72 results on '"J. Pety"'
Search Results
2. Sub-kiloparsec empirical relations and excitation conditions of HCN and HCO+ J = 3–2 in nearby star-forming galaxies
- Author
-
A. García-Rodríguez, A. Usero, A. K. Leroy, F. Bigiel, M. J. Jiménez-Donaire, D. Liu, M. Querejeta, T. Saito, E. Schinnerer, A. Barnes, F. Belfiore, I. Bešlić, Y. Cao, M. Chevance, D. A. Dale, J. S. den Brok, C. Eibensteiner, S. García-Burillo, S. C. O. Glover, R. S. Klessen, J. Pety, J. Puschnig, E. Rosolowsky, K. Sandstrom, M. C. Sormani, Y.-H. Teng, and T. G. Williams
- Subjects
Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
We present new HCN and HCO$^+$ ($J$=3-2) images of the nearby star-forming galaxies (SFGs) NGC 3351, NGC 3627, and NGC 4321. The observations, obtained with the Morita ALMA Compact Array, have a spatial resolution of $\sim$290-440 pc and resolve the inner $R_\textrm{gal} \lesssim$ 0.6-1 kpc of the targets, as well as the southern bar end of NGC 3627. We complement this data set with publicly available images of lower excitation lines of HCN, HCO$^+$, and CO and analyse the behaviour of a representative set of line ratios: HCN(3-2)/HCN(1-0), HCN(3-2)/HCO$^+$(3-2), HCN(1-0)/CO(2-1), and HCN(3-2)/CO(2-1). Most of these ratios peak at the galaxy centres and decrease outwards. We compare the HCN and HCO$^+$ observations with a grid of one-phase, non-local thermodynamic equilibrium (non-LTE) radiative transfer models and find them compatible with models that predict subthermally excited and optically thick lines. We study the systematic variations of the line ratios across the targets as a function of the stellar surface density ($\Sigma_\textrm{star}$), the intensity-weighted CO(2-1) ($\langle I_\text{CO}\rangle$), and the star formation rate surface density ($\Sigma_\text{SFR}$). We find no apparent correlation with $\Sigma_\text{SFR}$, but positive correlations with the other two parameters, which are stronger in the case of $\langle I_\text{CO}\rangle$. The HCN/CO-$\langle I_\text{CO}\rangle$ relations show $\lesssim$0.3 dex galaxy-to-galaxy offsets, with HCN(3-2)/CO(2-1)-$\langle I_\text{CO}\rangle$ being $\sim$2 times steeper than HCN(1-0)/CO(2-1). In contrast, the HCN(3-2)/HCN(1-0)-$\langle I_\text{CO}\rangle$ relation exhibits a tighter alignment between galaxies. We conclude that the overall behaviour of the line ratios cannot be ascribed to variations in a single excitation parameter (e.g. density or temperature)., Comment: Accepted for publication in A&A. 14 pages, 8 figures
- Published
- 2023
- Full Text
- View/download PDF
3. Erratum: 'Mapping Metallicity Variations across Nearby Galaxy Disks' (2019, ApJ, 887, 80)
- Author
-
Andreas Schruba, K. Kreckel, Takashi Saito, Patricia Sanchez-Blazquez, E. Emsellem, I-Ting Ho, F. Santoro, Frank Bigiel, M. Chevance, Brent Groves, Sharon E. Meidt, J. Pety, Karin Sandstrom, Erik Rosolowsky, G. Blanc, K. Grasha, Eva Schinnerer, Christopher M Faesi, Enrico Congiu, S. C. O. Glover, R. McElroy, Philipp Lang, J. M. D. Kruijssen, Adam K. Leroy, Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)
- Subjects
Physics ,[PHYS]Physics [physics] ,Space and Planetary Science ,Metallicity ,Astronomy and Astrophysics ,Astrophysics ,Table (information) ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Galaxy ,ComputingMilieux_MISCELLANEOUS - Abstract
We have noticed an error in the radial metallicity gradient fits provided in Table 3 (Appendix C) of the published article. The columns that list the metallicity gradients have units of dex arcmin-1, rather than the noted dex kpc-1. In the following we provide a corrected version of the table. All figures in the published article are shown in units of R25, and are unchanged from the published version. The results and conclusions of the paper are not affected by this error.
- Published
- 2021
- Full Text
- View/download PDF
4. The Organization of Cloud-scale Gas Density Structure: High-resolution CO versus 3.6 μm Brightness Contrasts in Nearby Galaxies
- Author
-
Frank Bigiel, Brent Groves, Toshiki Saito, M. Querejeta, Annie Hughes, Christopher M Faesi, S. C. O. Glover, Ashley T. Barnes, Yixian Cao, M. Chevance, Daizhong Liu, Jonathan D. Henshaw, Eva Schinnerer, C. N. Herrera, Eric Emsellem, Guillermo A. Blanc, Andreas Schruba, J. M. Diederik Kruijssen, Thomas G. Williams, Elizabeth Watkins, K. Grasha, Jiayi Sun, R. S. Klessen, Erik Rosolowsky, Arjen Van der Wel, Hsi-An Pan, J. Pety, K. Kreckel, A. Usero, Daniel A. Dale, Adam K. Leroy, Sharon Meidt, Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Institut de RadioAstronomie Millimétrique (IRAM), and Centre National de la Recherche Scientifique (CNRS)
- Subjects
PROBABILITY-DISTRIBUTION FUNCTIONS ,Brightness ,Galaxy structure ,Scale (ratio) ,High resolution ,Cloud computing ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,STAR-FORMATION EFFICIENCY ,01 natural sciences ,Interstellar medium ,TO-LIGHT-RATIO ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Disk galaxies ,Astrophysics::Galaxy Astrophysics ,Physics ,Molecular gas ,Spiral galaxy ,Spiral galaxies ,010308 nuclear & particles physics ,business.industry ,SPITZER SURVEY ,S(4)G IRAC 3.6 ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,SELF-GRAVITATION ,Galaxy ,Physics and Astronomy ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,MOLECULAR CLOUDS ,STELLAR MASS DISTRIBUTIONS ,VELOCITY DISPERSION ,business ,SPIRAL GALAXIES - Abstract
In this paper we examine the factors that shape the distribution of molecular gas surface densities on the 150 pc scale across 67 morphologically diverse star-forming galaxies in the PHANGS-ALMA CO (2-1) survey. Dividing each galaxy into radial bins, we measure molecular gas surface density contrasts, defined here as the ratio between a fixed high percentile of the CO distribution and a fixed reference level in each bin. This reference level captures the level of the faint CO floor that extends between bright filamentary features, while the intensity level of the higher percentile probes the structures visually associated with bright, dense ISM features like spiral arms, bars, and filaments. We compare these contrasts to matched percentile-based measurements of the 3.6 $\mu$m emission measured using Spitzer/IRAC imaging, which trace the underlying stellar mass density. We find that the logarithms of CO contrasts on 150 pc scales are 3-4 times larger than, and positively correlated with, the logarithms of 3.6 $\mu$m contrasts probing smooth non-axisymmetric stellar bar and spiral structures. The correlation appears steeper than linear, consistent with the compression of gas as it flows supersonically in response to large-scale stellar structures, even in the presence of weak or flocculent spiral arms. Stellar dynamical features appear to play an important role in setting the cloud-scale gas density in our galaxies, with gas self-gravity perhaps playing a weaker role in setting the 150 pc-scale distribution of gas densities., Comment: Accepted for publication in ApJ, 16 pages, 7 figures
- Published
- 2021
- Full Text
- View/download PDF
5. Multi-objective design of microvascular panels for battery cooling applications
- Author
-
Scott R. White, Marcus Hwai Yik Tan, Ahmad R. Najafi, Stephen J. Pety, and Philippe H. Geubelle
- Subjects
Optimal design ,Pressure drop ,Optimization problem ,Computer science ,020209 energy ,Energy Engineering and Power Technology ,Topology (electrical circuits) ,02 engineering and technology ,01 natural sciences ,Industrial and Manufacturing Engineering ,Finite element method ,Power (physics) ,010101 applied mathematics ,Constraint (information theory) ,Control theory ,0202 electrical engineering, electronic engineering, information engineering ,Differentiable function ,0101 mathematics - Abstract
Building on a recently developed optimization method based on an interface-enriched generalized finite element method, multiple objective functions are considered for the optimization of 2D networks of microchannels embedded in battery-cooling panels. The objective functions considered in this study are a differentiable alternative to the maximum temperature (the p-mean of the temperature), the pressure drop and the variance of the temperature. The e -constraint method and the normalized normal constraint method are used to generate the pressure-temperature Pareto optimal front of the multi-objective optimization problem. The effects of different operating constraints/conditions such as localization of heat sources, prescribed pump power and imposed flow rate on the optimal designs are investigated. In addition to the topology of the embedded network, the cross sections of the microchannels are also introduced as design parameters to further improve the pressure drop of the designs. The resulting variable-cross-section optimized design is validated with experiment.
- Published
- 2018
- Full Text
- View/download PDF
6. Design of redundant microvascular cooling networks for blockage tolerance
- Author
-
Stephen J. Pety, Philippe H. Geubelle, Ahmad R. Najafi, Marcus Hwai Yik Tan, Anthony C. Gendusa, Scott R. White, and Philip R. Barnett
- Subjects
Materials science ,business.industry ,Energy Engineering and Power Technology ,Ranging ,02 engineering and technology ,Structural engineering ,021001 nanoscience & nanotechnology ,Cooling capacity ,01 natural sciences ,Industrial and Manufacturing Engineering ,Finite element method ,010101 applied mathematics ,Heat flux ,Control theory ,Thermography ,Active cooling ,Redundancy (engineering) ,0101 mathematics ,0210 nano-technology ,business ,Communication channel - Abstract
Microvascular networks can provide host materials with many functions including self-healing and active cooling. However, vascular networks are susceptible to blockage which can dramatically reduce their functional performance. A novel optimization scheme is presented to design networks that provide sufficient cooling capacity even when partially blocked. Microvascular polydimethylsiloxane (PDMS) panels subject to a 2000 W m−2 applied heat flux and 28.2 mL min−1 coolant flow rate are simulated using dimensionally reduced thermal and hydraulic models and an interface-enriched generalized finite element method (IGFEM). Channel networks are optimized to minimize panel temperature while the channels are either clear (the O 0 scheme), subject to the single worst-case blockage ( O 1 ), or subject to two worst-case blockages ( O 2 ). Designs are optimized with nodal degree (a measure of redundancy) ranging from 2 to 6. The results show that blockage tolerance is greatly enhanced for panels optimized while considering blockages and for panels with higher nodal degree. For example, the 6-degree O 1 design only has a temperature rise of 7 °C when a single channel is blocked, compared to a 35 °C rise for the 2-degree O 0 design. Thermography experiments on PDMS panels validate the IGFEM solver and the blockage tolerance of optimized panels.
- Published
- 2018
- Full Text
- View/download PDF
7. Effect of microchannels on the crashworthiness of fiber-reinforced composites
- Author
-
Philip R. Barnett, Stephen J. Pety, Anthony C. Gendusa, Scott R. White, Nancy R. Sottos, Quinn A. Calvert, and Jia En Aw
- Subjects
Work (thermodynamics) ,Chamfer ,Materials science ,business.industry ,02 engineering and technology ,Structural engineering ,Fiber-reinforced composite ,Edge (geometry) ,021001 nanoscience & nanotechnology ,020303 mechanical engineering & transports ,0203 mechanical engineering ,Crack initiation ,Ceramics and Composites ,Channel spacing ,Specific energy ,Crashworthiness ,Composite material ,0210 nano-technology ,business ,Civil and Structural Engineering - Abstract
The integration of microchannels within structural composites enables a range of multifunctional responses such as thermal management and self-healing. In this work, we investigate how microchannels affect the crashworthiness of the host material. Corrugated panels are fabricated with aligned microchannels (ca. 400 µm diameter) at different channel spacing (10 mm and 1.2 mm), orientation with respect to the loading direction, and alignment with respect to the surrounding fiber-reinforcement. Specific energy absorbed (SEA) is measured by compression testing of samples with a chamfer edge trigger. SEA was preserved within 10% for all test cases. Flat (non-corrugated) panels are also tested to demonstrate that microchannels can serendipitously trigger stable, energy absorbing failure modes that lead to improved crashworthiness. Non-vascular panels without an edge chamfer fail catastrophically when compressed. In dramatic contrast, vascular panels fail in a stable fashion triggered by crack initiation at the microchannels, yielding ca. 10 times more energy absorption.
