18 results on '"J. M. Morookian"'
Search Results
2. Chemistry, mineralogy, and grain properties at Namib and High dunes, Bagnold dune field, Gale crater, Mars: A synthesis of Curiosity rover observations
- Author
-
B. L. Ehlmann, K. S. Edgett, B. Sutter, C. N. Achilles, M. L. Litvak, M. G. A. Lapotre, R. Sullivan, A. A. Fraeman, R. E. Arvidson, D. F. Blake, N. T. Bridges, P. G. Conrad, A. Cousin, R. T. Downs, T. S. J. Gabriel, R. Gellert, V. E. Hamilton, C. Hardgrove, J. R. Johnson, S. Kuhn, P. R. Mahaffy, S. Maurice, M. McHenry, P.‐Y. Meslin, D. W. Ming, M. E. Minitti, J. M. Morookian, R. V. Morris, C. D. O'Connell‐Cooper, P. C. Pinet, S. K. Rowland, S. Schröder, K. L. Siebach, N. T. Stein, L. M. Thompson, D. T. Vaniman, A. R. Vasavada, D. F. Wellington, R. C. Wiens, and A. S. Yen
- Published
- 2017
- Full Text
- View/download PDF
3. Hydrothermal Precipitation of Sanidine (Adularia) Having Full Al,Si Structural Disorder and Specular Hematite at Maunakea Volcano (Hawai'i) and at Gale Crater (Mars)
- Author
-
David J. Des Marais, Thomas F. Bristow, N. Castle, L. Le, Albert S. Yen, J. P. Ott, Shaunna M. Morrison, Trevor G. Graff, R. Christoffersen, E. B. Rampe, Robert M. Hazen, David F. Blake, M. Adams, Stanley A. Mertzman, Abigail A. Fraeman, J. C. Hamilton, V. Tu, D. T. Vaniman, Steve J. Chipera, J. V. Hogancamp, Michael T. Thorpe, Cherie N. Achilles, P. I. Craig, D. W. Ming, G. W. Downs, J. M. Morookian, Allan H. Treiman, Robert T. Downs, and R. V. Morris
- Subjects
geography ,geography.geographical_feature_category ,Geochemistry ,Gale crater ,Mars Exploration Program ,Hematite ,Sanidine ,Hydrothermal circulation ,Geophysics ,Volcano ,Space and Planetary Science ,Geochemistry and Petrology ,visual_art ,Earth and Planetary Sciences (miscellaneous) ,visual_art.visual_art_medium ,Precipitation ,Geology - Abstract
Hydrothermal high sanidine and specular hematite are found within ferric‐rich and gray‐colored cemented basaltic breccia occurring within horizontal, weathering‐resistant strata exposed in an erosional gully of the Pu'u Poliahu cinder cone in the summit region of Maunakea volcano (Hawai'i). The cone was extensively altered by hydrothermal, acid‐sulfate fluids at temperatures up to ~400 °C, and, within strata, plagioclase was removed by dissolution from progenitor Hawaiitic basalt, and sanidine and hematite were precipitated. Fe₂O₃T concentration and Fe ³⁺/∑Fe redox state are ~12 wt.% and ~0.4 for progenitor basalt and 46–60 wt.% and ~1.0 for cemented breccias, respectively, implying open‐system alteration and oxic precipitation. Hydrothermal high sanidine (adularia) is characterized by full Al,Si structural disorder and monoclinic unit‐cell (Rietveld refinement): a = 8.563(19) Å, b = 13.040(6) Å, c = 7.169(4) Å, β = 116.02(10)°, and V = 719.4(19) ų. Hematite (structure confirmed by Rietveld refinement) is the predominant Fe‐bearing phase detected. Coarse size fractions of powdered hematite‐rich breccia (500–1000 μm) are dark and spectrally neutral at visible wavelengths, confirming specular hematite, and SEM images show platy to polyhedral hematite morphologies with longest dimensions >10 μm. Smectite and 10‐Å phyllosilicate, both chemically dominated by Mg as octahedral cation, are additional diagenetic hydrothermal alteration products. By analogy and as a working hypothesis, high sanidine (Kimberly formation) and specular hematite (Mt. Sharp group at Hartmann's Valley and Vera Rubin ridge) at Gale crater are interpreted as diagenetic alteration products of Martian basaltic material by hydrothermal processes.
- Published
- 2020
- Full Text
- View/download PDF
4. Mineralogy and geochemistry of sedimentary rocks and eolian sediments in Gale crater, Mars: A review after six Earth years of exploration with Curiosity
- Author
-
J. M. Morookian, B. Lafuente, John P. Grotzinger, N. Castle, G. W. Downs, Horton E. Newsom, T. S. Peretyazhko, Vivian Z. Sun, R. Walroth, Ashwin R. Vasavada, Christopher M. Fedo, David J. Des Marais, R. M. Hazen, Kirsten L. Siebach, P. R. Mahaffy, A. H. Treiman, John Bridges, Juergen Schieber, R. Gellert, Roger C. Wiens, C. N. Achilles, C. Freissinet, D. F. Blake, Steve J. Chipera, Robert T. Downs, Joy A. Crisp, Jeffrey R. Johnson, Elizabeth B. Rampe, Philippe Sarrazin, Shaunna M. Morrison, Linda C. Kah, D. T. Vaniman, Lauren A. Edgar, P. I. Craig, V. Tu, D. W. Ming, Albert S. Yen, T. F. Bristow, R. V. Morris, Michael T. Thorpe, Danika Wellington, NASA Johnson Space Center (JSC), NASA, NASA Ames Research Center (ARC), Planetary Science Institute [Tucson] (PSI), NASA Goddard Space Flight Center (GSFC), Geophysical Laboratory [Carnegie Institution], Carnegie Institution for Science [Washington], Jacobs Technology ESCG, Jet Propulsion Laboratory (JPL), California Institute of Technology (CALTECH)-NASA, University of Arizona, California Institute of Technology (CALTECH), Lunar and Planetary Institute [Houston] (LPI), SETI Institute, Space Research Centre [Leicester], University of Leicester, Astrogeology Science Center [Flagstaff], United States Geological Survey [Reston] (USGS), The University of Tennessee [Knoxville], PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Department of Physics [Guelph], University of Guelph, The University of New Mexico [Albuquerque], Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Rice University [Houston], Department of Geological Sciences [Bloomington], Indiana University [Bloomington], Indiana University System-Indiana University System, ASU School of Earth and Space Exploration (SESE), Arizona State University [Tempe] (ASU), and Los Alamos National Laboratory (LANL)
- Subjects
Basalt ,Olivine ,010504 meteorology & atmospheric sciences ,Geochemistry ,Mineralogy ,Mars ,Mars Science Laboratory ,Mars Exploration Program ,engineering.material ,01 natural sciences ,Diagenesis ,CheMin ,Sedimentary depositional environment ,Igneous rock ,Geophysics ,13. Climate action ,Geochemistry and Petrology ,[SDU]Sciences of the Universe [physics] ,0103 physical sciences ,engineering ,Sedimentary rock ,Sedimentology ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences - Abstract
