O
- Published
- 2000
- Full Text
- View/download PDF
13. Laser-spectroscopic laboratory studies of atmospheric aqueous phase free radical chemistry
- Author
-
Herrmann, H., Jacobi, H.-W, Raabe, G., Reese, A., and Zellner, R.
- Published
- 1996
- Full Text
- View/download PDF
14. Black carbon in snow in the upper Himalayan Khumbu Valley, Nepal: observations and modeling of the impact on snow albedo, melting, and radiative forcing
- Author
-
Jacobi, H.-W., primary, Lim, S., additional, Ménégoz, M., additional, Ginot, P., additional, Laj, P., additional, Bonasoni, P., additional, Stocchi, P., additional, Marinoni, A., additional, and Arnaud, Y., additional
- Published
- 2015
- Full Text
- View/download PDF
15. A review of air-ice chemical and physical interactions (AICI): liquids, quasi liquids, and solids in snow
- Author
-
Bartels-Rausch, T., Jacobi, H.-W., Kahan, T., Thomas, J., Thomson, E.S., Abbatt, J., Ammann, M., Blackford, J.R., Bluhm, H., Boxe, C., Domine, F., Frey, M.M., Gladich, I., Guzman, M.I., Heger, D., Huthwelker, Th., Klan, P., Kuhs, W.F., Kuo, M., Maus, S., Moussa, S., McNeill, V.F., Newberg, J.T., Pettersson, J.B.C., Roeselova, M., Sodeau, J., Bartels-Rausch, T., Jacobi, H.-W., Kahan, T., Thomas, J., Thomson, E.S., Abbatt, J., Ammann, M., Blackford, J.R., Bluhm, H., Boxe, C., Domine, F., Frey, M.M., Gladich, I., Guzman, M.I., Heger, D., Huthwelker, Th., Klan, P., Kuhs, W.F., Kuo, M., Maus, S., Moussa, S., McNeill, V.F., Newberg, J.T., Pettersson, J.B.C., Roeselova, M., and Sodeau, J.
- Abstract
Snow in the environment acts as a host to rich chemistry and provides a matrix for physical exchange of contaminants within the ecosystem. The goal of this review is to summarise the current state of knowledge of physical processes and chemical reactivity in surface snow with relevance to polar regions. It focuses on a description of impurities in distinct compartments present in surface snow, such as snow crystals, grain boundaries, crystal surfaces, and liquid parts. It emphasises the microscopic description of the ice surface and its link with the environment. Distinct differences between the disordered air–ice interface, often termed quasi-liquid layer, and a liquid phase are highlighted. The reactivity in these different compartments of surface snow is discussed using many experimental studies, simulations, and selected snow models from the molecular to the macro-scale. Although new experimental techniques have extended our knowledge of the surface properties of ice and their impact on some single reactions and processes, others occurring on, at or within snow grains remain unquantified. The presence of liquid or liquid-like compartments either due to the formation of brine or disorder at surfaces of snow crystals below the freezing point may strongly modify reaction rates. Therefore, future experiments should include a detailed characterisation of the surface properties of the ice matrices. A further point that remains largely unresolved is the distribution of impurities between the different domains of the condensed phase inside the snowpack, i.e. in the bulk solid, in liquid at the surface or trapped in confined pockets within or between grains, or at the surface. While surface-sensitive laboratory techniques may in the future help to resolve this point for equilibrium conditions, additional uncertainty for the environmental snowpack may be caused by the highly dynamic nature of the snowpack due to the fast metamorphism occurring under certain environmental
- Published
- 2014
16. Snow physics as relevant to snow photochemistry
- Author
-
