1. A practical guide to adopting Bayesian analyses in clinical research
- Author
-
Lauren B. Gunn-Sandell, Edward J. Bedrick, Jacob L. Hutchins, Aaron A. Berg, Alexander M. Kaizer, and Nichole E. Carlson
- Subjects
Tutorial ,clinical trials ,SAS ,STATA ,R statistical software ,Medicine - Abstract
Abstract Background: Bayesian statistical approaches are extensively used in new statistical methods but have not been adopted at the same rate in clinical and translational (C&T) research. The goal of this paper is to accelerate the transition of new methods into practice by improving the C&T researcher’s ability to gain confidence in interpreting and implementing Bayesian analyses. Methods: We developed a Bayesian data analysis plan and implemented that plan for a two-arm clinical trial comparing the effectiveness of a new opioid in reducing time to discharge from the post-operative anesthesia unit and nerve block usage in surgery. Through this application, we offer a brief tutorial on Bayesian methods and exhibit how to apply four Bayesian statistical packages from STATA, SAS, and RStan to conduct linear and logistic regression analyses in clinical research. Results: The analysis results in our application were robust to statistical package and consistent across a wide range of prior distributions. STATA was the most approachable package for linear regression but was more limited in the models that could be fitted and easily summarized. SAS and R offered more straightforward documentation and data management for the posteriors. They also offered direct programming of the likelihood making them more easily extendable to complex problems. Conclusion: Bayesian analysis is now accessible to a broad range of data analysts and should be considered in more C&T research analyses. This will allow C&T research teams the ability to adopt and interpret Bayesian methodology in more complex problems where Bayesian approaches are often needed.
- Published
- 2024
- Full Text
- View/download PDF