- Published
- 2018
- Full Text
- View/download PDF
8. Carbon fiber composites with 2D microvascular networks for battery cooling
- Author
-
Scott R. White, Ahmad R. Najafi, Marcus Hwai Yik Tan, Philip R. Barnett, Philippe H. Geubelle, and Stephen J. Pety
- Subjects
Fluid Flow and Transfer Processes ,Battery (electricity) ,business.product_category ,Materials science ,020209 energy ,Mechanical Engineering ,Composite number ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Volumetric flow rate ,Heat flux ,Electric vehicle ,Thermal ,0202 electrical engineering, electronic engineering, information engineering ,Vacuum assisted resin transfer molding ,Composite material ,0210 nano-technology ,business ,Communication channel - Abstract
Electric vehicle (EV) batteries require both thermal regulation and crash protection. A novel battery packaging scheme is presented that uses microvascular composite panels with 2D channel networks to accomplish both objectives. Microvascular carbon fiber/epoxy composite panels are fabricated by vacuum assisted resin transfer molding, with the channel network formed by post-cure vaporization of an embedded polylactide channel template. Panel cooling performance is evaluated for parallel, bifurcating, serpentine, and spiral channel designs at different coolant flow rates and channel diameter. The spiral design provides the best thermal performance, but requires high pumping pressure (>100 kPa) at the flow rates needed for adequate cooling (>30 mL min −1 ). The bifurcating design and a network obtained by computational optimization offer much lower pressure with slightly reduced thermal performance. Channel diameter has negligible effect on cooling performance, but strongly affects pumping pressure. Computational fluid dynamics (CFD) simulations are also performed and correlate well with the experimental data. Simulations confirm that microvascular composite panels can cool typical battery cells generating 500 W m −2 heat flux below the target temperature of 40 °C.
- Published
- 2017
- Full Text
- View/download PDF
9. High-velocity hot CO emission close to Sgr A*
- Author
-
J R, Goicoechea, M G, Santa-Maria, D, Teyssier, J, Cernicharo, M, Gerin, and J, Pety
- Subjects
Article - Abstract
The properties of molecular gas, the fuel that forms stars, inside the cavity of the circumnuclear disk (CND) are not well constrained. We present results of a velocity-resolved submillimeter scan (~480 to 1250 GHz) and [C ii] 158 μm line observations carried out with Herschel/HIFI toward Sgr A*; these results are complemented by a ~2′×2′ (12)CO (J=3-2) map taken with the IRAM 30 m telescope at ~7″ resolution. We report the presence of high positive-velocity emission (up to about +300 km s(−1)) detected in the wings of (12)CO J=5-4 to 10-9 lines. This wing component is also seen in H(2)O (1(1,0)-1(0,1)), a tracer of hot molecular gas; in [C ii]158 μm, an unambiguous tracer of UV radiation; but not in [C i] 492, 806 GHz. This first measurement of the high-velocity (12)CO rotational ladder toward Sgr A* adds more evidence that hot molecular gas exists inside the cavity of the CND, relatively close to the supermassive black hole (< 1 pc). Observed by ALMA, this velocity range appears as a collection of (12)CO (J=3-2) cloudlets lying in a very harsh environment that is pervaded by intense UV radiation fields, shocks, and affected by strong gravitational shears. We constrain the physical conditions of the high positive-velocity CO gas component by comparing with non-LTE excitation and radiative transfer models. We infer T(k)≃400 K to 2000 K for n(H)≃(0.2-1.0)·10(5) cm(−3). These results point toward the important role of stellar UV radiation, but we show that radiative heating alone cannot explain the excitation of this ~10-60 M(⊙) component of hot molecular gas inside the central cavity. Instead, strongly irradiated shocks are promising candidates.
- Published
- 2019
10. Dense gas is not enough: environmental variations in the star formation efficiency of dense molecular gas at 100 pc scales in M 51
- Author
-
J. Pety, Eric J. Murphy, Andreas Schruba, Christopher M Faesi, S. C. O. Glover, Dyas Utomo, Sharon E. Meidt, Santiago García-Burillo, Eva Schinnerer, M. Chevance, Adam K. Leroy, Emmanuel Momjian, J. M. D. Kruijssen, Frank Bigiel, Alexander P. S. Hygate, M. Gallagher, A. Usero, Miguel Querejeta, M. J. Jimenez-Donaire, Erik Rosolowsky, Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Sorbonne Université (SU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
Stellar mass ,Infrared ,Continuum (design consultancy) ,MODELS ,FOS: Physical sciences ,DUST ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,SYNTHESIS ,HII-REGIONS ,01 natural sciences ,Luminosity ,individual: NGC 5194 [galaxies] ,MAGELLANIC CLOUDS ,0103 physical sciences ,NEARBY GALAXIES ,FORMATION LAW ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,ComputingMilieux_MISCELLANEOUS ,Physics ,[PHYS]Physics [physics] ,Spiral galaxy ,ISM [galaxies] ,010308 nuclear & particles physics ,Star formation ,Velocity dispersion ,NGC-5194 M51A ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,FORMATION RATES ,HCN ,Stars ,Physics and Astronomy ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,structure [galaxies] ,star formation [galaxies] ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,UNCERTAINTY PRINCIPLE - Abstract
It remains unclear what sets the efficiency with which molecular gas transforms into stars. Here we present a new VLA map of the spiral galaxy M51 in 33GHz radio continuum, an extinction-free tracer of star formation, at 3" scales (~100pc). We combined this map with interferometric PdBI/NOEMA observations of CO(1-0) and HCN(1-0) at matched resolution for three regions in M51 (central molecular ring, northern and southern spiral arm segments). While our measurements roughly fall on the well-known correlation between total infrared and HCN luminosity, bridging the gap between Galactic and extragalactic observations, we find systematic offsets from that relation for different dynamical environments probed in M51, e.g. the southern arm segment is more quiescent due to low star formation efficiency (SFE) of the dense gas, despite having a high dense gas fraction. Combining our results with measurements from the literature at 100pc scales, we find that the SFE of the dense gas and the dense gas fraction anti-correlate and correlate, respectively, with the local stellar mass surface density. This is consistent with previous kpc-scale studies. In addition, we find a significant anti-correlation between the SFE and velocity dispersion of the dense gas. Finally, we confirm that a correlation also holds between star formation rate surface density and the dense gas fraction, but it is not stronger than the correlation with dense gas surface density. Our results are hard to reconcile with models relying on a universal gas density threshold for star formation and suggest that turbulence and galactic dynamics play a major role in setting how efficiently dense gas converts into stars., 23 pages, 9 figures, accepted for publication in A&A
- Published
- 2019
- Full Text
- View/download PDF
11. Gradient-based design of actively-cooled microvascular composite panels
- Author
-
Stephen J. Pety, Scott R. White, Marcus Hwai Yik Tan, Ahmad R. Najafi, and Philippe H. Geubelle
- Subjects
Fluid Flow and Transfer Processes ,Optimal design ,Microchannel ,Computer science ,Mechanical Engineering ,Mechanical engineering ,02 engineering and technology ,Solver ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Finite element method ,010101 applied mathematics ,Temperature gradient ,Mesh generation ,Fluent ,Shape optimization ,0101 mathematics ,0210 nano-technology - Abstract
Recent advances in manufacturing based on sacrificial fiber or template techniques have allowed complex networks of microchannels to be embedded in microvascular composites. In the thermal application of interest, a novel battery packaging scheme for electric vehicles is considered where each battery is surrounded by microvascular composite panels for temperature regulation and structural protection. We use simplified thermal and hydraulics models validated against more complex 3D FLUENT simulations and experiments to obtain the surface temperature distribution of the panel and the pressure drops across the microchannels. We further eliminate the cost and complexity associated with mesh generation by applying the interface-enriched generalized finite element method (IGFEM), which allows a non-conforming mesh to capture the discontinuous temperature gradient across the microchannels. The IGFEM thermal solver is then combined with a gradient-based shape optimization scheme to obtain optimal designs of a set of branched microchannel networks. The design parameters are the channel control points, which define the shape of the network. We use the p-mean as a differentiable objective function in place of the maximum temperature. To obtain accurate gradients with respect to the design parameters efficiently, we perform a sensitivity analysis based on a recently developed adjoint method for IGFEM. Starting from many distinct configurations, we obtain the optimal designs for a wide range of network topologies. We also investigate the effect of the coolant flow rate on the optimal design.
- Published
- 2016
- Full Text
- View/download PDF
12. NOEMA: a powerful millimeter wave interferometer using next generation technology (Conference Presentation)
- Author
-
Vincent Piétu, K. F. Schuster, Melanie Krips, Michael Bremer, Jeremy Boissier, J. Pety, Sebastien Blanchet, Sylvain Mahieu, D. Broguiere, Patrick Dumontroty, Arancha Castro-Carrizo, Bertrand Gautier, R. Neri, J. M. Winters, Bastien Lefranc, Frederic Gueth, Olivier Gentaz, and Roberto G. Garcia
- Subjects
Interferometry ,Next-Generation Technology ,Computer science ,business.industry ,Bandwidth (signal processing) ,Extremely high frequency ,Electrical engineering ,Millimeter ,Multi-band device ,business ,Field-programmable gate array ,IRAM 30m telescope - Abstract
The Northern Extended Millimeter Array (NOEMA) is a facility which will focus on large surveys but at the same time generate together with ALMA all sky coverage in the millimeter range with similar sensitivities. NOEMA consists of twelve 15-meter antennas equipped with ultra-low noise SIS receivers covering the frequency range from 70 to 375 GHz. With a surface accuracy of 35 micrometer, the NOEMA antennas offer excellent efficiency for the wavebands in operation. The NOEMA receivers deliver dual linear polarization signals in separated side bands of 8GHz bandwidth each. The resulting total IF bandwidth of 32 GHz is processed in an advanced FX-correlator using high speed samplers and FPGA technology. The correlator offers simultaneously high efficiency for continuum and high resolution spectroscopy without any need for trade-offs. The final baseline length will be 1.7 km enabling resolutions down to 0.1". The key technologies used for NOEMA including the antenna technology are summarized and an overview on the actual status of the project and first science results will be given. Further upgrades such as a dual band extension for the coming years are already in preparation. The related technological developments including the path for efficient short spacing measurements with the IRAM 30m telescope are shortly outlined.
- Published
- 2018
- Full Text
- View/download PDF
13. Unidirectional Carbon-fiber Prepreg with Embedded Sacrificial Fibers for Three-dimensional Microvascular Network
- Author
-
Scott R. White, Nancy R. Sottos, Stephen J. Pety, and Sang Yup Kim
- Subjects
chemistry.chemical_classification ,Microvascular Network ,Materials science ,chemistry ,visual_art ,Composite number ,visual_art.visual_art_medium ,Compaction ,Polymer ,Epoxy ,Composite material ,Laboratory scale ,Fibre-reinforced plastic - Abstract
Unidirectional carbon-fiber/epoxy prepreg with embedded sacrificial fibers was manufactured and used to fabricate microvascular fiber-reinforced polymer (FRP) composites. A laboratory scale prepregger was designed and built for the continuous processing of resin impregnation, incorporation of sacrificial fibers, and fiber winding. The sacrificial fibers were annealed at elevated temperature during the prepregging process to obtain a good alignment with the neighboring carbon-fibers. A laminated FRP composite was manufactured from the prepreg by a hot-pressing technique. Sacrificial fibers from the separate lamina were fused due to the compaction and temperature of hot-pressing process. Three-dimensional microvascular networks were revealed within a laminated composite when the lattice of sacrificial fibers was vaporized at 200 °C. This is the first demonstration of multi-dimensional microvascular networks embedded within an FRP composite using a prepreg processing technique.