Domine, F., Albert, M., Huthwelker, T., Jacobi, H. -W, Kokhanovsky, A. A., Lehning, M., Picard, G., William Simpson, Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), ERDC Cold Regions Research and Engineering Laboratory (CRREL), USACE Engineer Research and Development Center (ERDC), Laboratory for Radio- and Environmental Chemistry [Villigen], Paul Scherrer Institute (PSI), Department of Bentho-pelagic processes, Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), Institute of Environmental Physics [Bremen] (IUP), University of Bremen, WSL, Swiss Federal Institute for Snow and Avalanche Research, Department of Chemistry and Geophysical Institute, University of Alaska [Fairbanks] (UAF), WSL Eidg. Swiss Federal Institute for Snow and Avalanche Research, SLF Davos, Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS), and EGU, Publication
- Subjects
lcsh:Chemistry ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,lcsh:QD1-999 ,010504 meteorology & atmospheric sciences ,[SDU.OCEAN] Sciences of the Universe [physics]/Ocean, Atmosphere ,13. Climate action ,0211 other engineering and technologies ,02 engineering and technology ,01 natural sciences ,lcsh:Physics ,lcsh:QC1-999 ,021101 geological & geomatics engineering ,0105 earth and related environmental sciences - Abstract
Snow on the ground is a complex multiphase photochemical reactor that dramatically modifies the chemical composition of the overlying atmosphere. A quantitative description of the emissions of reactive gases by snow requires the knowledge of snow physical properties. This overview details our current understanding of how those physical properties relevant to snow photochemistry vary during snow metamorphism. Properties discussed are density, specific surface area, optical properties, thermal conductivity, permeability and gas diffusivity. Inasmuch as possible, equations to parameterize these properties as a function of climatic variables are proposed, based on field measurements, laboratory experiments and theory. The potential of remote sensing methods to obtain information on some snow physical variables such as grain size, liquid water content and snow depth are discussed. The possibilities for and difficulties of building a snow photochemistry model by adapting current snow physics models are explored. Elaborate snow physics models already exist, and including variables of particular interest to snow photochemistry such as light fluxes and specific surface area appears possible. On the other hand, understanding the nature and location of reactive molecules in snow seems to be the greatest difficulty modelers will have to face for lack of experimental data, and progress on this aspect will require the detailed study of natural snow samples.
- Published
- 2007
17. Supplementary material to "Black carbon in snow in the upper Himalayan Khumbu Valley, Nepal: observations and modeling of the impact on snow albedo, melting, and radiative forcing"
- Author
-
Jacobi, H.-W., primary, Lim, S., additional, Ménégoz, M., additional, Ginot, P., additional, Laj, P., additional, Bonasoni, P., additional, Stocchi, P., additional, Marinoni, A., additional, and Arnaud, Y., additional
- Published
- 2014
- Full Text
- View/download PDF
18. Black carbon in snow in the upper Himalayan Khumbu Valley, Nepal: observations and modeling of the impact on snow albedo, melting, and radiative forcing
- Author
-
Jacobi, H.-W., primary, Lim, S., additional, Ménégoz, M., additional, Ginot, P., additional, Laj, P., additional, Bonasoni, P., additional, Stocchi, P., additional, Marinoni, A., additional, and Arnaud, Y., additional
- Published
- 2014
- Full Text
- View/download PDF
19. Snow cover sensitivity to black carbon deposition in the Himalayas: from atmospheric and ice core measurements to regional climate simulations
- Author
-
Ménégoz, M., primary, Krinner, G., additional, Balkanski, Y., additional, Boucher, O., additional, Cozic, A., additional, Lim, S., additional, Ginot, P., additional, Laj, P., additional, Gallée, H., additional, Wagnon, P., additional, Marinoni, A., additional, and Jacobi, H. W., additional
- Published
- 2014
- Full Text
- View/download PDF
20. A review of air–ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow
- Author
-