International audience; The Mars Science Laboratory Curiosity rover arrived at Mars in August 2012 with a primary goal of characterizing the habitability of ancient and modern environments. Curiosity was sent to Gale crater to study a sequence of ∼3.5 Ga old sedimentary rocks that, based on orbital visible and near- to short-wave infrared reflectance spectra, contain secondary minerals that suggest deposition and/or alteration in liquid water. The sedimentary sequence in the lower slopes of Mount Sharp in Gale crater preserves a dramatic shift on early Mars from a relatively warm and wet climate to a cold and dry climate, based on a transition from smectite-bearing strata to sulfate-bearing strata. The rover is equipped with instruments to examine the sedimentology and identify compositional changes in the stratigraphy. The Chemistry and Mineralogy (CheMin) instrument is one of two internal laboratories on Curiosity and includes a transmission X-ray diffractometer (XRD) and X-ray fluorescence (XRF) spectrometer. CheMin measures loose sediment samples scooped from the surface and drilled rock powders, and the XRD provides quantitative mineralogy to a detection limit of ∼1 wt.% for crystalline phases. Curiosity has traversed >20 km since landing and has primarily been exploring an ancient lake environment fed by streams and groundwater. Of the 19 drilled rock samples analyzed by CheMin as of sol 2300 (January 2019), 15 are from fluvio-lacustrine deposits that comprise the Bradbury and Murray formations. Most of these samples were drilled from units that did not have a clear mineralogical signature from orbit. Results from CheMin demonstrate an astounding diversity in the mineralogy of these rocks that signifies geochemical variations in source rocks, transportation mechanisms, and depositional and diagenetic fluids. Most detrital igneous minerals are basaltic, but the discovery in a few samples of abundant silicate minerals that usually crystallize from evolved magmas on Earth remains enigmatic. Trioctahedral smectite and magnetite at the base of the section may have formed from low-salinity pore waters with a circumneutral pH in lake sediments. A transition to dioctahedral smectite, hematite, and Ca-sulfate going up section suggests a change to more saline and oxidative aqueous conditions in the lake waters themselves and/or in diagenetic fluids. Perhaps one of the biggest mysteries revealed by CheMin is the high abundance of X-ray amorphous materials (15–73 wt.%) in all samples drilled or scooped to date. CheMin has analyzed three modern eolian sands, which have helped constrain sediment transport and mineral segregation across the active Bagnold Dune Field. Ancient eolian sandstones drilled from the Stimson formation differ from modern eolian sands in that they contain abundant magnetite but no olivine, suggesting that diagenetic processes led to the alteration of olivine to release Fe(II) and precipitate magnetite. Fracture-associated halos in the Stimson and the Murray formations are evidence for complex aqueous processes long after the streams and lakes vanished from Gale crater. The sedimentology and composition of the rocks analyzed by Curiosity demonstrate that habitable environments persisted intermittently on the surface or in the subsurface of Gale crater for perhaps more than a billion years.
- Published
- 2020
- Full Text
- View/download PDF
5. Mineralogy of an active eolian sediment from the Namib dune, Gale crater, Mars
- Author
-
Shaunna M. Morrison, Robert T. Downs, Philippe Sarrazin, J. M. Morookian, R. Gellert, Bethany L. Ehlmann, Robert M. Hazen, David F. Blake, P. I. Craig, Douglas W. Ming, John P. Grotzinger, Jack D. Farmer, D. T. Vaniman, A. H. Treiman, Ryan C. Ewing, Thomas F. Bristow, R. V. Morris, Cherie N. Achilles, Elizabeth B. Rampe, Steve J. Chipera, Albert S. Yen, David J. Des Marais, and Kim V. Fendrich
- Subjects
Basalt ,Anhydrite ,010504 meteorology & atmospheric sciences ,Water on Mars ,Mineralogy ,Mars Exploration Program ,Hematite ,engineering.material ,01 natural sciences ,chemistry.chemical_compound ,Geophysics ,chemistry ,Space and Planetary Science ,Geochemistry and Petrology ,visual_art ,0103 physical sciences ,Earth and Planetary Sciences (miscellaneous) ,visual_art.visual_art_medium ,engineering ,Aeolian processes ,Plagioclase ,Composition of Mars ,010303 astronomy & astrophysics ,Geology ,0105 earth and related environmental sciences - Abstract
The Mars Science Laboratory rover, Curiosity, is using a comprehensive scientific payload to explore rocks and soils in Gale crater, Mars. Recent investigations of the Bagnold Dune Field provided the first in situ assessment of an active dune on Mars. The Chemistry and Mineralogy (CheMin) X-ray diffraction instrument on Curiosity performed quantitative mineralogical analyses of the
- Published
- 2017
- Full Text
- View/download PDF
6. Corrigendum to 'Mineralogy and geochemistry of sedimentary rocks and eolian sediments in Gale crater, Mars: A review after six earth years of exploration with Curiosity' [Geochemistry 80 (2) (2020) 125605]
- Author
-
Danika Wellington, R. V. Morris, J. M. Morookian, T. S. Peretyazhko, Albert S. Yen, David J. Des Marais, G. W. Downs, R. C. Walroth, N. Castle, Juergen Schieber, Caroline Freissinet, R. Gellert, Jeffrey R. Johnson, B. Lafuente, Robert M. Hazen, Horton E. Newsom, Paul R. Mahaffy, S. J. Chipera, John Bridges, D. W. Ming, C. Fedo, John P. Grotzinger, Allan H. Treiman, Joy A. Crisp, Kirsten L. Siebach, Cherie N. Achilles, Thomas F. Bristow, Linda C. Kah, Ashwin R. Vasavada, Vivian Z. Sun, Robert T. Downs, Philippe Sarrazin, Shaunna M. Morrison, E. B. Rampe, Michael T. Thorpe, P. I. Craig, Lauren A. Edgar, V. Tu, Roger C. Wiens, David F. Blake, and D. T. Vaniman
- Subjects
Geophysics ,Geochemistry and Petrology ,Geochemistry ,Gale crater ,Sedimentary rock ,Mars Exploration Program ,Earth (classical element) ,Geology ,Eolian sediments - Published
- 2020
- Full Text
- View/download PDF
7. USING MINERALOGY OF THE BAGNOLD DUNE FIELD IN GALE CRATER TO INTERPRET EOLIAN SEDIMENT SORTING ON THE MARTIAN SURFACE
- Author
-