- Published
- 2017
- Full Text
- View/download PDF
14. 13 CO/C 18 O Gradients across the Disks of Nearby Spiral Galaxies
- Author
-
K. F. Schuster, C. Kramer, J. Pety, Eric J. Murphy, D. Cormier, N. Tomicic, Adam K. Leroy, Eva Schinnerer, Mark R. Krumholz, Annie Hughes, M. J. Jimenez-Donaire, K. Sliwa, M. Gallagher, Frank Bigiel, David S. Meier, Andreas Schruba, A. Usero, Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Department of Astronomy and Astrophysics [UCSC Santa Cruz], University of California [Santa Cruz] (UC Santa Cruz), University of California (UC)-University of California (UC), Max-Planck-Institut für Astronomie (MPIA), Max-Planck-Gesellschaft, KOSMA, I. Physikalisches Institut, Universität zu Köln = University of Cologne, Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Division of Geological and Planetary Sciences [Pasadena], California Institute of Technology (CALTECH), Institut de RadioAstronomie Millimétrique (IRAM), Centre National de la Recherche Scientifique (CNRS), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), University of California [Santa Cruz] (UCSC), University of California-University of California, Universität zu Köln, École normale supérieure - Paris (ENS Paris), California Institute of Technology (CALTECH)-NASA, École normale supérieure - Paris (ENS Paris)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, and PSL Research University (PSL)-PSL Research University (PSL)-Université de Cergy Pontoise (UCP)
- Subjects
Physics ,Luminous infrared galaxy ,[PHYS]Physics [physics] ,Spiral galaxy ,010308 nuclear & particles physics ,Star formation ,Milky Way ,FOS: Physical sciences ,Astronomy and Astrophysics ,Natural abundance ,Astrophysics ,Radius ,01 natural sciences ,Astrophysics - Astrophysics of Galaxies ,Galaxy ,Stellar nucleosynthesis ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,0103 physical sciences ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS - Abstract
We use the IRAM Large Program EMPIRE and new high-resolution ALMA data to measure 13CO(1-0)/C18O(1-0) intensity ratios across nine nearby spiral galaxies. These isotopologues of CO are typically optically thin across most of the area in galaxy disks, and this ratio allows us to gauge their relative abundance due to chemistry or stellar nucleosynthesis effects. Resolved 13CO/C18O gradients across normal galaxies have been rare due to the faintness of these lines. We find a mean 13CO/C18O ratio of 6.0$\pm$0.9 for the central regions of our galaxies. This agrees well with results in the Milky Way, but differs from results for starburst galaxies (3.4$\pm$0.9) and ultraluminous infrared galaxies (1.1$\pm$0.4). In our sample, the 13CO/C18O ratio consistently increases with increasing galactocentric radius and decreases with increasing star formation rate surface density. These trends qualitatively agree with expectations for carbon and oxygen isotopic abundance variations due to stellar nucleosynthesis, with a possible effect of fractionation.
- Published
- 2017
- Full Text
- View/download PDF
15. Optical depth estimates and effective critical densities of dense gas tracers in the inner parts of nearby galaxy discs
- Author
-
A. Usero, Molly J. Gallagher, Alberto D. Bolatto, Andreas Schruba, Mark R. Krumholz, Dario Colombo, David S. Meier, M. J. Jimenez-Donaire, Annie Hughes, Laura K. Zschaechner, J. Pety, Diane Cormier, Neven Tomičić, C. Kramer, Erik Rosolowsky, Frank Bigiel, Eric J. Murphy, Santiago García-Burillo, Eva Schinnerer, Adam K. Leroy, Zentrum für Astronomie der Universität Heidelberg (ZAH), Universität Heidelberg [Heidelberg], Observatorio Astronómico Nacional (OAN), oan, Department of Astronomy [College Park], University of Maryland [College Park], University of Maryland System-University of Maryland System, Observatorio Astronomico Nacional [Madrid] (OAN), Instituto Geografico Nacional (IGN), Instituto de RadioAstronomía Milimétrica (IRAM), Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), University of British Columbia (UBC), Max-Planck-Institut für Astronomie (MPIA), Max-Planck-Gesellschaft, Universität Heidelberg [Heidelberg] = Heidelberg University, Observatorio Astronomico Nacional, Madrid, and École normale supérieure - Paris (ENS-PSL)
- Subjects
Physics ,[PHYS]Physics [physics] ,Effective density ,010504 meteorology & atmospheric sciences ,FOS: Physical sciences ,High density ,Astronomy and Astrophysics ,Astrophysics ,Astrophysics - Astrophysics of Galaxies ,01 natural sciences ,Galaxy ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,0103 physical sciences ,Optical depth (astrophysics) ,Isotopologue ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Line (formation) - Abstract
High critical density molecular lines like HCN(1-0) or HCO+(1-0) represent our best tool to study currently star-forming, dense molecular gas at extragalactic distances. The optical depth of these lines is a key ingredient to estimate the effective density required to excite emission. However, constraints on this quantity are even scarcer in the literature than measurements of the high density tracers themselves. Here, we combine new observations of HCN, HCO+ and HNC(1-0) and their optically thin isotopologues H13CN, H13CO+ and HN13C(1-0) to measure isotopologue line ratios. We use IRAM 30-m observations from the large program EMPIRE and new ALMA observations, which together target 6 nearby star-forming galaxies. Using spectral stacking techniques, we calculate or place strong upper limits on the HCN/H13CN, HCO+/H13CO+ and HNC/HN13C line ratios in the inner parts of these galaxies. Under simple assumptions, we use these to estimate the optical depths of HCN(1-0) and HCO+(1-0) to be \tau ~2-11 in the active, inner regions of our targets. The critical densities are consequently lowered to values between 5-20$\times 10^5$, 1-3$\times 10^5$ and 9$\times 10^4$ cm-3 for HCN, HCO+ and HNC, respectively. We study the impact of having different beam-filling factors, $\eta$, on these estimates and find that the effective critical densities decrease by a factor of $\frac{\eta_{12}}{\eta_{13}}\,\tau_{12}$. A comparison to existing work in NGC 5194 and NGC 253 shows HCN/H13CN and HCO+/H13CO+ ratios in agreement with our measurements within the uncertainties. The same is true for studies in other environments such as the Galactic Centre or nuclear regions of AGN-dominated nearby galaxies., Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Society
- Published
- 2017
- Full Text
- View/download PDF
16. The ALMA view of UV irradiated cloud edges: unexpected structures and processes
- Author
-
S. Cuadrado, Javier R. Goicoechea, C. Joblin, Octavio Roncero, Alfredo Aguado, Asunción Fuente, John H. Black, E. Chapillon, J. Pety, Emeric Bron, Maryvonne Gerin, José Cernicharo, Belén Tercero, Institut de RadioAstronomie Millimétrique (IRAM), Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Spanish National Research Council [Madrid] (CSIC), Onsala Space Observatory (OSO), Chalmers University of Technology [Göteborg], Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), AMOR 2018, Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Observatorio Astronomico Nacional, Madrid, Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS-PSL), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Astrochemistry ,Photon ,[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Molecular cloud ,Ab initio ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Photodissociation region ,01 natural sciences ,7. Clean energy ,Molecular physics ,Astrophysics - Astrophysics of Galaxies ,Ion ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,0103 physical sciences ,Cluster (physics) ,Molecule ,010306 general physics ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
Far-UV photons (E, Contributed paper to appear in: "Astrochemistry VII, Through the Cosmos from Galaxies to Planets". Proceedings of the IAU Symposium No. 332, 2017, Puerto Varas, Chile. M. Cunningham, T. Millar and Y. Aikawa, eds. (8 pages)
- Published
- 2017
- Full Text
- View/download PDF
17. Multidimensional Vascularized Polymers using Degradable Sacrificial Templates
- Author
-
Nancy R. Sottos, Stephen J. Pety, Jason F. Patrick, Coppola Anthony M, Jeffrey S. Moore, Brett P. Krull, Ryan C. R. Gergely, Scott R. White, Thu Q. Doan, and Piyush R. Thakre
- Subjects
chemistry.chemical_classification ,3d printed ,Materials science ,Replica ,Microfluidics ,Thermosetting polymer ,Nanotechnology ,Polymer ,engineering.material ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,Biomaterials ,Template ,chemistry ,Electrochemistry ,engineering ,Biopolymer - Abstract
Complex multidimensional vascular polymers are created, enabled by sacrifi cial template materials of 0D to 3D. Sacrifi cial material consisting of the commodity biopolymer poly(lactic acid) is treated with a tin catalyst to accelerate thermal depolymerization, and formed into sacrifi cial templates across multiple dimensions and spanning several orders of magnitude in scale: spheres (0D), fi bers (1D), sheets (2D), and 3D printed. Templates are embedded in a thermosetting polymer and removed using a thermal treatment process, vaporization of sacrifi cial components (VaSC), leaving behind an inverse replica. The effectiveness of VaSC is verifi ed both ex situ and in situ, and the resulting structures are validated via fl ow rate testing. The VaSC platform is expanded to create vascular and porous architectures across a wide range of size and geometry, allowing engineering applications to take advantage of vascular designs optimized by biology.