Bartels-Rausch, T., primary, Jacobi, H.-W., additional, Kahan, T. F., additional, Thomas, J. L., additional, Thomson, E. S., additional, Abbatt, J. P. D., additional, Ammann, M., additional, Blackford, J. R., additional, Bluhm, H., additional, Boxe, C., additional, Domine, F., additional, Frey, M. M., additional, Gladich, I., additional, Guzmán, M. I., additional, Heger, D., additional, Huthwelker, Th., additional, Klán, P., additional, Kuhs, W. F., additional, Kuo, M. H., additional, Maus, S., additional, Moussa, S. G., additional, McNeill, V. F., additional, Newberg, J. T., additional, Pettersson, J. B. C., additional, Roeselová, M., additional, and Sodeau, J. R., additional
- Published
- 2014
- Full Text
- View/download PDF
21. Observations in the Ocean
- Author
-
Lemke, P., Jacobi, H.-W., Rudels, Bert, Anderson, Leif, Eriksson, Patrick, Fahrbach, Eberhard, Jakobsson, Martin, Jones, E. Peter, Melling, Humfrey, Prinsenberg, Simon, Schauer, Ursula, Yao, Tom, Lemke, P., Jacobi, H.-W., Rudels, Bert, Anderson, Leif, Eriksson, Patrick, Fahrbach, Eberhard, Jakobsson, Martin, Jones, E. Peter, Melling, Humfrey, Prinsenberg, Simon, Schauer, Ursula, and Yao, Tom
- Abstract
The chapter begins with an overview of the exploratory work done in the Arctic Ocean from the mid nineteenth century to 1980, when its main features became known and a systematic study of the Arctic Ocean evolved. The following section concentrates on the decade between 1980 and 1990, when the first scientific icebreaker expeditions penetrated into the Arctic Ocean, when large international programme were launched, and the understanding of the circulation and of the processes active in the Arctic Ocean deepened. The main third section deals with the studies and the advances made during the ACSYS decade. The section has three headings: the circulation and the transformation of water masses; the changes that have been observed in the Arctic Ocean, especially during the last decades; and the transports between the Arctic Ocean and the surrounding world ocean through the different passages, Fram Strait, Barents Sea, Bering Strait and the Canadian Arctic Archipelago. In section four, the Arctic Ocean is considered as a part of the Arctic Mediterranean Sea, and the impacts of possible climatic changes on the circulation in the Arctic Mediterranean and on the exchanges with the world ocean are discussed.
- Published
- 2012
22. Snow cover sensitivity to black carbon deposition in the Himalaya: from atmospheric and ice core measurements to regional climate simulations
- Author
-
Ménégoz, M., primary, Krinner, G., additional, Balkanski, Y., additional, Boucher, O., additional, Cozic, A., additional, Lim, S., additional, Ginot, P., additional, Laj, P., additional, Jacobi, H. W., additional, Gallée, H., additional, and Marinoni, A., additional
- Published
- 2013
- Full Text
- View/download PDF
23. Precipitation and snow cover in the Himalaya: from reanalysis to regional climate simulations
- Author
-
Ménégoz, M., primary, Gallée, H., additional, and Jacobi, H. W., additional
- Published
- 2013
- Full Text
- View/download PDF
24. An overview of snow photochemistry: evidence, mechanisms and impacts
- Author
-
Grannas, A. M., Jones, A. E., Dibb, J., Ammann, M., Anastasio, C., Beine, H. J., Bergin, M., Bottenheim, J., Boxe, C. S., Carver, G., Chen, G., Crawford, J. H., Dominé, F., Frey, M. M., Guzmán, M. I., Heard, D. E., Helmig, D., Hoffmann, M. R., Honrath, R. E., Huey, L. G., Hutterli, M., Jacobi, H. W., Klán, P., Lefer, B., McConnell, J., Plane, J., Sander, R., Savarino, J., Shepson, P. B., Simpson, W. R., Sodeau, J. R., von Glasow, R., Weller, R., Wolff, E. W., Zhu, T., Grannas, A. M., Jones, A. E., Dibb, J., Ammann, M., Anastasio, C., Beine, H. J., Bergin, M., Bottenheim, J., Boxe, C. S., Carver, G., Chen, G., Crawford, J. H., Dominé, F., Frey, M. M., Guzmán, M. I., Heard, D. E., Helmig, D., Hoffmann, M. R., Honrath, R. E., Huey, L. G., Hutterli, M., Jacobi, H. W., Klán, P., Lefer, B., McConnell, J., Plane, J., Sander, R., Savarino, J., Shepson, P. B., Simpson, W. R., Sodeau, J. R., von Glasow, R., Weller, R., Wolff, E. W., and Zhu, T.