T. S. Peretyazhko, R. Gellert, Brad Sutter, D. J. Des Marais, Allan H. Treiman, Briony Horgan, D. W. Ming, V. Tu, R. V. Morris, P. I. Craig, Travis Gabriel, E. B. Rampe, Catherine M. Weitz, Shaunna M. Morrison, S. Czarnecki, Robert M. Hazen, Albert S. Yen, John P. Grotzinger, Amy McAdam, Robert T. Downs, Philippe Sarrazin, Mathieu G.A. Lapotre, J. M. Morookian, N. Castle, Raymond E. Arvidson, David F. Blake, D. T. Vaniman, Steve J. Chipera, Thomas F. Bristow, Jack D. Farmer, Kenneth S. Edgett, Cherie N. Achilles, and Craig Hardgrove
- Subjects
Bedform ,Sorting (sediment) ,engineering ,Aeolian processes ,Plagioclase ,Mineralogy ,Mars Exploration Program ,Pyroxene ,engineering.material ,Mafic ,Geology ,CRISM - Abstract
The Mars Science Laboratory Curiosity rover landed in Gale crater in August 2012 to characterize modern and ancient surface environments. Curiosity executed a two-phase campaign to study the morphology, activity, physical properties, and chemical and mineralogical composition of the Bagnold Dune Field, an active eolian dune field on the lower slopes of Aeolis Mons (Mount Sharp). Detectable aspects of dune sand mineralogy have been examined from orbit with the visible/short-wave infrared spectrometer CRISMand the thermal-infrared spectrometers THEMIS and TES. CRISM data demonstrate variations in plagioclase, pyroxene, and olivine abundances across the dune field. Curiosity analyzed sediments from two locations in the dune field to evaluate the causes of the mineralogical differences observed from orbit. The Gobabeb sample was collected from Namib Dune, a barchanoidal dune on the upwind margin of the dune field, and the Ogunquit Beach sample was collected from the Mount Desert Island sand patch located downwind from Namib. These samples were sieved to
- Published
- 2018
- Full Text
- View/download PDF
8. Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale crater, Mars
- Author
-
Olivier Forni, Thomas F. Bristow, Nina Lanza, Joel A. Hurowitz, David J. Des Marais, Elizabeth B. Rampe, Linda C. Kah, T. S. Peretyazhko, Allan H. Treiman, John P. Grotzinger, Kim V. Fendrich, Alberto G. Fairén, Kirsten L. Siebach, R. V. Morris, Cherie N. Achilles, Albert S. Yen, Lucy M. Thompson, Jack D. Farmer, Jeff A. Berger, David F. Blake, J. M. Morookian, Robert T. Downs, Philippe Sarrazin, Douglas W. Ming, Sanjeev Gupta, Mariek E. Schmidt, David T. Vaniman, Jennifer L. Eigenbrode, Shaunna M. Morrison, Ralf Gellert, B. Sutter, Steve J. Chipera, P. I. Craig, Robert M. Hazen, Science and Technology Facilities Council (STFC), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), and Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Meridiani Planum ,Geochemistry & Geophysics ,010504 meteorology & atmospheric sciences ,04 Earth Sciences ,Geochemistry ,Mineralogy ,Mars ,Pyroxene ,engineering.material ,YELLOWKNIFE BAY ,010502 geochemistry & geophysics ,01 natural sciences ,Geochemistry and Petrology ,DISSOLUTION ,Jarosite ,Earth and Planetary Sciences (miscellaneous) ,SALINE LAKE ,acid-sulfate alteration ,X-RAY SPECTROMETER ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Mineral ,Science & Technology ,SEDIMENTARY-ROCKS ,02 Physical Sciences ,SCOTIAN BASIN ,MERIDIANI-PLANUM ,WESTERN-AUSTRALIA ,SCIENCE LABORATORY MISSION ,Hematite ,Gale crater ,Diagenesis ,X-ray diffraction ,SULFUR-DIOXIDE ,Geophysics ,[SDU]Sciences of the Universe [physics] ,13. Climate action ,Space and Planetary Science ,visual_art ,Physical Sciences ,engineering ,visual_art.visual_art_medium ,Sedimentary rock ,Mafic ,diagenesis ,Geology - Abstract
The Mars Science Laboratory Curiosity rover has been traversing strata at the base of Aeolis Mons (informally known as Mount Sharp) since September 2014. The Murray formation makes up the lowest exposed strata of the Mount Sharp group and is composed primarily of finely laminated lacustrine mudstone intercalated with rare crossbedded sandstone that is prodeltaic or fluvial in origin. We report on the first three drilled samples from the Murray formation, measured in the Pahrump Hills section. Rietveld refinements and FULLPAT full pattern fitting analyses of X-ray diffraction patterns measured by the MSL CheMin instrument provide mineral abundances, refined unit-cell parameters for major phases giving crystal chemistry, and abundances of X-ray amorphous materials. Our results from the samples measured at the Pahrump Hills and previously published results on the Buckskin sample measured from the Marias Pass section stratigraphically above Pahrump Hills show stratigraphic variations in the mineralogy; phyllosilicates, hematite, jarosite, and pyroxene are most abundant at the base of the Pahrump Hills, and crystalline and amorphous silica and magnetite become prevalent higher in the succession. Some trace element abundances measured by APXS also show stratigraphic trends; Zn and Ni are highly enriched with respect to average Mars crust at the base of the Pahrump Hills (by 7.7 and 3.7 times, respectively), and gradually decrease in abundance in stratigraphically higher regions near Marias Pass, where they are depleted with respect to average Mars crust (by more than an order of magnitude in some targets). The Mn stratigraphic trend is analogous to Zn and Ni, however, Mn abundances are close to those of average Mars crust at the base of Pahrump Hills, rather than being enriched, and Mn becomes increasingly depleted moving upsection. Minerals at the base of the Pahrump Hills, in particular jarosite and hematite, as well as enrichments in Zn, Ni, and Mn, are products of acid-sulfate alteration on Earth. We hypothesize that multiple influxes of mildly to moderately acidic pore fluids resulted in diagenesis of the Murray formation and the observed mineralogical and geochemical variations. The preservation of some minerals that are highly susceptible to dissolution at low pH (e.g., mafic minerals and fluorapatite) suggests that acidic events were not long-lived and that fluids may not have been extremely acidic (pH>2pH>2). Alternatively, the observed mineralogical variations within the succession may be explained by deposition in lake waters with variable Eh and/or pH, where the lowermost sediments were deposited in an oxidizing, perhaps acidic lake setting, and sediments deposited in the upper Pahrump Hills and Marias Pass were deposited lake waters with lower Eh and higher pH.