- Published
- 2014
- Full Text
- View/download PDF
18. AGN feedback in the nucleus of M51
- Author
-
Kathryn Kreckel, Dario Colombo, Guillermo A. Blanc, J. Pety, Santiago García-Burillo, Eva Schinnerer, Miguel Querejeta, K. Sliwa, Sharon E. Meidt, Annie Hughes, Frank Bigiel, David S. Meier, and Adam K. Leroy
- Subjects
ACTIVE GALACTIC NUCLEI ,Active galactic nucleus ,Radio galaxy ,MASS-METALLICITY RELATION ,DRIVEN MOLECULAR OUTFLOW ,Astrophysics::High Energy Astrophysical Phenomena ,jets [galaxies] ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,STAR-FORMATION ,DISK ,Seyfert [galaxies] ,0103 physical sciences ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Physics ,Spiral galaxy ,ISM [galaxies] ,010308 nuclear & particles physics ,Star formation ,Plateau de Bure Interferometer ,Astronomy and Astrophysics ,QUASAR FEEDBACK ,COLD GAS ,Astrophysics - Astrophysics of Galaxies ,Galaxy ,Redshift ,NGC 6240 ,GALAXIES ,Interstellar medium ,Physics and Astronomy ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,active [galaxies] ,BLACK-HOLE ACCRETION ,structure [galaxies] ,STELLAR MASS - Abstract
AGN feedback is invoked as one of the most relevant mechanisms that shape the evolution of galaxies. Our goal is to understand the interplay between AGN feedback and the interstellar medium in M51, a nearby spiral galaxy with a modest AGN and a kpc-scale radio jet expanding through the disc of the galaxy. For that purpose, we combine molecular gas observations in the CO(1-0) and HCN(1-0) lines from the Plateau de Bure interferometer with archival radio, X-ray, and optical data. We show that there is a significant scarcity of CO emission in the ionisation cone, while molecular gas emission tends to accumulate towards the edges of the cone. The distribution and kinematics of CO and HCN line emission reveal AGN feedback effects out to r~500pc, covering the whole extent of the radio jet, with complex kinematics in the molecular gas which displays strong local variations. We propose that this is the result of the almost coplanar jet pushing on molecular gas in different directions as it expands; the effects are more pronounced in HCN than in CO emission, probably as the result of radiative shocks. Following previous interpretation of the redshifted molecular line in the central 5" as caused by a molecular outflow, we estimate the outflow rates to be Mdot_H2~0.9Msun/yr and Mdot_dense~0.6Msun/yr, which are comparable to the molecular inflow rates (~1Msun/yr); gas inflow and AGN feedback could be mutually regulated processes. The agreement with findings in other nearby radio galaxies suggests that this is not an isolated case, and probably the paradigm of AGN feedback through radio jets, at least for galaxies hosting low-luminosity active nuclei., 21 pages, 17 figures, accepted for publication in A&A
- Published
- 2016
19. The first CO+ image: I. Probing the HI/H2 layer around the ultracompact HII region Mon R2
- Author
-
J. R. Rizzo, Álvaro Sánchez-Monge, E. Roueff, P. Pilleri, Javier R. Goicoechea, C. Kramer, Olivier Berné, Volker Ossenkopf-Okada, J. Pety, A. Fuente, Marta Gónzalez-García, Santiago García-Burillo, Maryvonne Gerin, José Cernicharo, S. P. Treviño-Morales, Ministerio de Economía y Competitividad (España), Ministerio de Ciencia e Innovación (España), European Research Council, German Research Foundation, and Centre National D'Etudes Spatiales (France)
- Subjects
Astrochemistry ,010504 meteorology & atmospheric sciences ,Gas velocity ,Hii regions ,Analytical chemistry ,FOS: Physical sciences ,Astrophysics ,Spatial distribution ,01 natural sciences ,Article ,Ion ,Laser linewidth ,0103 physical sciences ,010303 astronomy & astrophysics ,Radio lines: ISM ,0105 earth and related environmental sciences ,Line (formation) ,Physics ,Range (particle radiation) ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,ISM [Radio lines] ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Photon-dominated region ,Layer (electronics) - Abstract
The CO+ reactive ion is thought to be a tracer of the boundary between a HII region and the hot molecular gas. In this study, we present the spatial distribution of the CO+ rotational emission toward the Mon R2 star-forming region. The CO+ emission presents a clumpy ring-like morphology, arising from a narrow dense layer around the HII region. We compare the CO+ distribution with other species present in photon-dominated regions (PDR), such as [CII] 158 mm, H2 S(3) rotational line at 9.3 mm, polycyclic aromatic hydrocarbons (PAHs) and HCO+. We find that the CO+ emission is spatially coincident with the PAHs and [CII] emission. This confirms that the CO+ emission arises from a narrow dense layer of the HI/H2 interface. We have determined the CO+ fractional abundance, relative to C+ toward three positions. The abundances range from 0.1 to 1.9x10^(-10) and are in good agreement with previous chemical model, which predicts that the production of CO+ in PDRs only occurs in dense regions with high UV fields. The CO+ linewidth is larger than those found in molecular gas tracers, and their central velocity are blue-shifted with respect to the molecular gas velocity. We interpret this as a hint that the CO+ is probing photo-evaporating clump surfaces., Comment: The main text has 4 pages, 2 pages of Appendix, 4 figures, 1 table. Accepted for publication in Astronomy and Astrophysics letters
- Published
- 2016
20. An Updated View of Giant Molecular Clouds, Gas Flows and Star Formation in M51 with PAWS
- Author
-
Adam K. Leroy, G. Dumas, K. F. Schuster, Santiago García-Burillo, Eva Schinnerer, Annie Hughes, J. Pety, C. Kramer, Sharon E. Meidt, D. Colombo, Clare Dobbs, and T. A. Thompson
- Subjects
Physics ,Spiral galaxy ,Space and Planetary Science ,Star formation ,Turbulence ,Gas depletion ,Molecular cloud ,Astronomy ,Astronomy and Astrophysics ,Astrophysics ,Surface pressure ,External pressure - Abstract
We present an overview of the latest results from the PdBI Arcsecond Whirlpool Survey (PAWS, PI: E. Schinnerer), which has mapped CO(1-0) emission in the nearby grand-design spiral galaxy M51 at 40pc resolution. Our data are sensitive to GMCs above 105 M⊙, allowing the construction of the largest GMC catalog to date – containing over 1500 objects – using the CPROPS algorithm (Rosolowsky & Leroy 2006). In the inner disk of M51, the properties of the CO emission show significant variation that can be linked to the dynamical environment in which the molecular gas is located. We find that dynamically distinct regions host clouds with different properties and exhibit different GMC mass spectra, as well as distinct patterns of star formation. To understand how this sensitivity to environment emerges, we consider the role of pressure on GMC stabilization (including shear and star formation feedback-driven turbulence). We suggest that, in the presence of significant external pressure, streaming motions driven by the spiral arm can act to reduce the surface pressure on clouds. The resulting stabilization impacts the global pattern of star formation and can account for the observed non-monotonic radial dependence of the gas depletion time. Our findings have implications for the observed scatter in the standard GMC relations and extragalactic star formation laws.
- Published
- 2012
- Full Text
- View/download PDF
21. VELOCITY-RESOLVED [C ii] EMISSION AND [C ii]/FIR MAPPING ALONG ORION WITH
- Author
-
Javier R, Goicoechea, D, Teyssier, M, Etxaluze, P F, Goldsmith, V, Ossenkopf, M, Gerin, E A, Bergin, J H, Black, J, Cernicharo, S, Cuadrado, P, Encrenaz, E, Falgarone, A, Fuente, A, Hacar, D C, Lis, N, Marcelino, G J, Melnick, H S P, Müller, C, Persson, J, Pety, M, Röllig, P, Schilke, R, Simon, R L, Snell, and J, Stutzki
- Subjects
Article - Abstract
We present the first ~7.5′×11.5′ velocity-resolved (~0.2 km s−1) map of the [C ii] 158 μm line toward the Orion molecular cloud 1 (OMC 1) taken with the Herschel/HIFI instrument. In combination with far-infrared (FIR) photometric images and velocity-resolved maps of the H41α hydrogen recombination and CO J=2-1 lines, this data set provides an unprecedented view of the intricate small-scale kinematics of the ionized/PDR/molecular gas interfaces and of the radiative feedback from massive stars. The main contribution to the [C ii] luminosity (~85 %) is from the extended, FUV-illuminated face of the cloud (G0>500, nH>5×103 cm−3) and from dense PDRs (G≳104, nH≳105 cm−3) at the interface between OMC 1 and the H ii region surrounding the Trapezium cluster. Around ~15 % of the [C ii] emission arises from a different gas component without CO counterpart. The [C ii] excitation, PDR gas turbulence, line opacity (from [13C ii]) and role of the geometry of the illuminating stars with respect to the cloud are investigated. We construct maps of the L[C ii]/LFIR and LFIR/MGas ratios and show that L[C ii]/LFIR decreases from the extended cloud component (~10−2–10−3) to the more opaque star-forming cores (~10−3–10−4). The lowest values are reminiscent of the “[C ii] deficit” seen in local ultra-luminous IR galaxies hosting vigorous star formation. Spatial correlation analysis shows that the decreasing L[C ii]/LFIR ratio correlates better with the column density of dust through the molecular cloud than with LFIR/MGas. We conclude that the [C ii] emitting column relative to the total dust column along each line of sight is responsible for the observed L[C ii]/LFIR variations through the cloud.
- Published
- 2015
22. Gravitational torques imply molecular gas inflow towards the nucleus of M51
- Author
-
C. Kramer, J. Pety, K. F. Schuster, Adam K. Leroy, Annie Hughes, G. Dumas, D. Colombo, Clare Dobbs, Santiago García-Burillo, Eva Schinnerer, Miguel Querejeta, Sharon E. Meidt, Todd A. Thompson, Max-Planck-Institut für Astronomie (MPIA), Max-Planck-Gesellschaft, Observatorio Astronomico Nacional, Madrid, Service d'ORL et de chirurgie cervicale, CHU Grenoble, Instituto de RadioAstronomía Milimétrica (IRAM), Centre National de la Recherche Scientifique (CNRS), Institut de RadioAstronomie Millimétrique (IRAM), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Observatorio Astronomico Nacional [Madrid] (OAN), Instituto Geografico Nacional (IGN), and École normale supérieure - Paris (ENS Paris)
- Subjects
GALACTIC NUCLEI ,individual: M 51 [galaxies] ,Astrophysics::High Energy Astrophysical Phenomena ,nuclei [galaxies] ,FOS: Physical sciences ,DWARF SEYFERT ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Galactic nuclei ,01 natural sciences ,SPIRAL SHOCKS ,STAR-FORMATION ,Marie curie ,SUPERMASSIVE BLACK-HOLES ,Seyfert [galaxies] ,kinematics and dynamics [galaxies] ,0103 physical sciences ,media_common.cataloged_instance ,European union ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,Astrophysics::Galaxy Astrophysics ,media_common ,Physics ,[PHYS]Physics [physics] ,NUCLEI ,ISM [galaxies] ,GALAXIES NUGA ,IMAGES. II ,010308 nuclear & particles physics ,SPITZER SURVEY ,S(4)G IRAC 3.6 ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Physics and Astronomy ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,structure [galaxies] ,STELLAR MASS DISTRIBUTIONS ,Astrophysics::Earth and Planetary Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Humanities - Abstract
The transport of gas towards the centre of galaxies is critical for black hole feeding and, indirectly, it can control active galactic nucleus (AGN) feedback. We have quantified the molecular gas inflow in the central R, 19 pages, 12 figures. Accepted by A&A
- Published
- 2015
- Full Text
- View/download PDF
23. Active cooling of microvascular composites for battery packaging
- Author
-
Patrick X.L. Chia, Stephen J. Pety, Stephen M Carrington, and Scott R. White
- Subjects
Battery (electricity) ,Materials science ,Composite number ,02 engineering and technology ,Epoxy ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Battery pack ,Atomic and Molecular Physics, and Optics ,0104 chemical sciences ,Thermal conductivity ,Heat flux ,Mechanics of Materials ,visual_art ,Signal Processing ,Thermal ,Active cooling ,visual_art.visual_art_medium ,General Materials Science ,Electrical and Electronic Engineering ,Composite material ,0210 nano-technology ,Civil and Structural Engineering - Abstract
Batteries in electric vehicles (EVs) require a packaging system that provides both thermal regulation and crash protection. A novel packaging scheme is presented that uses active cooling of microvascular carbon fiber reinforced composites to accomplish this multifunctional objective. Microvascular carbon fiber/epoxy composite panels were fabricated and their cooling performance assessed over a range of thermal loads and experimental conditions. Tests were performed for different values of coolant flow rate, channel spacing, panel thermal conductivity, and applied heat flux. More efficient cooling occurs when the coolant flow rate is increased, channel spacing is reduced, and thermal conductivity of the host composite is increased. Computational fluid dynamics (CFD) simulations were also performed and correlate well with the experimental data. CFD simulations of a typical EV battery pack confirm that microvascular composite panels can adequately cool battery cells generating 500 W m−2 heat flux below 40 °C.