- Abstract
It has been shown that sunlit snow and ice plays an important role in processing atmospheric species. Photochemical production of a variety of chemicals has recently been reported to occur in snow/ice and the release of these photochemically generated species may significantly impact the chemistry of the overlying atmosphere. Nitrogen oxide and oxidant precursor fluxes have been measured in a number of snow covered environments, where in some cases the emissions significantly impact the overlying boundary layer. For example, photochemical ozone production (such as that occurring in polluted mid-latitudes) of 3–4 ppbv/day has been observed at South Pole, due to high OH and NO levels present in a relatively shallow boundary layer. Field and laboratory experiments have determined that the origin of the observed NOx flux is the photochemistry of nitrate within the snowpack, however some details of the mechanism have not yet been elucidated. A variety of low molecular weight organic compounds have been shown to be emitted from sunlit snowpacks, the source of which has been proposed to be either direct or indirect photo-oxidation of natural organic materials present in the snow. Although myriad studies have observed active processing of species within irradiated snowpacks, the fundamental chemistry occurring remains poorly understood. Here we consider the nature of snow at a fundamental, physical level; photochemical processes within snow and the caveats needed for comparison to atmospheric photochemistry; our current understanding of nitrogen, oxidant, halogen and organic photochemistry within snow; the current limitations faced by the field and implications for the future.
- Published
- 2007
25. Halogens and their role in polar boundary-layer ozone depletion
- Author
-
Simpson, W.R., Von glasow, R., Riedel, K., Anderson, P.S., Ariya, P., Bottenheim, J.W., Burrows, J., Carpenter, L., Friess, U., Goodsite, M.E., Heard, D.E., Hutterli, M.A., Jacobi, H.-W., Kaleschke, L., Neff, W., Plane, J., Platt, U., Richter, A., Roscoe, H.K., Sander, R., Shepson, P.B., Sodeau, J., Steffen, A., Wagner, T., Wolff, E.W., Simpson, W.R., Von glasow, R., Riedel, K., Anderson, P.S., Ariya, P., Bottenheim, J.W., Burrows, J., Carpenter, L., Friess, U., Goodsite, M.E., Heard, D.E., Hutterli, M.A., Jacobi, H.-W., Kaleschke, L., Neff, W., Plane, J., Platt, U., Richter, A., Roscoe, H.K., Sander, R., Shepson, P.B., Sodeau, J., Steffen, A., Wagner, T., and Wolff, E.W.
- Abstract
During springtime in the polar regions, unique photochemistry converts inert halide salt ions (e.g. Br-) into reactive halogen species (e.g. Br atoms and BrO) that deplete ozone in the boundary layer to near zero levels. Since their discovery in the late 1980s, research on ozone depletion events (ODEs) has made great advances; however many key processes remain poorly understood. In this article we review the history, chemistry, dependence on environmental conditions, and impacts of ODEs. This research has shown the central role of bromine photochemistry, but how salts are transported from the ocean and are oxidized to become reactive halogen species in the air is still not fully understood. Halogens other than bromine (chlorine and iodine) are also activated through incompletely understood mechanisms that are probably coupled to bromine chemistry. The main consequence of halogen activation is chemical destruction of ozone, which removes the primary precursor of atmospheric oxidation, and generation of reactive halogen atoms/oxides that become the primary oxidizing species. The different reactivity of halogens as compared to OH and ozone has broad impacts on atmospheric chemistry, including near complete removal and deposition of mercury, alteration of oxidation fates for organic gases, and export of bromine into the free troposphere. Recent changes in the climate of the Arctic and state of the Arctic sea ice cover are likely to have strong effects on halogen activation and ODEs; however, more research is needed to make meaningful predictions of these changes.