- Published
- 2017
- Full Text
- View/download PDF
9. Chemistry, mineralogy, and grain properties at Namib and High dunes, Bagnold dune field, Gale crater, Mars: A synthesis of Curiosity rover observations
- Author
-
Victoria E. Hamilton, Albert S. Yen, Pamela G. Conrad, R. Gellert, D. W. Ming, Ashwin R. Vasavada, Mathieu G.A. Lapotre, Scott K. Rowland, Abigail A. Fraeman, Roger C. Wiens, David F. Blake, Kenneth S. Edgett, Jeffrey R. Johnson, C. D. O'Connell-Cooper, P.-Y. Meslin, D. T. Vaniman, Danika Wellington, Ryan C. Sullivan, Michelle E. Minitti, Kirsten L. Siebach, Nathaniel Stein, Agnes Cousin, Sylvestre Maurice, Robert T. Downs, Nathan T. Bridges, Cherie N. Achilles, Stephen Kuhn, Craig Hardgrove, Lucy M. Thompson, Travis Gabriel, Paul R. Mahaffy, M. L. Litvak, Susanne Schröder, R. V. Morris, J. M. Morookian, Raymond E. Arvidson, Bethany L. Ehlmann, Patrick Pinet, Brad Sutter, M. McHenry, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), and Services communs OMP (UMS 831)
- Subjects
010504 meteorology & atmospheric sciences ,Namib ,01 natural sciences ,Planetary Sciences: Solar System Objects ,Earth and Planetary Sciences (miscellaneous) ,010303 astronomy & astrophysics ,Research Articles ,Martian ,grain size ,Mars Science Laboratory ,Investigations of the Bagnold Dune Field, Gale crater ,Mars Exploration Program ,Mineralogy ,Physical Properties of Materials ,Grain size ,Planetary Mineralogy and Petrology ,Chemistry ,Geophysics ,volatiles ,Aeolian processes ,Erosion and Weathering ,dust ,Geology ,Composition ,Research Article ,Dunes ,Surface Materials and Properties ,Bedform ,Mars ,engineering.material ,Planetary Geochemistry ,amorphous phase ,Geochemistry and Petrology ,0103 physical sciences ,Rover ,Plagioclase ,MSL ,Planetary Sciences: Solid Surface Planets ,Mineralogy and Petrology ,0105 earth and related environmental sciences ,Olivine ,Mars soils ,Bagnold ,Geochemistry ,sand dunes ,Curiosity ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,Rocknest ,engineering - Abstract
The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in the active Bagnold dune field. The Bagnold sands are rounded to subrounded, very fine to medium sized (~45–500 μm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust‐covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt‐sized or smaller grains, and show no evidence for cohesion. Nevertheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%). Yet Bagnold and Rocknest bulk chemistry differ. Bagnold sands are Si enriched relative to other soils at Gale crater, and H2O, S, and Cl are lower relative to all previously measured Martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse‐sieved fraction of Bagnold sands, corroborated by visible/near‐infrared spectra that suggest enrichment of olivine. Collectively, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in Martian soils: (1) amorphous components in the sand‐sized fraction (represented by Bagnold) that are Si‐enriched, hydroxylated alteration products and/or H2O‐ or OH‐bearing impact or volcanic glasses and (2) amorphous components in the fine fraction (, Key Points Because of ongoing aeolian activity, the Bagnold dunes consist of well‐sorted sands and lack the finer grains typical of Martian soilsDune sands are chemically distinct with elevated Si, Mg, and Ni and lower H2O, S, and Cl relative to all previously measured Martian finesTwo distinct, water‐/OH‐bearing amorphous components are identified: Fe‐, S‐, and Cl‐rich material in dust and Si‐rich material in the sands
- Published
- 2017
- Full Text
- View/download PDF
10. Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater
- Author
-
Richard V. Morris, Edward M. Stolper, David J. Des Marais, John P. Grotzinger, Douglas W. Ming, Joy A. Crisp, Jens Frydenvang, Shaunna M. Morrison, Kim V. Fendrich, Ralf Gellert, Elizabeth B. Rampe, Steve J. Chipera, Susanne P. Schwenzer, Robert T. Downs, Allan H. Treiman, Albert S. Yen, J. M. Morookian, David T. Vaniman, David F. Blake, Jack D. Farmer, Cherie N. Achilles, Thomas F. Bristow, and Trevor G. Graff
- Subjects
Multidisciplinary ,Anhydrite ,010504 meteorology & atmospheric sciences ,Geochemistry ,Mineralogy ,Silicic ,engineering.material ,010502 geochemistry & geophysics ,Sanidine ,Feldspar ,01 natural sciences ,Cristobalite ,Diagenesis ,chemistry.chemical_compound ,Tridymite ,chemistry ,visual_art ,Physical Sciences ,engineering ,visual_art.visual_art_medium ,Plagioclase ,Geology ,0105 earth and related environmental sciences - Abstract
Tridymite, a low-pressure, high-temperature (>870 °C) SiO_2 polymorph, was detected in a drill sample of laminated mudstone (Buckskin) at Marias Pass in Gale crater, Mars, by the Chemistry and Mineralogy X-ray diffraction instrument onboard the Mars Science Laboratory rover Curiosity. The tridymitic mudstone has ∼40 wt.% crystalline and ∼60 wt.% X-ray amorphous material and a bulk composition with ∼74 wt.% SiO_2 (Alpha Particle X-Ray Spectrometer analysis). Plagioclase (∼17 wt.% of bulk sample), tridymite (∼14 wt.%), sanidine (∼3 wt.%), cation-deficient magnetite (∼3 wt.%), cristobalite (∼2 wt.%), and anhydrite (∼1 wt.%) are the mudstone crystalline minerals. Amorphous material is silica-rich (∼39 wt.% opal-A and/or high-SiO_2 glass and opal-CT), volatile-bearing (16 wt.% mixed cation sulfates, phosphates, and chlorides−perchlorates−chlorates), and has minor TiO_2 and Fe_2O_3T oxides (∼5 wt.