- Published
- 2017
- Full Text
- View/download PDF
24. AGN feedback in the nucleus of M 51(Corrigendum)
- Author
-
David S. Meier, Dario Colombo, Frank Bigiel, Sharon E. Meidt, Miguel Querejeta, Annie Hughes, Kathryn Kreckel, Adam K. Leroy, Guillermo A. Blanc, Santiago García-Burillo, Eva Schinnerer, J. Pety, K. Sliwa, Max-Planck-Institut für Astronomie (MPIA), Max-Planck-Gesellschaft, Observatorio Astronomico Nacional [Madrid] (OAN), Instituto Geografico Nacional (IGN), Zentrum für Astronomie der Universität Heidelberg (ZAH), Universität Heidelberg [Heidelberg], Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Observatorio Astronomico Nacional, Madrid, Universität Heidelberg [Heidelberg] = Heidelberg University, and École normale supérieure - Paris (ENS-PSL)
- Subjects
[PHYS]Physics [physics] ,Luminous infrared galaxy ,Physics ,010504 meteorology & atmospheric sciences ,Astronomy and Astrophysics ,Quasar ,Astrophysics ,01 natural sciences ,medicine.anatomical_structure ,Space and Planetary Science ,0103 physical sciences ,medicine ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,010303 astronomy & astrophysics ,Nucleus ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
International audience
- Published
- 2017
- Full Text
- View/download PDF
25. PHYSICS AND CHEMISTRY IN UV ILLUMINATED REGIONS: THE HORSEHEAD CASE
- Author
-
Evelyne Roueff, Viviana V. Guzmán, Pierre Gratier, J. Pety, J. R. Goicoechea, and Maryvonne Gerin
- Subjects
Physics ,Astrophysics - Published
- 2014
- Full Text
- View/download PDF
26. Deuteration around the ultracompact HII region Monoceros R2
- Author
-
C. Kramer, José Cernicharo, D. Ginard, M. González-García, O. Berne, Volker Ossenkopf, E. Roueff, J. Pety, Asunción Fuente, P. Pilleri, J. R. Rizzo, Santiago García-Burillo, S. Viti, M. Gerin, S. P. Treviño-Morales, J. R. Goicoechea, Los Alamos National Laboratory (LANL), Observatorio Astronómico Nacional (OAN), oan, Instituto de RadioAstronomía Milimétrica (IRAM), Centre National de la Recherche Scientifique (CNRS), Laboratoire Univers et Théories (LUTH (UMR_8102)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Instituto de Radio Astronomía Milimétrica, Spanish National Research Council [Madrid] (CSIC), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Institut de RadioAstronomie Millimétrique (IRAM), Centre d'étude spatiale des rayonnements (CESR), Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Observatorio Astronomico Nacional [Madrid] (OAN), Instituto Geografico Nacional (IGN), Atmospheric Physics Laboratory [UCL London], University College of London [London] (UCL), Observatorio Astronomico Nacional, Madrid, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS-PSL), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS Paris)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université de Cergy Pontoise (UCP), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Université Paris-Seine-Université Paris-Seine-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), and Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,radio lines: ISM ,astrochemistry ,Spatially resolved ,Hii regions ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Deuterium ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,photon-dominated region (PDR) ,Protostar ,Molecule ,Spectral resolution ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,ComputingMilieux_MISCELLANEOUS - Abstract
The massive star-forming region Mon R2 hosts the closest ultra-compact HII region that can be spatially resolved with current single-dish telescopes. We used the IRAM-30m telescope to carry out an unbiased spectral survey toward two important positions (namely IF and MP2), in order to studying the chemistry of deuterated molecules toward Mon R2. We found a rich chemistry of deuterated species at both positions, with detections of C2D, DCN, DNC, DCO+, D2CO, HDCO, NH2D, and N2D+ and their corresponding hydrogenated species and isotopologs. Our high spectral resolution observations allowed us to resolve three velocity components: the component at 10 km/s is detected at both positions and seems associated with the layer most exposed to the UV radiation from IRS 1; the component at 12 km/s is found toward the IF position and seems related to the molecular gas; finally, a component at 8.5 km/s is only detected toward the MP2 position, most likely related to a low-UV irradiated PDR. We derived the column density of all the species, and determined the deuterium fractions (Dfrac). The values of Dfrac are around 0.01 for all the observed species, except for HCO+ and N2H+ which have values 10 times lower. The values found in Mon R2 are well explained with pseudo-time-dependent gas-phase model in which deuteration occurs mainly via ion-molecule reactions with H2D+, CH2D+ and C2HD+. Finally, the [H13CN]/[HN13C] ratio is very high (~11) for the 10 km/s component, which also agree with our model predictions for an age of ~0.01-0.1 Myr. The deuterium chemistry is a good tool for studying star-forming regions. The low-mass star-forming regions seem well characterized with Dfrac(N2H+) or Dfrac(HCO+), but it is required a complete chemical modeling to date massive star-forming regions, because the higher gas temperature together with the rapid evolution of massive protostars., Comment: 14 pages of manuscript, 17 pages of apendix, 7 figures in the main text, accepted for publication in A&A
- Published
- 2014
- Full Text
- View/download PDF
27. The IRAM-30 m line survey of the Horsehead PDR. IV. Comparative chemistry of H2CO and CH3OH
- Author
-
Maryvonne Gerin, J. R. Goicoechea, Viviana V. Guzmán, E. Roueff, F. Le Petit, J. Pety, Pierre Gratier, J. Le Bourlot, A. Faure, Institut de RadioAstronomie Millimétrique (IRAM), Centre National de la Recherche Scientifique (CNRS), Ctr Astrobiol CSIC INTA, Lab Astofis Mol, Madrid 28850, Observatoire de Paris - Site de Paris (OP), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS Paris)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Laboratoire Univers et Théories (LUTH (UMR_8102)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG ), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Observatoire de Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), and Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Hydrogen ,Thermal desorption ,FOS: Physical sciences ,chemistry.chemical_element ,Astrophysics ,01 natural sciences ,ISM: clouds ,law.invention ,Telescope ,Abundance (ecology) ,law ,photon-dominated region (PDR) ,0103 physical sciences ,010303 astronomy & astrophysics ,Line (formation) ,Envelope (waves) ,Physics ,radio lines: ISM ,010308 nuclear & particles physics ,astrochemistry ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,ISM: molecules ,[PHYS.ASTR.GA]Physics [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA] ,chemistry ,13. Climate action ,Space and Planetary Science ,radiative transfer ,Astrophysics of Galaxies (astro-ph.GA) ,[SDU.ASTR.GA]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA] ,Dense core - Abstract
Aims. We investigate the dominant formation mechanism of H2CO and CH3OH in the Horsehead PDR and its associated dense core. Methods. We performed deep integrations of several H2CO and CH3OH lines at two positions in the Horsehead, namely the PDR and dense core, with the IRAM-30m telescope. In addition, we observed one H2CO higher frequency line with the CSO telescope at both positions. We determine the H2CO and CH3OH column densities and abundances from the single-dish observations complemented with IRAM-PdBI high-angular resolution maps (6") of both species. We compare the observed abundances with PDR models including either pure gas-phase chemistry or both gas-phase and grain surface chemistry. Results. We derive CH3OH abundances relative to total number of hydrogen atoms of ~1.2e-10 and ~2.3e-10 in the PDR and dense core positions, respectively. These abundances are similar to the inferred H2CO abundance in both positions (~2e-10). We find an abundance ratio H2CO/CH3OH of ~2 in the PDR and ~1 in the dense core. Pure gas-phase models cannot reproduce the observed abundances of either H2CO or CH3OH at the PDR position. Both species are therefore formed on the surface of dust grains and are subsequently photodesorbed into the gas-phase at this position. At the dense core, on the other hand, photodesorption of ices is needed to explain the observed abundance of CH3OH, while a pure gas-phase model can reproduce the observed H2CO abundance. The high-resolution observations show that CH3OH is depleted onto grains at the dense core. CH3OH is thus present in an envelope around this position, while H2CO is present in both the envelope and the dense core itself. Conclusions. Photodesorption is an efficient mechanism to release complex molecules in low FUV-illuminated PDRs, where thermal desorption of ice mantles is ineffective., 12 pages, 5 tables, 7 figures; Accepted for publication in A&A
- Published
- 2013
- Full Text
- View/download PDF
28. The IRAM-30 m line survey of the Horsehead PDR. III. High abundance of complex (iso-)nitrile molecules in UV-illuminated gas
- Author
-
Pierre Gratier, J. Pety, A. Faure, J. R. Goicoechea, Maryvonne Gerin, E. Roueff, Viviana V. Guzmán, Institut de RadioAstronomie Millimétrique (IRAM), Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris - Site de Paris (OP), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS Paris)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Ctr Astrobiol CSIC INTA, Lab Astofis Mol, Madrid 28850, Laboratoire Univers et Théories (LUTH (UMR_8102)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Observatoire de Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG ), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), and Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Nitrile ,FOS: Physical sciences ,Astrophysics ,Electron ,010402 general chemistry ,01 natural sciences ,ISM: clouds ,chemistry.chemical_compound ,Atmospheric radiative transfer codes ,0103 physical sciences ,010303 astronomy & astrophysics ,Hyperfine structure ,Line (formation) ,Physics ,astrochemistry ,ISM: individual objects: Horsehead ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Galaxy ,ISM: molecules ,0104 chemical sciences ,Wavelength ,[PHYS.ASTR.GA]Physics [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA] ,chemistry ,13. Climate action ,Space and Planetary Science ,Electron excitation ,radiative transfer ,Astrophysics of Galaxies (astro-ph.GA) ,[SDU.ASTR.GA]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA] - Abstract
Complex (iso-)nitrile molecules, such as CH3CN and HC3N, are relatively easily detected in our Galaxy and in other galaxies. We constrain their chemistry through observations of two positions in the Horsehead edge: the photo-dissociation region (PDR) and the dense, cold, and UV-shielded core just behind it. We systematically searched for lines of CH3CN, HC3N, C3N, and some of their isomers in our sensitive unbiased line survey at 3, 2, and 1mm. We derived column densities and abundances through Bayesian analysis using a large velocity gradient radiative transfer model. We report the first clear detection of CH3NC at millimeter wavelength. We detected 17 lines of CH3CN at the PDR and 6 at the dense core position, and we resolved its hyperfine structure for 3 lines. We detected 4 lines of HC3N, and C3N is clearly detected at the PDR position. We computed new electron collisional rate coefficients for CH3CN, and we found that including electron excitation reduces the derived column density by 40% at the PDR position. While CH3CN is 30 times more abundant in the PDR than in the dense core, HC3N has similar abundance at both positions. The isomeric ratio CH3NC/CH3CN is 0.15+-0.02. In the case of CH3CN, pure gas phase chemistry cannot reproduce the amount of CH3CN observed in the UV-illuminated gas. We propose that CH3CN gas phase abundance is enhanced when ice mantles of grains are destroyed through photo-desorption or thermal-evaporation in PDRs, and through sputtering in shocks. (abridged), Accepted for publication in Astronomy & Astrophysics
- Published
- 2013
- Full Text
- View/download PDF
29. Limits on chemical complexity in diffuse clouds: search for CH3OH and HC5N absorption (Corrigendum)
- Author
-
J. Pety, R. Lucas, Harvey S. Liszt, National Radio Astronomy Observatory, Charlottesville (NRAO), Institut de RadioAstronomie Millimétrique (IRAM), Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Instrumentation et télédétection, Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique et Atmosphères = Laboratory for Studies of Radiation and Matter in Astrophysics and Atmospheres (LERMA), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), and Dynamique des milieux interstellaires et plasmas stellaires
- Subjects
Physics ,Astrochemistry ,Space and Planetary Science ,Astronomy and Astrophysics ,Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Absorption (electromagnetic radiation) - Abstract
International audience; Not Available
- Published
- 2016
- Full Text
- View/download PDF
30. Physics and chemistry of UV illuminated gas: the Horsehead case
- Author
-
Pierre Gratier, J. R. Goicoechea, M. Gerin, E. Roueff, D. Teyssier, J. Pety, Viviana V. Guzmán, Institut de RadioAstronomie Millimétrique (IRAM), Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), AMOR 2015, Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Laboratoire Univers et Théories (LUTH (UMR_8102)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS Paris)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université de Cergy Pontoise (UCP), Consejo Superior de Investigaciones Científicas [Spain] (CSIC), and PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Astrochemistry ,010504 meteorology & atmospheric sciences ,[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Analytical chemistry ,Astronomy and Astrophysics ,Observable ,Astrophysics ,01 natural sciences ,Galaxy ,law.invention ,Telescope ,13. Climate action ,Space and Planetary Science ,law ,0103 physical sciences ,Thermal ,Molecule ,Isotopologue ,010303 astronomy & astrophysics ,Hyperfine structure ,0105 earth and related environmental sciences - Abstract
Molecular lines are used to trace the physical conditions of the gas in different environments, from high-z galaxies to proto-planetary disks. To fully benefit from the diagnostic power of the molecular lines, the formation and destruction paths of the molecules must be quantitatively understood. This is challenging because the physical conditions are extreme and the dynamic plays an important role. In this context the PDR of the Horsehead mane is a particularly interesting case because the geometry is simple (almost 1D, viewed edge-on; Abergel et al.2003), the density profile is well constrained and we are making several efforts to constrain the thermal profile. The combination of small distance to Earth (at 400 pc, 1″ corresponds to 0.002 pc), low illumination (χ = 60) and high density (nH ~ 105 cm−3) implies that all the interesting physical and chemical processes can be probed in a field-of-view of less than 50″ (with typical spatial scales ranging between 1″ and 10″). Hence, the Horsehead PDR is a good source to benchmark the physics and chemistry of UV illuminated neutral gas.In our recent work on the ISM physics and chemistry in the Horsehead we have shown the importance of the interplay between the solid and gas phase chemistry in the formation of (complex) organic molecules, like H2CO, CH3OH and CH3CN, which reveal that photo-desorption of ices is an efficient mechanism to release molecules into the gas phase (Guzmán et al.2011, Gratier et al. in prep, Guzman et al. in prep)}. We have also provided new diagnostics of the UV illuminated matter. For example, we detected CF+ and resolved its hyperfine structure (Guzman et al.2012b). We propose that CF+, which is observable from the ground, can be used as a proxy of C+ (Guzman et al.2012). Finally, we reported the first detection of the small hydrocarbon C3H+, which sheds light on the formation pathways of other observed small hydrocarbons, like C3H and C3H2 ((Pety et al. 2012). Part of these results were possible thanks to a complete an unbiased line survey at 1, 2 and 3 mm performed with the IRAM-30m telescope (Horsehead WHISPER), where approximately 30 species (plus their isotopologues) are detected.