- Published
- 2007
26. Relationship between snow microstructure and physical and chemical processes
- Author
-
Bartels-Rausch, T., primary, Jacobi, H.-W., additional, Kahan, T. F., additional, Thomas, J. L., additional, Thomson, E. S., additional, Abbatt, J. P. D., additional, Ammann, M., additional, Blackford, J. R., additional, Bluhm, H., additional, Boxe, C., additional, Domine, F., additional, Frey, M. M., additional, Gladich, I., additional, Guzmán, M. I., additional, Heger, D., additional, Huthwelker, Th., additional, Klán, P., additional, Kuhs, W. F., additional, Kuo, M. H., additional, Maus, S., additional, Moussa, S. G., additional, McNeill, V. F., additional, Newberg, J. T., additional, Pettersson, J. B. C., additional, Roeselová, M., additional, and Sodeau, J. R., additional
- Published
- 2012
- Full Text
- View/download PDF
27. Chemical composition of the snowpack during the OASIS spring campaign 2009 at Barrow, Alaska
- Author
-
Jacobi, H. W., primary, Voisin, D., additional, Jaffrezo, J. L., additional, Cozic, J., additional, and Douglas, T. A., additional
- Published
- 2012
- Full Text
- View/download PDF
28. Hydroxyl radical and NOxproduction rates, black carbon concentrations and light-absorbing impurities in snow from field measurements of light penetration and nadir reflectivity of onshore and offshore coastal Alaskan snow
- Author
-
France, J. L., primary, Reay, H. J., additional, King, M. D., additional, Voisin, D., additional, Jacobi, H. W., additional, Domine, F., additional, Beine, H., additional, Anastasio, C., additional, MacArthur, A., additional, and Lee-Taylor, J., additional
- Published
- 2012
- Full Text
- View/download PDF
29. Snow: a reliable indicator for global warming in the future?
- Author
-
Jacobi, H-W, primary
- Published
- 2012
- Full Text
- View/download PDF
30. An isotopic view on the connection between photolytic emissions of NOx from the Arctic snowpack and its oxidation by reactive halogens
- Author
-
Morin, S., primary, Erbland, J., additional, Savarino, J., additional, Domine, F., additional, Bock, J., additional, Friess, U., additional, Jacobi, H.‐W., additional, Sihler, H., additional, and Martins, J. M. F., additional
- Published
- 2012
- Full Text
- View/download PDF
31. Frost flowers on sea ice as a source of sea salt and their influence on tropospheric halogen chemistry
- Author
-
Kaleschke, L., Richter, A., Burrows, J., Afe, O., Heygster, G., Notholt, J., Rankin, A.M., Roscoe, H.K., Hollwedel, J., Wagner, T., Jacobi, H.-W., Kaleschke, L., Richter, A., Burrows, J., Afe, O., Heygster, G., Notholt, J., Rankin, A.M., Roscoe, H.K., Hollwedel, J., Wagner, T., and Jacobi, H.-W.
- Abstract
Frost flowers grow on newly-formed sea ice from a saturated water vapour layer. They provide a large effective surface area and a reservoir of sea salt ions in the liquid phase with triple the ion concentration of sea water. Recently, frost flowers have been recognised as the dominant source of sea salt aerosol in the Antarctic, and it has been speculated that they could be involved in processes causing severe tropospheric ozone depletion events during the polar sunrise. These events can be explained by heterogeneous autocatalytic reactions taking place on salt-laden ice surfaces which exponentially increase the reactive gas phase bromine ("bromine explosion"). We analyzed tropospheric bromine monoxide (BrO) and the sea ice coverage both measured from satellite sensors. Our model based interpretation shows that young ice regions potentially covered with frost flowers seem to be the source of bromine found in bromine explosion events.