%). Rietveld refinement yielded a monoclinic structural model for a well-crystalline tridymite, consistent with high formation temperatures. Terrestrial tridymite is commonly associated with silicic volcanism, and detritus from such volcanism in a “Lake Gale” catchment environment can account for Buckskin’s tridymite, cristobalite, feldspar, and any residual high-SiO_2 glass. These cogenetic detrital phases are possibly sourced from the Gale crater wall/rim/central peak. Opaline silica could form during diagenesis from high-SiO_2 glass, as amorphous precipitated silica, or as a residue of acidic leaching in the sediment source region or at Marias Pass. The amorphous mixed-cation salts and oxides and possibly the crystalline magnetite (otherwise detrital) are primary precipitates and/or their diagenesis products derived from multiple infiltrations of aqueous solutions having variable compositions, temperatures, and acidities. Anhydrite is post lithification fracture/vein fill.
- Published
- 2016
11. Strategies for realizing optical CDMA for dense, high-speed, long span, optical network applications
- Author
-
A.J. Mendez, R.M. Gagliardi, H.X.C. Feng, J.P. Heritage, and J.-M. Morookian
- Subjects
Engineering ,Time-division multiplexing ,Code division multiple access ,business.industry ,Wavelength-division multiplexing ,Local area network ,Optical communication ,Electronic engineering ,Spectral efficiency ,business ,Chip ,Telecommunications network ,Atomic and Molecular Physics, and Optics - Abstract
Since the mid 1990s, the role of optical CDMA has expanded from local area networks to longer span, telecommunication-type networks. In order to play a significant role in these longer span, denser, higher data rate networks, optical CDMA code set must (1) have at least as many codes as dense wavelength division multiplexing (WDM) (i.e., more than eight codes); (2) operate at high data rates (i.e., greater than 2.5 Gb/s); and (3) propagate with high fidelity over the installed or installable fiber links. Most approaches to optical CDMA require narrow pulses, which are more susceptible to fiber impairments and may have lower spectral efficiency than conventional WDM modulation schemes such as non-return-to-zero (NRZ), so they do not meet these new requirements. Therefore, we have formulated a strategy which simultaneously increases the number of good codes (resulting in higher density) and reduces their code length (i.e., decreasing the number of time slots required thus enabling higher data rates for a given chip time): the strategy of matrix codes. In this paper, we describe the design of a set of eight matrix codes for operation at 2.5 Gb/s and evaluate their propagation over an existing 214 km network link by means of computer simulation. The results indicate that the codes propagate well if dispersion management is used. The paper also discusses a strategy for managing the multiaccess interference (MAI) in a bursty traffic environment.
- Published
- 2000
- Full Text
- View/download PDF
12. Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars
- Author
-
M. A. Meyer, Mark I. Richardson, Robert C. Anderson, Marisa C. Palucis, Sara Navarro Lopez, Rodney C. Ewing, Sanjeev Gupta, Caroline Freissinet, Edward M. Stolper, James F. Bell, M. A. Ravine, I. G. Mitrofanov, Thomas F. Bristow, Dawn Y. Sumner, Joel A. Hurowitz, Robert M. Haberle, Claire E. Newman, Andrew Steele, Muriel Saccoccio, Leslie Keely, E. Pallier, Jason P. Dworkin, Claude Geffroy, Mary A. Voytek, Michael Caplinger, Fred Goesmann, Yann Parot, Maria-Paz Zorzano Mier, A. B. Sanin, S. W. Squyres, Javier Caride Rodriguez, J. L. Griffes, Julio José Romeral-Planello, Jason Feldman, Katherine L. French, V. Sautter, Nicolas Mangold, David L. Bish, Vivian Lafaille, Michael D. Smith, François Raulin, V. Prokhorov, Gilles Berger, S. Slavney, Heather B. Franz, S. Johnstone, Susanne P. Schwenzer, Felipe Gómez, Harri Haukka, Francis A. Cucinotta, J. Hudgins, T. Cleghorn, Pascaline Francois, Alain Lepinette Malvitte, Shuai Li, Paul R. Mahaffy, K. M. Robertson, Bruce M. Jakosky, J. Guo, Juergen Schieber, Rafael Navarro-González, G. J. Flesch, Scott M. McLennan, Jennifer G. Blank, M. Carmosino, Kenneth A. Farley, Yves Langevin, P. D. Archer, A. E. Brunner, M. D. Dyar, S. Le Mouélic, V. Hipkin, Sara Alejandra Sans Fuentes, Kenneth S. Edgett, Sabrina Feldman, Gale Paulsen, Paul Herrera, Alberto G. Fairén, Kirsten L. Siebach, Jan-Peter Muller, M. J. Schoppers, Eldar Noe Dobrea, Nina Lanza, Marc Gailhanou, Genevieve Marchand, Sönke Burmeister, Craig Hardgrove, Justin N. Maki, Ari-Matti Harri, Michael C. Malin, M. J. Wolff, Roger E. Summons, H. Blau, Jacqueline Cameron, Jeff A. Berger, Didier Keymeulen, Agnes Cousin, Guillermo M. Muñoz Caro, Eric Lyness, Cedric Pilorget, Michael B. Baker, Christopher S. Edwards, M. L. Litvak, Brian M. Duston, Rebecca M. E. Williams, T. Nolan, Robert T. Downs, V. E. Hamilton, Walter Goetz, Pamela G. Conrad, J. Baroukh, Nathan T. Bridges, Meenakshi Wadhwa, Roger C. Wiens, Samuel M. Clegg, Philippe Sarrazin, L. Bleacher, Eric Lorigny, Mike Toplis, Michael H. Wong, Timothy H. McConnochie, Ian Mcewan, Kiran Patel, Mary Beth Wilhelm, John P. Grotzinger, Jeffrey E. Moersch, Michael A. Wilson, Mark Paton, I. Plante, Eric Lewin, Franck Poitrasson, Tori M. Hoehler, P. Guillemot, Mackenzie Day, David F. Blake, José Antonio Rodríguez Manfredi, G. W. Lugmair, Robert F. Wimmer-Schweingruber, Dorothy Z. Oehler, Samuel Teinturier, Bent Ehresmann, Jérémie Lasue, K. E. Herkenhoff, Daniel C. Berman, Scott VanBommel, Jeffrey R. Johnson, Emily M. McCullough, A. A. Fraeman, Ezat