- Published
- 2012
- Full Text
- View/download PDF
31. Herschel/HIFI observations of CO, H2O and NH3 in Monoceros R2
- Author
-
C. Kramer, J. Le Bourlot, J. Montillaud, F. Le Petit, Volker Ossenkopf, M. González-García, C. Joblin, O. Berne, Maryvonne Gerin, P. Pilleri, J. Pety, José Cernicharo, A. Fuente, J. R. Rizzo, J. R. Goicoechea, Los Alamos National Laboratory (LANL), Observatorio Astronómico Nacional (OAN), oan, Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Physikalisches Institut [Köln], Universität zu Köln, Univ Toulouse UPS, Ctr Etud Spatiale Rayonnements, F-31062 Toulouse 9, France, Centre Etud Spatiale Rayonnements Toulouse, Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Institut de RadioAstronomie Millimétrique (IRAM), Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris - Site de Paris (OP), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Department of Physics [Helsinki], Falculty of Science [Helsinki], University of Helsinki-University of Helsinki, Instituto de Radio Astronomía Milimétrica, Laboratoire Univers et Théories (LUTH (UMR_8102)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Observatorio Astronomico Nacional, Madrid, Universität zu Köln = University of Cologne, Centre d'étude spatiale des rayonnements (CESR), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS-PSL), Helsingin yliopisto = Helsingfors universitet = University of Helsinki-Helsingin yliopisto = Helsingfors universitet = University of Helsinki, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Ctr Astrobiol CSIC INTA, Lab Astrofis Mol, Madrid 28850, Spain, Ctr Astrobiol CSIC INTA, Lab Astrofis Mol, Madrid, École normale supérieure - Paris (ENS Paris)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université de Cergy Pontoise (UCP), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS), and PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Brightness ,HII regions ,ISM: individual objects: Mon R2 ,010504 meteorology & atmospheric sciences ,ISM: structure ,FOS: Physical sciences ,Context (language use) ,Astrophysics ,Spatial distribution ,01 natural sciences ,Atmospheric radiative transfer codes ,Abundance (ecology) ,photon-dominated region (PDR) ,0103 physical sciences ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Line (formation) ,Physics ,Velocity gradient ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,ISM: molecules ,[PHYS.ASTR.GA]Physics [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA] ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,submillimeter: ISM ,Outflow ,[SDU.ASTR.GA]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA] - Abstract
Context. Mon R2 is the only ultracompact HII region (UCHII) where the associated photon-dominated region (PDR) can be resolved with Herschel. Due to its brightness and proximity, it is the best source to investigate the chemistry and physics of highly UV-irradiated PDRs. Aims. Our goal is to estimate the abundance of H2O and NH3 in this region and investigate their origin. Methods. We present new observations obtained with HIFI and the IRAM-30m telescope. Using a large velocity gradient approach, we model the line intensities and derive an average abundance of H2O and NH3 across the region. Finally, we model the line profiles with a non-local radiative transfer model and compare these results with the abundance predicted by the Meudon PDR code. Results. The variations of the line profiles and intensities indicate complex geometrical and kinematical patterns. The H2O lines present a strong absorption at the ambient velocity and emission in high velocity wings towards the HII region. The spatial distribution of the o-H2^18O line shows that the its emission arises in the PDR surrounding the HII region. By modeling the o-H2^18O emission we derive a mean abundance of o-H2O of ~10^-8 relative to H2. The ortho-H2O abundance is however larger, ~1x10^-7, in the high velocity wings. Possible explanations for this larger abundance include an expanding hot PDR and/or an outflow. Ammonia seems to be present only in the envelope with an average abundance of ~2x10^-9 relative to H2. Conclusions. The Meudon PDR code can account for the measured water abundance in the high velocity gas as long as we assume that it originates from a, 12 pages, 7 figures, 3 tables. Accepted for publication in A&A. Abstract shortened. Updated references, language editing applied in v2
- Published
- 2012
- Full Text
- View/download PDF
32. Imaging galactic diffuse clouds: CO emission, reddening and turbulent flow in the gas around Zeta Oph
- Author
-
K. Tachihara, Harvey S. Liszt, J. Pety, National Radio Astronomy Observatory (NRAO), Institut de RadioAstronomie Millimétrique (IRAM), Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris - Site de Paris (OP), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), and National Astronomical Observatory of Japan (NAOJ)
- Subjects
Physics ,010504 meteorology & atmospheric sciences ,Mean kinetic temperature ,Turbulence ,astrochemistry ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,01 natural sciences ,ISM: clouds ,Astrophysics - Astrophysics of Galaxies ,Spectral line ,ISM: molecules ,Stars ,[PHYS.ASTR.GA]Physics [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA] ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,0103 physical sciences ,Supersonic speed ,[SDU.ASTR.GA]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA] ,Absorption (chemistry) ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Line (formation) - Abstract
Methods: 12CO emission is imaged in position and position-velocity space analyzed statistically, and then compared with maps of total reddening and with models of the C+ - CO transition in H2-bearing diffuse clouds. Results: Around Zeta Oph, 12CO emission appears in two distinct intervals of reddening centered near EBV = 0.4 and 0.65 mag, of which < 0.2 mag is background material. Within either interval, the integrated 12CO intensity varies up to 6-12 K-km/s compared to 1.5 K-km/s toward Zeta Oph. Nearly 80% of the individual profiles have velocity dispersions < 0.6 km/s, which are subsonic at the kinetic temperature derived from H2 toward Zeta Oph, 55 K. Partly as a result, 12CO emission exposes the internal, turbulent, supersonic (1-3 km/s) gas flows with especial clarity in the cores of strong lines. The flows are manifested as resolved velocity gradients in narrow, subsonically-broadened line cores. Conclusions: The scatter between N(CO) and EBV in global, CO absorption line surveys toward bright stars is present in the gas seen around Zeta Oph, reflecting the extreme sensitivity of N(12CO) to ambient conditions. The two-component nature of the optical absorption toward Zeta Oph is coincidental and the star is occulted by a single body of gas with a complex internal structure, not by two distinct clouds. The very bright 12CO lines in diffuse gas arise at N(H2) ~ 10^21/cm^2 in regions of modest density n(H) ~ 200-500/cc and somewhat more complete C+-CO conversion. Given the variety of structure in the foreground gas, it is apparent that only large surveys of absorption sightlines can hope to capture the intrinsic behavior of diffuse gas., 2009 A&A, in press
- Published
- 2009
- Full Text
- View/download PDF
33. A Multiwavelength Study of the Close Environment of HD 34078
- Author
-
P. Boissé, E. Rollinde, G. Hébrard, P. Hily-Blant, J. Pety, S. R. Federman, Y. Sheffer, B. G. Andersson, G. Marmin, G. Pineau des Fore^ts, E. Roueff, Michael E. Van Steenberg, George Sonneborn, H. Warren Moos, and William P. Blair
- Subjects
Physics ,Absorption spectroscopy ,Interstellar cloud ,Astronomy ,Quasar ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Star position ,Galaxy ,Spectral line ,Thermal ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Emission spectrum ,Astrophysics::Galaxy Astrophysics - Abstract
We present 12CO(2–1) emission line observations of the region surrounding HD 34078, together with new optical and FUSE spectra of this runaway star. CO(2–1) emission peaks close to the star position and correlates well with IR thermal dust emission. Our follow‐up of CH and CH+ optical absorption lines confirms the reality of marked time variations while FUSE spectra indicate no such changes for H2. These results are consistent with a picture in which all absorption lines in HD 34078’s spectrum originate from material located close to the star, in a dense inhomogeneous shell formed at the stellar wind/ambient cloud interface where CH and CH+ are overabundant.
- Published
- 2009
- Full Text
- View/download PDF
34. Biopolymers: Multidimensional Vascularized Polymers using Degradable Sacrificial Templates (Adv. Funct. Mater. 7/2015)
- Author
-
Nancy R. Sottos, Jeffrey S. Moore, Coppola Anthony M, Stephen J. Pety, Thu Q. Doan, Ryan C. R. Gergely, Piyush R. Thakre, Brett P. Krull, Scott R. White, and Jason F. Patrick
- Subjects
Biomaterials ,chemistry.chemical_classification ,Template ,Materials science ,chemistry ,Microfluidics ,Electrochemistry ,Nanotechnology ,Polymer ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials - Published
- 2015
- Full Text
- View/download PDF
35. First detection of [N II] 205μm absorption in interstellar gas
- Author
-
J. R. Goicoechea, Michael Olberg, Maryvonne Gerin, G. E. Hassel, François Levrier, John H. Black, Bhaswati Mookerjea, J. Pety, E. Falgarone, Karl M. Menten, Carina M. Persson, Ministerio de Ciencia e Innovación (España), Ministerio de Economía y Competitividad (España), and Swedish National Space Board
- Subjects
Proton ,ISM: structure ,Astrophysics ,ISM: atoms ,01 natural sciences ,Molecular physics ,ISM: abundances ,Spectral line ,Micrometre ,0103 physical sciences ,Emission spectrum ,Spectral resolution ,010306 general physics ,Absorption (electromagnetic radiation) ,Galaxy: general ,010303 astronomy & astrophysics ,general [Galaxy] ,Line (formation) ,abundances [ISM] ,Physics ,Line: formation ,Astronomy and Astrophysics ,Atomic processes ,Galactic plane ,atoms [ISM] ,Space and Planetary Science ,formation [Line] ,structure [ISM] - Abstract
We present high resolution [N ii] 205 μm (3P 1-3P0) spectra obtained with Herschel-HIFI towards a small sample of far-infrared bright star forming regions in the Galactic plane: W 31C (G10.6-0.4), W 49N (G43.2-0.1), W 51 (G49.5-0.4), and G34.3+0.1. All sources display an emission line profile associated directly with the H ii regions themselves. For the first time we also detect absorption of the [N ii] 205 μm line by extended low-density foreground material towards W 31C and W 49N over a wide range of velocities. We attribute this absorption to the warm ionised medium (WIM) and find N(N+) ≈ 1.5 × 10 17 cm-2 towards both sources. This is in agreement with recent Herschel-HIFI observations of [C ii] 158 μm, also observed in absorption in the same sight-lines, if ≈ 7-10% of all C+ ions exist in the WIM on average. Using an abundance ratio of [N]/[H] = 6.76 × 10-5 in the gas phase we find that the mean electron and proton volume densities are ~0.1-0.3 cm-3 assuming a WIM volume filling fraction of 0.1-0.4 with a corresponding line-of-sight filling fraction of 0.46-0.74. A low density and a high WIM filling fraction are also supported by RADEX modelling of the [N ii] 205 μm absorption and emission together with visible emission lines attributed mainly to the WIM. The detection of the 205 μm line in absorption emphasises the importance of a high spectral resolution, and also offers a new tool for investigation of the WIM., C.M.P. and J.H.B. acknowledge generous support from the Swedish National Space Board. J.R.G. thanks the Spanish MINECO for funding support under grants CSD2009-00038, AYA2009-07304 and AYA2012-32032.