- Published
- 2004
32. Circumpolar measurements of speciated mercury, ozone and carbon monoxide in the boundary layer of the Arctic Ocean
- Author
-
Sommar, J., primary, Andersson, M. E., additional, and Jacobi, H.-W., additional
- Published
- 2010
- Full Text
- View/download PDF
33. Simulation of the specific surface area of snow using a one-dimensional physical snowpack model: implementation and evaluation for subarctic snow in Alaska
- Author
-
Jacobi, H.-W., primary, Domine, F., additional, Simpson, W. R., additional, Douglas, T. A., additional, and Sturm, M., additional
- Published
- 2010
- Full Text
- View/download PDF
34. Seasonality of reactive nitrogen oxides (NOy) at Neumayer Station, Antarctica
- Author
-
Weller, R., Jones, A.E., Wille, A., Jacobi, H.-W., McIntyre, H.P., Sturges, W.T., Huke, M., Wagenbach, D., Weller, R., Jones, A.E., Wille, A., Jacobi, H.-W., McIntyre, H.P., Sturges, W.T., Huke, M., and Wagenbach, D.
- Abstract
NO, NOy (total reactive nitrogen oxides), gaseous HNO3, and particulate nitrate (p-NO3−) were measured at Neumayer Station from February 1999 to January 2000. In addition, during February 1999, the NOy component species peroxyacetyl nitrate (PAN) and methyl, ethyl, i-propyl, and n-propyl nitrates were determined. We found a mean NOy mixing ratio of 46 ± 29 pptv, with significantly higher values between February and end of May (58 ± 35 pptv). Between February and November, the (HNO3 + p-NO3−)/NOy ratio was extremely low (around 0.22) and in contrast to NOy the seasonality of p-NO3− and HNO3 showed a distinct maximum in November and December, leading to a (HNO3 + p-NO3−)/NOy ratio of 0.66. Trajectory analyses and radioisotope measurements (7Be, 10Be, 210Pb, and 222Rn) indicated that the upper troposphere or stratosphere was the main source region of the observed NOy with a negligible contribution of ground-level sources at northward continents. Frequent maxima of NOy mixing ratios up to 100 pptv are generally associated with air mass transport from the free troposphere of continental Antarctica, while air masses with the lowest NOy mixing ratios were typically advected from the marine boundary layer.
- Published
- 2002
35. Circumpolar measurements of speciated mercury, ozone and carbon monoxide in the boundary layer of the Arctic Ocean
- Author
-
Sommar, J., primary, Andersson, M. E., additional, and Jacobi, H.-W., additional
- Published
- 2009
- Full Text
- View/download PDF
36. Simulation of the specific surface area of snow using a one-dimensional physical snowpack model: implementation and evaluation for subarctic snow in Alaska
- Author
-
Jacobi, H. W., primary, Domine, F., additional, Simpson, W. R., additional, Douglas, T. A., additional, and Sturm, M., additional
- Published
- 2009
- Full Text
- View/download PDF
37. Comprehensive isotopic composition of atmospheric nitrate in the Atlantic Ocean boundary layer from 65°S to 79°N
- Author
-
Morin, S., primary, Savarino, J., additional, Frey, M. M., additional, Domine, F., additional, Jacobi, H.‐W., additional, Kaleschke, L., additional, and Martins, J. M. F., additional
- Published
- 2009
- Full Text
- View/download PDF
38. Measurements of NOx emissions from the Antarctic snowpack
- Author
-
Jones, A.E., Weller, R., Anderson, P.S., Jacobi, H.-W., Wolff, E.W., Schrems, O., Miller, H., Jones, A.E., Weller, R., Anderson, P.S., Jacobi, H.-W., Wolff, E.W., Schrems, O., and Miller, H.
- Abstract
It has been shown that NOx is produced photochemically within the snowpack of polar regions. If emitted to the atmosphere, this process could be a major source of NOx in remote snowcovered regions. We report here on measurements made at the German Antarctic station, Neumayer, during austral summer 1999, aimed at detecting and quantifying emissions of NOx from the surface snow. Gradients of NOx were measured, and fluxes calculated using local meteorology measurements. On the 2 days of flux measurements, the derived fluxes showed continual release from the snow surface, varying between similar to0 and 3x10(8) molecs/cm(2)/s. When not subject to turbulence, the variation was coincident with the uv diurnal cycle, suggesting rapid release once photochemically produced. Scaling the diurnal average of Feb. 7th (1.3x10(8) molecs/cm(2)/s) suggests an annual emission over Antarctica of the order 0.0076TgN.