Heydari, Penelope L. King, K. M. Stack, Diana L. Blaney, A. Salamon, John G. Spray, L. Posiolova, Jeff Hollingsworth, David Choi, Kevin W. Lewis, B. D. Prats, Tonci Balic-Zunic, Mehdi Benna, H. M. Elliott, Jesús Martínez-Frías, R. Mueller-Mellin, William V. Boynton, Lance E. Christensen, Richard Leveille, John A. Grant, David E. Harker, J. M. Morookian, Caleb I. Fassett, S. Jacob, Donald Fay, R. Perez, Horton E. Newsom, Morten Madsen, M. G. Trainer, G. Israel, B. E. Nixon, Claude d’Uston, John E. Moores, Olivier Gasnault, Daniel J. Krysak, Vladislav Tretyakov, G. M. Perrett, Andrew D. Aubrey, L. E. Kirkland, F. Stalport, B. L. Barraclough, Alain Cros, Stephan Böttcher, Michel Cabane, William B. Brinckerhoff, Jack D. Farmer, James J. Wray, P. Y. Meslin, Arnaud Buch, Allan H. Treiman, S. C. R. Rafkin, B. C. Clark, Noureddine Melikechi, R. Jackson, Luther W. Beegle, Angela Lundberg, Bethany L. Ehlmann, William E. Dietrich, Karl Iagnemma, K. Supulver, Radu Popa, R. Zimdar, Melissa Floyd, Wesley T. Huntress, Paul B. Niles, D. M. Delapp, C. N.. Achilles, Darrell Drake, T. Nelson, Alain Gaboriaud, Verónica Peinado-Gonzalez, Edward P. Vicenzi, T. Boucher, Jennifer L. Eigenbrode, C. Tate, David J. Des Marais, F. Javier Martin-Torres, Antoine Charpentier, Chris Webster, Mildred P. Martin, Robert M. Sucharski, Lucy M. Thompson, Cyril Szopa, D. Halleaux, Antonio Molina Jurado, Richard V. Morris, Andrey Vostrukhin, Peter C. Thomas, Ara V. Nefian, Pablo Sobron Sanchez, Manuel de la Torre Juárez, B. Elliott, Hannu Savijärvi, J. Bentz, Sergey Nikiforov, S. Gordon, Shaunna M. Morrison, Jean-Luc Lacour, Günter Reitz, M. E. Newcombe, David E. Brinza, C. Yana, Gary Kocurek, L. J. Lipkaman, C. M. Garcia, Maria Genzer, Fred Calef, A. Godber, Stubbe F. Hviid, C. Donny, T. Van Beek, Ruslan O. Kuzmin, Alexander Hayes, T. S. Olson, George D. Cody, J. Martín-Soler, N. Karpushkina, John Bridges, Mercedes Jiménez, M. Lefavor, Sylvestre Maurice, H. L. K. Manning, Ralph E. Milliken, Susanne Schröder, N. Spanovich, L. J. Edwards, A. Koefoed, Roser Urqui-O'Callaghan, Eduardo Sebastian Martinez, Cary Zeitlin, Noël Stewart, David T. Vaniman, E. A. Breves, Laurent Favot, A. Varenikov, Gérard Manhès, R. B. Williams, David Martin, Steven J. Rowland, E. Boehm, Adrian P. Jones, Alexis Paillet, R. Francis, Sushil K. Atreya, Mariek E. Schmidt, David Baratoux, N. I. Boyd, Qiu-Mei Lee, I. L. ten Kate, Bernard Hallet, K. Stoiber, Vivian Z. Sun, M. R. Kennedy, Gillian M. Krezoski, Mark A. Bullock, T. Stein, Michelle E. Minitti, I. Pradler, Susan L. S. Stipp, Scott Davis, Robert O. Pepin, B. L. Ehlmann, Janne Kauhanen, Dmitry Golovin, Steve J. Chipera, Raymond E. Arvidson, Javier Gómez-Elvira, L. C. Kah, Melissa S. Rice, Isaias Carrasco Blazquez, Cécile Fabre, John J. Simmonds, Joy A. Crisp, Jens Frydenvang, Florence Tan, Julia DeMarines, S. P. Gorevan, Elizabeth B. Rampe, E. McCartney, Lauren DeFlores, K. Harshman, D. N. Harpold, J. Van Beek, Luis Mora-Sotomayor, Douglas W. Ming, Kristen E. Miller, John Campbell, Amy McAdam, L. Saper, Robert Sullivan, Lorenzo Fluckiger, Kjartan M. Kinch, Arik Posner, H. Bower, A. A. Pavlov, D. Scholes, Insoo Jun, Brigitte Gondet, Patrice Coll, Burt Baker, Donald M. Hassler, Ralf Gellert, Laurie A. Leshin, T. Siili, Gilles Dromart, Lauren A. Edgar, Ryan B. Anderson, Robert Dingler, Leon Radziemski, Jean-Baptiste Sirven, G. Weigle, Cynthia K. Little, A. Mezzacappa, Olivier Forni, A. S. Kozyrev, Edward A. Cloutis, Ashwin Vasavada, A. Behar, François Robert, D. M. Rubin, Alexey Malakhov, E. Jensen, T. C. Owen, Sebastien Hettrich, Miguel Ramos, B. Sutter, Melinda A. Kahre, Patrick Pinet, John H. Jones, Claude Brunet, B. Pavri, Nilton O. Renno, Evgeny Atlaskin, Laurent Peret, Maxim Mokrousov, David Lees, J. J. B. Avalos, Jennifer C. Stern, Ann Ollila, Josefina Torres Redondo, Miles J. Johnson, M. A. D. P. Hernandez, Daniel P. Glavin, Albert S. Yen, Christophe Agard, Jouni Polkko, Christopher P. McKay, J. Peterson, Oliver Botta, Mark T. Lemmon, Marion Nachon, K. M. Bean, Bruce A. Cantor, Jan Köhler, M. Fitzgibbon, Carlos Armiens-Aparicio, Jorge Pla-Garcia, Henrik Kahanpää, Frances Westall, Walter Schmidt, M.-H. Kim, Kenneth G. Miller, Sharon A. Wilson, S. McNair, O. Kortmann, David Grinspoon, E. M. Lee, S. Indyk, Osku Kemppinen, E. Raaen, Michael Mischna, R. S. Sletten, James B. Garvin, John M. Ward, R. L. Tokar, Paulo M. Vasconcelos, Charles Malespin, T. J. Parker, Aaron J. Sengstacken, S. Bender, Jean-Pierre Williams, F. Fedosov, Patrick Mauchien, Audrey Dupont, R. A. Yingst, David Coscia, David A. Cremers, Danika Wellington, Kenneth H. Nealson, J. K. Jensen, Martin R. Fisk, J. Joseph, Amy J. Williams, W. Brunner, NASA Johnson Space Center (JSC), NASA, NASA Goddard Space Flight Center (GSFC), Center for Research and Exploration in Space Science and Technology [GSFC] (CRESST), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Department of Physics [Guelph], University of Guelph, Department of Atmospheric, Oceanic, and Space Sciences [Ann Arbor] (AOSS), University of Michigan [Ann Arbor], University of Michigan System-University of Michigan System, ASU School of Earth and Space Exploration (SESE), Arizona State University [Tempe] (ASU), Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, Space Science and Astrobiology Division at Ames, NASA Ames Research Center (ARC), Division of Geological and Planetary Sciences [Pasadena], California Institute of Technology (CALTECH), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Department of Astronomy [Ithaca], Cornell University [New York], Center for Earth and Planetary Studies [Washington] (CEPS), Smithsonian National Air and Space Museum, Smithsonian Institution-Smithsonian Institution, Department of Earth Science and Technology [Imperial College London], Imperial College London, United States Geological Survey [Reston] (USGS), Department of Geosciences [Stony Brook], Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY), Rensselaer Polytechnic Institute (RPI), Princeton University, State University of New York (SUNY), Department of Earth, Atmospheric and Planetary Sciences [MIT, Cambridge] (EAPS), Massachusetts Institute of Technology (MIT), Department of Earth and Planetary Sciences [Knoxville], The University of Tennessee [Knoxville], Instituto de Ciencias Nucleares [Mexico], Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), Geophysical Laboratory [Carnegie Institution], Carnegie Institution for Science, Department of Earth and Planetary Science [UC Berkeley] (EPS), University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), NOAA Earth System Research Laboratory (ESRL), National Oceanic and Atmospheric Administration (NOAA), Lunar and Planetary Institute [Houston] (LPI), Planetary Science Institute [Tucson] (PSI), School of Earth and Atmospheric Sciences [Atlanta], Georgia Institute of Technology [Atlanta], Aalto University, Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Applied Research Associates, Inc. (ARA), Center for Meteorite Studies [Tempe], Ashima Research, ATOS Origin, Australian National University (ANU), Bay Area Environmental Research Institute (BAER), Big Head Endian LLC, Brock University [Canada], Brown University, Canadian Space Agency (CSA), Capgemini Consulting [Paris], Carnegie Mellon University [Pittsburgh] (CMU), Catholic University of America, Institut des Matériaux, de Microélectronique et des Nanosciences de Provence (IM2NP), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Centre de biophysique moléculaire (CBM), Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Centre National d'Études Spatiales [Toulouse] (CNES), Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Chesapeake Energy Corporation, Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME), Département de Physico-Chimie (DPC), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire d'Interaction Laser Matière (LILM), Concordia College, Moorhead, CS-Systèmes d'Information [Toulouse] (CS-SI), Delaware State University (DSU), Denver Museum of Nature and Science, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Finnish Meteorological Institute (FMI), GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Géosciences Environnement Toulouse (GET), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Global Science and Technology, Inc., Honeybee Robotics Ltd, Indiana University [Bloomington], Indiana University System, Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Institut des Sciences de la Terre (ISTerre), Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-PRES Université de Grenoble-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Jackson State University (JSU), Jacobs Technology ESCG, Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Minéralogie et Cosmochimie du Muséum (LMCM), Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Space Remote Sensing Group (ISR-2), Malin Space Science Systems (MSSS), Depertment of Polymer Chemistry, Max-Planck-Institut für Sonnensystemforschung (MPS), Max-Planck-Gesellschaft, DLR Institute of Planetary Research, German Aerospace Center (DLR), NASA Headquarters, Oregon State University (OSU), Search for Extraterrestrial Intelligence Institute (SETI), Smithsonian Institution, Department of Space Studies [Boulder], Southwest Research Institute [Boulder] (SwRI), Space Research Institute of the Russian Academy of Sciences (IKI), Russian Academy of Sciences [Moscow] (RAS), TechSource Inc., Texas A&M University [College Station], The Open University [Milton Keynes] (OU), University of Arizona, Met Office Hadley Centre for Climate Change (MOHC), United Kingdom Met Office [Exeter], Laboratory for Atmospheric and Space Physics [Boulder] (LASP), University of Colorado [Boulder], Niels Bohr Institute [Copenhagen] (NBI), Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH), Institute for Astronomy [Honolulu], University of Hawai‘i [Mānoa] (UHM), California Institute of Technology (CALTECH)-NASA, Universidad Nacional Autónoma de México (UNAM), Carnegie Institution for Science [Washington], University of California [Berkeley], University of California-University of California, Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Institut national des sciences de l'Univers (INSU - CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-PRES Université de Grenoble-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), University of Copenhagen = Københavns Universitet (KU)-University of Copenhagen = Københavns Universitet (KU), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS), NWO-NSO: The role of perchlorates in the preservation of organic compounds on Mars, Petrology, Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Instituto Nacional de Técnica Aeroespacial (INTA), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN), and Kruch, Catherine
- Subjects