- Published
- 2014
- Full Text
- View/download PDF
36. Gas inflow and AGN-driven outflow in M51
- Author
-
Santiago García-Burillo, Eva Schinnerer, Frank Bigiel, J. Pety, Kathryn Kreckel, Guillermo A. Blanc, Miguel Querejeta, Annie Hughes, David S. Meier, and Sharon E. Meidt
- Subjects
Gravitation ,Physics ,medicine.anatomical_structure ,Distribution (number theory) ,Space and Planetary Science ,medicine ,Astronomy and Astrophysics ,Outflow ,Inflow ,Mechanics ,Nucleus - Abstract
We study the feeding and feedback of the nucleus of M51 by considering gravitational torques, responsible for gas inflow, in relation to the local distribution of dense gas.
- Published
- 2014
- Full Text
- View/download PDF
37. Centroid Velocity Increments as a Probe of the Turbulent Velocity Field in Interstellar Molecular Clouds
- Author
-
Dariusz C. Lis, E. Falgarone, Jocelyn Keene, Maryvonne Gerin, Thomas G. Phillips, Y. Li, and J. Pety
- Subjects
Physics ,Field (physics) ,Star formation ,Turbulence ,Molecular cloud ,Interstellar cloud ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics ,Vorticity ,Astrophysics::Galaxy Astrophysics ,Spectral line ,Line (formation) - Abstract
We present a comparison of histograms (or PDFs) of CO (2−1) line centroid velocity increments in the ρ Ophiuchi and ζ Ophiuchi molecular clouds with those computed for spectra synthesized from a three-dimensional, compressible, but non-star forming and non-gravitating hydrodynamic simulation. Histograms of centroid velocity increments in the two molecular clouds show non-Gaussian wings, similar to those found in histograms of velocity increments and derivatives in experimental studies of laboratory and atmospheric flows, as well as numerical simulations of turbulence. The magnitude of these wings increases monotonically with decreasing separation down to the angular resolution of the data. This behavior is consistent with that found in the phase of the simulation which has most of the properties of incompressible turbulence. This is consistent with the proposition that ISM velocity structure is vorticity dominated like that of the turbulent simulation. The ρ Ophiuchi molecular cloud contains some active star formation, as indicated by the presence of infrared sources and molecular outflows. As a result shocks may have important effects on the velocity field structure and molecular line shapes in this region. However, the ζ Ophiuchi cloud represents a quiescent region without ongoing star formation and should be a good laboratory for studies of interstellar turbulence. Introduction Early spectroscopic observations of interstellar lines of HI, OH, and CO have revealed that observed line widths (or velocity dispersions) in interstellar clouds are larger than thermal line widths expected for these low-temperature regions (see e.g. Myers 1997 and references therein).
- Published
- 1999
- Full Text
- View/download PDF
38. A 850-GHz waveguide receiver employing a niobium SIS junction fabricated on a 1-μm Si_3N_4 membrane
- Author
-
P. L. Schaffer, Jacob Kooi, Thomas G. Phillips, Christopher K. Walker, Henry G. LeDuc, B. Bumble, and J. Pety
- Subjects
Heterodyne ,Noise temperature ,Radiation ,Materials science ,Sideband ,business.industry ,Superheterodyne receiver ,Electrical engineering ,Niobium ,chemistry.chemical_element ,Condensed Matter Physics ,law.invention ,chemistry ,Tunnel junction ,law ,Optoelectronics ,Electrical and Electronic Engineering ,business ,Current density ,Noise (radio) - Abstract
We report on a 850-GHz superconducting-insulator-superconducting (SIS) heterodyne receiver employing an RF-tuned niobium tunnel junction with a current density of 14 kA/cm/sup 2/, fabricated on a 1-/spl mu/m Si/sub 3/N/sub 4/ supporting membrane. Since the mixer is designed to be operated well above the superconducting gap frequency of niobium (2/spl Delta//h/spl ap/690 GHz), special care has been taken to minimize niobium transmission-line losses. Both Fourier transform spectrometer (FTS) measurements of the direct detection performance and calculations of the IF output noise with the mixer operating in heterodyne mode, indicate an absorption loss in the niobium film of about 6.8 dB at 822 GHz. These results are in reasonably good agreement with the loss predicted by the Mattis-Bardeen theory in the extreme anomalous limit. From 800 to 830 GHz, we report uncorrected receiver noise temperatures of 518 or 514 K when we use Callen and Welton's law to calculate the input load temperatures. Over the same frequency range, the mixer has a 4-dB conversion loss and 265 K/spl plusmn/10 K noise temperature. At 890 GHz, the sensitivity of the receiver has degraded to 900 K, which is primarily the result of increased niobium film loss in the RF matching network. When the mixer was cooled from 4.2 to 1.9 K, the receiver noise temperature improved about 20% 409-K double sideband (DSB). Approximately half of the receiver noise temperature improvement can be attributed to a lower mixer conversion loss, while the remainder is due to a reduction in the niobium film absorption loss. At 982 GHz, we measured a receiver noise temperature of 1916 K.
- Published
- 1998
39. Small Carbon Chains and Rings in Photo-Dominated Regions
- Author
-
C. Joblin, M. Gerin, J. Pety, D. Teyssier, D. Fossé, Alain Abergel, and Evelyne Roueff
- Subjects
Carbon chain ,Interstellar medium ,Carbon atom ,chemistry ,Chemical physics ,Carbon chemistry ,chemistry.chemical_element ,Molecule ,Carbon ,Bar (unit) - Abstract
Carbon is the fourth most abundant element in the interstellar medium (ISM), and also the most versatile for building molecules. Carbon chemistry can therefore be considered as the core of interstellar chemistry. Of the nearly 130 molecules now observed in various sources, about 75% have at least one carbon atom, while one fourth are hydrocarbons. These molecules, initially reported in circumstellar shells (e.g. [8], [1]), are now observed in many other media, ranging from molecular dark clouds (up to C8H, [4]) to the diffuse gas (C2, C3, C4 - [13], [2] -, C2H and c-C3H2- [10]). A natural question therefore arises: if carbon chains are present in the diffuse ISM, what does happen in the Photon-Dominated Regions (hereafter PDRs)? As in diffuse clouds, the chemical processes are dominated by the radiation but the gas is denser. Knowledge about the distribution of carbon chains and rings in PDRs is however yet scarce and mostly limited to the works of [6] and [7], who reported observations of C2H at some positions in NGC7023, the Orion Bar and NGC7027. In this work we extend the study of hydrocarbons in PDRs through an extensive inventory of carbon chains and rings of up to six carbon atoms.
- Published
- 1997
- Full Text
- View/download PDF
40. Millimeter-wave Observations of Polyatomic Molecules in Diffuse Clouds
- Author
-
J. Pety, Harvey S. Liszt, and R. Lucas
- Subjects
Physics ,Space and Planetary Science ,Extremely high frequency ,Polyatomic ion ,Astronomy ,Molecule ,Astronomy and Astrophysics ,Astrophysics ,Absorption (chemistry) - Abstract
Millimeter-wave (mm-wave) absorption profiles toward extragalactic sources consistently find just diffuse (occasionally perhaps translucent) neutral gas—low/moderate density and extinction—along even some very long, dark lines of sight. CO, often heavily fractionated and mimicking the appearance of dark gas in emission, occasionally absent in emission even when present in absorption, is not the dominant form of carbon in these regions (presumably it is C) yet the abundances of many other molecules resemble those seen in TMC-1. Some species (OH, HCO, C2H and C3H2) turn on with high abundances just when H2 does; others (HCN, HNC, CN) require slightly higher N (H2) and yet others (CS and other sulfur-bearing species, NH3 and H2CO) even higher N (H2). The systematics and implications of these recent discoveries are discussed here.
- Published
- 2006
- Full Text
- View/download PDF
41. Carbon Chemistry in Photodissociation Regions
- Author
-
Evelyne Roueff, D. Teyssier, D. Fossé, Javier R. Goicoechea, J. Pety, Christine Joblin, Maryvonne Gerin, A. Abergel, and J. Le Bourlot
- Subjects
Physics ,Carbon chain ,Interstellar medium ,chemistry ,Space and Planetary Science ,Abundance (ecology) ,Carbon chemistry ,Photodissociation ,chemistry.chemical_element ,Astronomy and Astrophysics ,Astrophysics ,Spatial distribution ,Carbon - Abstract
We present recent results on the carbon chemistry in photodissociation regions. We show that carbon chains and rings (CCH, c-C $_3$ H $_2$ and C $_4$ H) are tightly spatially correlated with each other, and with the mid-infrared emission due to PAHs (7 and 15 $\mu$ m), mapped by ISOCAM. Neither the spatial distribution, nor the abundances of these species can be fit by state-of-the-art PDR models, which calls for another production mechanism. We discuss model predictions for carbon clusters and simple hydrocarbons. We show how selected abundance ratios can be used as a diagnostic of the physical conditions. We stress the need for more theoretical and laboratory work on fundamental processes relevant for the interstellar medium, which should be taken into account in the astrochemical models, but whose rates are not known accurately enough.
- Published
- 2006
- Full Text
- View/download PDF
42. Mapping Metallicity Variations across Nearby Galaxy Disks.
- Author
-
K. Kreckel, I.-T. Ho, G. A. Blanc, B. Groves, F. Santoro, E. Schinnerer, F. Bigiel, M. Chevance, E. Congiu, E. Emsellem, C. Faesi, S. C. O. Glover, K. Grasha, J. M. D. Kruijssen, P. Lang, A. K. Leroy, S. E. Meidt, R. McElroy, J. Pety, and E. Rosolowsky
- Subjects
DISK galaxies ,INTEGRAL field spectroscopy ,VERY large telescopes ,SPIRAL galaxies ,STAR clusters ,MOLECULAR clouds ,INTERSTELLAR medium - Abstract
The distribution of metals within a galaxy traces the baryon cycle and the buildup of galactic disks, but the detailed gas phase metallicity distribution remains poorly sampled. We have determined the gas phase oxygen abundances for 7138 H ii regions across the disks of eight nearby galaxies using Very Large Telescope/Multi Unit Spectroscopic Explorer (MUSE) optical integral field spectroscopy as part of the PHANGS–MUSE survey. After removing the first-order radial gradients present in each galaxy, we look at the statistics of the metallicity offset (ΔO/H) and explore azimuthal variations. Across each galaxy, we find low (σ = 0.03–0.05 dex) scatter at any given radius, indicative of efficient mixing. We compare physical parameters for those H ii regions that are 1σ outliers toward both enhanced and reduced abundances. Regions with enhanced abundances have high ionization parameter, higher Hα luminosity, lower Hα velocity dispersion, younger star clusters, and associated molecular gas clouds showing higher molecular gas densities. This indicates recent star formation has locally enriched the material. Regions with reduced abundances show increased Hα velocity dispersions, suggestive of mixing introducing more pristine material. We observe subtle azimuthal variations in half of the sample, but cannot always cleanly associate this with the spiral pattern. Regions with enhanced and reduced abundances are found distributed throughout the disk, and in half of our galaxies we can identify subsections of spiral arms with clearly associated metallicity gradients. This suggests spiral arms play a role in organizing and mixing the interstellar medium. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