- Published
- 2001
39. Snow physics as relevant to snow photochemistry
- Author
-
Domine, F., primary, Albert, M., additional, Huthwelker, T., additional, Jacobi, H.-W., additional, Kokhanovsky, A. A., additional, Lehning, M., additional, Picard, G., additional, and Simpson, W. R., additional
- Published
- 2008
- Full Text
- View/download PDF
40. Speciation and rate of photochemical NO and NO2 production in Antarctic snow
- Author
-
Jones, A.E., Weller, R., Wolff, E.W., Jacobi, H. ‐W., Jones, A.E., Weller, R., Wolff, E.W., and Jacobi, H. ‐W.
- Abstract
Measurements were made of NO and NO2, in controlled experiments to investigate their production from snow. Throughout a diurnal cycle, measurements were made of ambient air and air from inside a snowblock. Enhanced concentrations of NO and NO2 (up to 15 pptv and 32 pptv respectively) were measured inside the snowblock. The production rate inside the block varied with intensity of incident radiation, and reached a maximum of 1.1×106 molecs/cm³/s for NO and 2.1 × 106 molecs/cm³/s for NO2. A second experiment, in which the snowblock was alternately exposed to sunlight and then shaded, confirmed that the diurnal production was driven by photochemistry rather than some other diurnally varying factor. Concentrations of nitrate in the snowblock did not change as a result of 50 hours of experiments, confirming that if nitrate is the source reservoir, it can not be rapidly depleted. Snowpack production may contribute significantly to NOx concentrations in the Antarctic lower troposphere.
- Published
- 2000
41. Peroxyacetyl nitrate (PAN) concentrations in the Antarctic troposphere measured during the photochemical experiment at Neumayer (PEAN'99)
- Author
-
Jacobi, H.-W., Weller, R., Jones, A.E., Anderson, P.S., Schrems, O., Jacobi, H.-W., Weller, R., Jones, A.E., Anderson, P.S., and Schrems, O.
- Abstract
Because investigations of PAN at higher southern latitudes are very scarce, we measured surface PAN concentrations for the first time in Antarctica. During the Photochemical Experiment at Neumayer (PEAN'99) campaign mean surface PAN mixing ratios of 13 +/- 7 pptv and maximum values of 48 pptv were found. When these PAN mixing ratios were compared to the sum of NOx and inorganic nitrate they were found to be equal or higher. Low ambient air temperatures and low PAN concentrations caused a slow homogeneous PAN decomposition rate of approximately 5 x 10(-2) pptv h(-1) These slow decay rates were not sufficient to firmly establish the simultaneously observed NOx concentrations. In addition, low concentration ratios of [HNO3]/[NOx] imply that the photochemical production of NOx within the snow pack can influence surface NOx mixing ratios in Antarctica. Alternate measurements of PAN mixing ratios at two different heights above the snow surface were performed to derive fluxes between the lower troposphere and the underlying snow pack using calculated friction velocities. Most of the concentration differences were below the precision of the measurements. Therefore, only an upper limit for the PAN flux of +/- 1x10(13) molecules m(-2) s(-1) without a predominant direction can be estimated. However, PAN fluxes below this limit can still influence both the transfer of nitrogen compounds between atmosphere and ice, and the PAN budget in higher southern latitudes. (C) 2000 Elsevier Science Ltd. All rights reserved.
