1. BMAL1 modulates senescence programming via AP-1.
- Author
-
Jachim SK, Zhong J, Ordog T, Lee JH, Bhagwate AV, Nagaraj NK, Westendorf JJ, Passos JF, Matveyenko AV, and LeBrasseur NK
- Subjects
- Transcription Factor AP-1 genetics, Gene Expression Regulation, Cellular Senescence genetics, Circadian Rhythm, ARNTL Transcription Factors genetics, ARNTL Transcription Factors metabolism, Circadian Clocks genetics
- Abstract
Cellular senescence and circadian dysregulation are biological hallmarks of aging. Whether they are coordinately regulated has not been thoroughly studied. We hypothesize that BMAL1, a pioneer transcription factor and master regulator of the molecular circadian clock, plays a role in the senescence program. Here, we demonstrate BMAL1 is significantly upregulated in senescent cells and has altered rhythmicity compared to non-senescent cells. Through BMAL1-ChIP-seq, we show that BMAL1 is uniquely localized to genomic motifs associated with AP-1 in senescent cells. Integration of BMAL1-ChIP-seq data with RNA-seq data revealed that BMAL1 presence at AP-1 motifs is associated with active transcription. Finally, we showed that BMAL1 contributes to AP-1 transcriptional control of key features of the senescence program, including altered regulation of cell survival pathways, and confers resistance to drug-induced apoptosis. Overall, these results highlight a previously unappreciated role of the core circadian clock component BMAL1 on the molecular phenotype of senescent cells.
- Published
- 2023
- Full Text
- View/download PDF