43. EMPIRE: The IRAM 30 m Dense Gas Survey of Nearby Galaxies.
- Author
-
María J. Jiménez-Donaire, F. Bigiel, A. K. Leroy, A. Usero, D. Cormier, J. Puschnig, M. Gallagher, A. Kepley, A. Bolatto, S. García-Burillo, A. Hughes, C. Kramer, J. Pety, E. Schinnerer, A. Schruba, K. Schuster, and F. Walter
- Subjects
SPIRAL galaxies ,MILKY Way ,GAS distribution ,DISK galaxies ,TRACE gases ,STAR formation - Abstract
We present EMPIRE, an IRAM 30 m large program that mapped λ = 3–4 mm dense gas tracers at ∼1–2 kpc resolution across the whole star-forming disk of nine nearby massive spiral galaxies. We describe the EMPIRE observing and reduction strategies and show new whole-galaxy maps of HCN(1−0), HCO
+ (1−0), HNC(1−0), and CO(1−0). We explore how the HCN-to-CO and IR-to-HCN ratios, observational proxies for the dense gas fraction and dense gas star formation efficiency, depend on host galaxy and local environment. We find that the fraction of dense gas correlates with stellar surface density, gas surface density, molecular-to-atomic gas ratio, and dynamical equilibrium pressure. In EMPIRE, the star formation rate per unit dense gas is anticorrelated with these same environmental parameters. Thus, although dense gas appears abundant in the central regions of many spiral galaxies, this gas appears relatively inefficient at forming stars. These results qualitatively agree with previous work on nearby galaxies and the Milky Way’s Central Molecular Zone. To first order, EMPIRE demonstrates that the conditions in a galaxy disk set the gas density distribution and that the dense gas traced by HCN shows an environment-dependent relation to star formation. However, our results also show significant (±0.2 dex) galaxy-to-galaxy variations. We suggest that gas structure below the scale of our observations and dynamical effects likely also play an important role. [ABSTRACT FROM AUTHOR]- Published
- 2019
- Full Text
- View/download PDF
44. Stellar structures, molecular gas, and star formation across the PHANGS sample of nearby galaxies
- Author
-
M. Querejeta, E. Schinnerer, S. Meidt, J. Sun, A. K. Leroy, E. Emsellem, R. S. Klessen, J. C. Muñoz-Mateos, H. Salo, E. Laurikainen, I. Bešlić, G. A. Blanc, M. Chevance, D. A. Dale, C. Eibensteiner, C. Faesi, A. García-Rodríguez, S. C. O. Glover, K. Grasha, J. Henshaw, C. Herrera, A. Hughes, K. Kreckel, J. M. D. Kruijssen, D. Liu, E. J. Murphy, H.-A. Pan, J. Pety, A. Razza, E. Rosolowsky, T. Saito, A. Schruba, A. Usero, E. J. Watkins, T. G. Williams, Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
EDGE-CALIFA SURVEY ,DEPLETION TIME ,FORMATION EFFICIENCY ,SPIRAL ARMS ,FOS: Physical sciences ,MORPHOLOGICAL CLASSIFICATIONS ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,33 GHZ OBSERVATIONS ,Astrophysics::Solar and Stellar Astrophysics ,FORMATION LAW ,Astrophysics::Galaxy Astrophysics ,Physics ,ISM [galaxies] ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Star formation ,100 PC SCALES ,SPITZER SURVEY ,Astronomy and Astrophysics ,Sample (graphics) ,Astrophysics - Astrophysics of Galaxies ,Galaxy ,Physics and Astronomy ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,Astrophysics of Galaxies (astro-ph.GA) ,galaxies: star formation ,structure [galaxies] ,galaxies: structure ,Astrophysics::Earth and Planetary Astrophysics ,star formation [galaxies] ,BARRED GALAXIES ,galaxies: ISM - Abstract
We identify stellar structures in the PHANGS sample of 74 nearby galaxies and construct morphological masks of sub-galactic environments based on Spitzer 3.6 micron images. At the simplest level, we distinguish centres, bars, spiral arms, interarm and discs without strong spirals. Slightly more sophisticated masks include rings and lenses, publicly released but not explicitly used in this paper. We examine trends using PHANGS-ALMA CO(2-1) intensity maps and tracers of star formation. The interarm regions and discs without strong spirals dominate in area, whereas molecular gas and star formation are quite evenly distributed among the five basic environments. We reproduce the molecular Kennicutt-Schmidt relation with a slope compatible with unity within the uncertainties, without significant slope differences among environments. In contrast to early studies, we find that bars are not always deserts devoid of gas and star formation, but instead they show large diversity. Similarly, spiral arms do not account for most of the gas and star formation in disc galaxies, and they do not have shorter depletion times than the interarm regions. Spiral arms accumulate gas and star formation, without systematically boosting the star formation efficiency. Centres harbour remarkably high surface densities and on average shorter depletion times than other environments. Centres of barred galaxies show higher surface densities and wider distributions compared to the outer disc; yet, depletion times are similar to unbarred galaxies, suggesting highly intermittent periods of star formation when bars episodically drive gas inflow, without enhancing the central star formation efficiency permanently. In conclusion, we provide quantitative evidence that stellar structures in galaxies strongly affect the organisation of molecular gas and star formation, but their impact on star formation efficiency is more subtle., 28 pages, 11 figures, accepted for publication in A&A
- Full Text
- View/download PDF
45. A 50 pc Scale View of Star Formation Efficiency across NGC 628.
- Author
-
K. Kreckel, C. Faesi, J. M. D. Kruijssen, A. Schruba, B. Groves, A. K. Leroy, F. Bigiel, G. A. Blanc, M. Chevance, C. Herrera, A. Hughes, R. McElroy, J. Pety, M. Querejeta, E. Rosolowsky, E. Schinnerer, J. Sun, A. Usero, and D. Utomo
- Published
- 2018
- Full Text
- View/download PDF
46. Active cooling of microvascular composites for battery packaging.
- Author
-
Stephen J Pety, Patrick X L Chia, Stephen M Carrington, and Scott R White
- Abstract
Batteries in electric vehicles (EVs) require a packaging system that provides both thermal regulation and crash protection. A novel packaging scheme is presented that uses active cooling of microvascular carbon fiber reinforced composites to accomplish this multifunctional objective. Microvascular carbon fiber/epoxy composite panels were fabricated and their cooling performance assessed over a range of thermal loads and experimental conditions. Tests were performed for different values of coolant flow rate, channel spacing, panel thermal conductivity, and applied heat flux. More efficient cooling occurs when the coolant flow rate is increased, channel spacing is reduced, and thermal conductivity of the host composite is increased. Computational fluid dynamics (CFD) simulations were also performed and correlate well with the experimental data. CFD simulations of a typical EV battery pack confirm that microvascular composite panels can adequately cool battery cells generating 500 W m
−2 heat flux below 40 °C. [ABSTRACT FROM AUTHOR]- Published
- 2017
- Full Text
- View/download PDF
47. SPATIALLY RESOLVED l-C3H+ EMISSION IN THE HORSEHEAD PHOTODISSOCIATION REGION: FURTHER EVIDENCE FOR A TOP-DOWN HYDROCARBON CHEMISTRY.
- Author
-
V. V. Guzmán, J. Pety, J. R. Goicoechea, M. Gerin, E. Roueff, P. Gratier, and K. I. Öberg
- Published
- 2015
- Full Text
- View/download PDF
48. In situ spheroid formation in distant submillimetre-bright galaxies.
- Author
-
Tan QH, Daddi E, Magnelli B, Correa CA, Bournaud F, Adscheid S, Zhang SB, Elbaz D, Gómez-Guijarro C, Kalita BS, Liu D, Liu Z, Pety J, Puglisi A, Schinnerer E, Silverman JD, and Valentino F
- Abstract
Most stars in today's Universe reside within spheroids, which are bulges of spiral galaxies and elliptical galaxies
1,2 . Their formation is still an unsolved problem3-5 . Infrared/submillimetre-bright galaxies at high redshifts6 have long been suspected to be related to spheroid formation7-12 . Proving this connection has been hampered so far by heavy dust obscuration when focusing on their stellar emission13-15 or by methodologies and limited signal-to-noise ratios when looking at submillimetre wavelengths16,17 . Here we show that spheroids are directly generated by star formation within the cores of highly luminous starburst galaxies in the distant Universe. This follows from the ALMA submillimetre surface brightness profiles, which deviate substantially from those of exponential disks, and from the skewed-high axis-ratio distribution. Most of these galaxies are fully triaxial rather than flat disks: the ratio of the shortest to the longest of their three axes is half, on average, and increases with spatial compactness. These observations, supported by simulations, reveal a cosmologically relevant pathway for in situ spheroid formation through starbursts that is probably preferentially triggered by interactions (and mergers) acting on galaxies fed by non-coplanar gas accretion streams., Competing Interests: Competing interests: The authors declare no competing interests., (© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)- Published
- 2024
- Full Text
- View/download PDF
49. Abundances of sulphur molecules in the Horsehead nebula First NS + detection in a photodissociation region.
- Author
-
Rivière-Marichalar P, Fuente A, Goicoechea JR, Pety J, Le Gal R, Gratier P, Guzmán V, Roueff E, Loison JC, Wakelam V, and Gerin M
- Abstract
Context: Sulphur is one of the most abundant elements in the Universe (S/H ∼ 1.3 × 10
-5 ) and plays a crucial role in biological systems on Earth. The understanding of its chemistry is therefore of major importance., Aims: Our goal is to complete the inventory of S-bearing molecules and their abundances in the prototypical photodissociation region (PDR) the Horsehead nebula to gain insight into sulphur chemistry in UV irradiated regions. Based on the WHISPER (Wide-band High-resolution Iram-30m Surveys at two positions with Emir Receivers) millimeter (mm) line survey, our goal is to provide an improved and more accurate description of sulphur species and their abundances towards the core and PDR positions in the Horsehead., Methods: The Monte Carlo Markov Chain (MCMC) methodology and the molecular excitation and radiative transfer code RADEX were used to explore the parameter space and determine physical conditions and beam-averaged molecular abundances., Results: A total of 13 S-bearing species (CS, SO, SO2 , OCS, H2 CS - both ortho and para - HDCS, C2 S, HCS+ , SO+ , H2 S, S2 H, NS and NS+ ) have been detected in the two targeted positions. This is the first detection of SO+ in the Horsehead and the first detection of NS+ in any PDR. We find a differentiated chemical behaviour between C-S and O-S bearing species within the nebula. The C-S bearing species C2 S and o-H2 CS present fractional abundances a factor of > two higher in the core than in the PDR. In contrast, the O-S bearing molecules SO, SO2 , and OCS present similar abundances towards both positions. A few molecules, SO+ , NS, and NS+ , are more abundant towards the PDR than towards the core, and could be considered as PDR tracers., Conclusions: This is the first complete study of S-bearing species towards a PDR. Our study shows that CS, SO, and H2 S are the most abundant S-bearing molecules in the PDR with abundances of ∼ a few 10-9 . We recall that SH, SH+ , S, and S+ are not observable at the wavelengths covered by the WHISPER survey. At the spatial scale of our observations, the total abundance of S atoms locked in the detected species is < 10-8 , only ∼0.1% of the cosmic sulphur abundance.- Published
- 2019
- Full Text
- View/download PDF
50. Oxygen fractionation in dense molecular clouds.
- Author
-
Loison JC, Wakelam V, Gratier P, Hickson KM, Bacmann A, Agùndez M, Marcelino N, Cernicharo J, Guzman V, Gerin M, Goicoechea JR, Roueff E, Le Petit F, Pety J, Fuente A, and Riviere-Marichalar P
- Abstract
We have developed the first gas-grain chemical model for oxygen fractionation (also including sulphur fractionation) in dense molecular clouds, demonstrating that gas-phase chemistry generates variable oxygen fractionation levels, with a particularly strong effect for NO, SO, O
2 , and SO2 . This large effect is due to the efficiency of the neutral18 O + NO,18 O + SO, and18 O + O2 exchange reactions. The modeling results were compared to new and existing observed isotopic ratios in a selection of cold cores. The good agreement between model and observations requires that the gas-phase abundance of neutral oxygen atoms is large in the observed regions. The S16 O/S18 O ratio is predicted to vary substantially over time showing that it can be used as a sensitive chemical proxy for matter evolution in dense molecular clouds.- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.