- Published
- 2000
42. An overview of snow photochemistry: evidence, mechanisms and impacts
- Author
-
Grannas, A. M., primary, Jones, A. E., additional, Dibb, J., additional, Ammann, M., additional, Anastasio, C., additional, Beine, H. J., additional, Bergin, M., additional, Bottenheim, J., additional, Boxe, C. S., additional, Carver, G., additional, Chen, G., additional, Crawford, J. H., additional, Dominé, F., additional, Frey, M. M., additional, Guzmán, M. I., additional, Heard, D. E., additional, Helmig, D., additional, Hoffmann, M. R., additional, Honrath, R. E., additional, Huey, L. G., additional, Hutterli, M., additional, Jacobi, H. W., additional, Klán, P., additional, Lefer, B., additional, McConnell, J., additional, Plane, J., additional, Sander, R., additional, Savarino, J., additional, Shepson, P. B., additional, Simpson, W. R., additional, Sodeau, J. R., additional, von Glasow, R., additional, Weller, R., additional, Wolff, E. W., additional, and Zhu, T., additional
- Published
- 2007
- Full Text
- View/download PDF
43. Halogens and their role in polar boundary-layer ozone depletion
- Author
-
Simpson, W. R., primary, von Glasow, R., additional, Riedel, K., additional, Anderson, P., additional, Ariya, P., additional, Bottenheim, J., additional, Burrows, J., additional, Carpenter, L. J., additional, Frieß, U., additional, Goodsite, M. E., additional, Heard, D., additional, Hutterli, M., additional, Jacobi, H.-W., additional, Kaleschke, L., additional, Neff, B., additional, Plane, J., additional, Platt, U., additional, Richter, A., additional, Roscoe, H., additional, Sander, R., additional, Shepson, P., additional, Sodeau, J., additional, Steffen, A., additional, Wagner, T., additional, and Wolff, E., additional
- Published
- 2007
- Full Text
- View/download PDF
44. Snow physics as relevant to snow photochemistry
- Author
-
Domine, F., primary, Albert, M., additional, Huthwelker, T., additional, Jacobi, H.-W., additional, Kokhanovsky, A. A., additional, Lehning, M., additional, Picard, G., additional, and Simpson, W. R., additional
- Published
- 2007
- Full Text
- View/download PDF
45. Supplementary material to "Halogens and their role in polar boundary-layer ozone depletion"
- Author
-
Simpson, W. R., primary, von Glasow, R., additional, Riedel, K., additional, Anderson, P., additional, Ariya, P., additional, Bottenheim, J., additional, Burrows, J., additional, Carpenter, L., additional, Frieß, U., additional, Goodsite, M. E., additional, Heard, D., additional, Hutterli, M., additional, Jacobi, H.-W., additional, Kaleschke, L., additional, Neff, B., additional, Plane, J., additional, Platt, U., additional, Richter, A., additional, Roscoe, H., additional, Sander, R., additional, Shepson, P., additional, Sodeau, J., additional, Steffen, A., additional, Wagner, T., additional, and Wolff, E., additional
- Published
- 2007
- Full Text
- View/download PDF
46. Seasonality of reactive nitrogen oxides (NOy) at Neumayer Station, Antarctica
- Author
-
Weller, R., primary, Jones, A. E., additional, Wille, A., additional, Jacobi, H.-W., additional, McIntyre, H. P., additional, Sturges, W. T., additional, Huke, M., additional, and Wagenbach, D., additional
- Published
- 2002
- Full Text
- View/download PDF
47. Measurements of NOx emissions from the Antarctic snowpack
- Author
-
Jones, A. E., primary, Weller, R., additional, Anderson, P. S., additional, Jacobi, H.‐W., additional, Wolff, E. W., additional, Schrems, O., additional, and Miller, H., additional
- Published
- 2001
- Full Text
- View/download PDF
48. Speciation and rate of photochemical NO and NO2 production in Antarctic snow
- Author
-
Jones, A. E., primary, Weller, R., additional, Wolff, E. W., additional, and Jacobi, H. ‐W., additional
- Published
- 2000
- Full Text
- View/download PDF
49. Latitudinal distribution of peroxyacetyl nitrate (PAN) over the Atlantic Ocean
- Author
-
Jacobi, H.-W., primary, Weller, R., additional, Bluszcz, T., additional, and Schrems, O., additional
- Published
- 1999
- Full Text
- View/download PDF
50. A laser flash photolysis kinetic study of reactions of the Cl2? radical anion with oxygenated hydrocarbons in aqueous solution
- Author
-
Jacobi, H.-W., primary, Wicktor, F., additional, Herrmann, H., additional, and Zellner, R., additional
- Published
- 1999
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.