Geologic Sediments ,010504 meteorology & atmospheric sciences ,Extraterrestrial Environment ,Curiosity rover ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Mineralogy ,[SDU.ASTR.EP] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Mars ,Sulfides ,01 natural sciences ,organic compositions ,Bassanite ,0103 physical sciences ,Exobiology ,[SDU.ASTR.SR] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Hydrocarbons, Chlorinated ,MSL ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Total organic carbon ,Martian ,mudstone samples ,Volatile Organic Compounds ,Multidisciplinary ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Water ,Mars Exploration Program ,Carbon Dioxide ,Oxygen ,Bays ,13. Climate action ,Rocknest ,Sample Analysis at Mars ,Sedimentary rock ,Pyrolysis - Abstract
H 2 O, CO 2 , SO 2 , O 2 , H 2 , H 2 S, HCl, chlorinated hydrocarbons, NO, and other trace gases were evolved during pyrolysis of two mudstone samples acquired by the Curiosity rover at Yellowknife Bay within Gale crater, Mars. H 2 O/OH-bearing phases included 2:1 phyllosilicate(s), bassanite, akaganeite, and amorphous materials. Thermal decomposition of carbonates and combustion of organic materials are candidate sources for the CO 2 . Concurrent evolution of O 2 and chlorinated hydrocarbons suggests the presence of oxychlorine phase(s). Sulfides are likely sources for sulfur-bearing species. Higher abundances of chlorinated hydrocarbons in the mudstone compared with Rocknest windblown materials previously analyzed by Curiosity suggest that indigenous martian or meteoritic organic carbon sources may be preserved in the mudstone; however, the carbon source for the chlorinated hydrocarbons is not definitively of martian origin.
- Published
- 2014
- Full Text
- View/download PDF
13. Synthesis and demonstration of high speed, bandwidth efficient optical code division multiple access (CDMA) tested at 1 Gb/s throughput
- Author
-
Antonio J. Mendez, R.M. Gagliardi, J.-M. Morookian, and J.L. Lambert
- Subjects
Code division multiple access ,business.industry ,Computer science ,Bandwidth (signal processing) ,Optical communication ,CDMA spectral efficiency ,Broadcasting ,Information theory ,Multiplexing ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,Channel capacity ,Computer Science::Networking and Internet Architecture ,Electronic engineering ,Electrical and Electronic Engineering ,business ,Computer Science::Information Theory - Abstract
Code division multiple access (CDMA) permits concurrent communication over all virtual channels (in principle), independent of the data rate and the network size. In reality, most CDMA approaches have a bandwidth penalty due to the code length and a loss penalty due to the broadcasting required by CDMA. Both of these penalties can be reduced or ameliorated by means of multi-attribute coding. Matrices constructed from relatively inefficient (0,1) pulse sequences are suitable multi-attribute non-coherent CDMA codes which are both bandwidth and broadcast efficient. We exhibit a novel approach to synthesizing matrix CDMA codes, develop a 4/spl times/4 physical model, and demonstrate concurrent communication experimentally at concurrent data rates of 100-, 150-, and 250 Mb/s per port. >
- Published
- 1994
- Full Text
- View/download PDF
14. Correction to 'Microscopy analysis of soils at the Phoenix landing site, Mars: Classification of soil particles and description of their optical and magnetic properties'
- Author
-
P. Woida, S. Vijendran, R. Kramm, John Marshall, J. M. Morookian, W. J. Markiewicz, H. Sykulska, Pete Smith, R. Tanner, James F. Bell, D. Parrat, Elisa A. Hemmig, Stubbe F. Hviid, Diana L. Blaney, Horst Uwe Keller, Michael H. Hecht, Morten Madsen, K. Leer, Walter Goetz, R. Woida, R. V. Morris, Brent J. Bos, Raymond E. Arvidson, Line Drube, William T. Pike, Urs Staufer, M. R. El Maarry, and Robert O. Reynolds
- Subjects
Atmospheric Science ,Ecology ,biology ,Paleontology ,Soil Science ,Mineralogy ,Forestry ,Mars Exploration Program ,Aquatic Science ,Oceanography ,biology.organism_classification ,Geophysics ,Space and Planetary Science ,Geochemistry and Petrology ,Microscopy ,Soil water ,Earth and Planetary Sciences (miscellaneous) ,Phoenix ,Geology ,Earth-Surface Processes ,Water Science and Technology - Published
- 2010
- Full Text
- View/download PDF
15. Optical Protocols For Terabit Networks
- Author
-
J.L. Lambert, L.A. Bergman, Peter L. Chua, and J.-M. Morookian
- Subjects
business.industry ,Computer science ,Code division multiple access ,Local area network ,Data security ,Domain (software engineering) ,Broadcasting (networking) ,Computer architecture ,Encoding (memory) ,Component (UML) ,Optoelectronics ,Terabit ,Crossbar switch ,Aerospace ,business ,Telecommunications - Abstract
This paper describes a new fiber-optic local area network technology providing 100X improvement over current technology, has full crossbar funtionality, and inherent data security. Based on optical code-division multiple access (CDMA), using spectral phase encoding/decoding of optical pulses, networking protocols are implemented entirely in the optical domain and thus conventional networking bottlenecks are avoided. Component and system issues for a proof-of-concept demonstration are discussed, as well as issues for a more practical and commercially exploitable system. Possible terrestrial and aerospace applications of this technology, and its impact on other technologies are explored. Some initial results toward realization of this concept are also included.
- Published
- 2005
- Full Text
- View/download PDF
16. Eye-tracking architecture for biometrics and remote monitoring
- Author
-
Steve P. Monacos, James L. Lambert, Ashit Talukder, Clayton LeBaw, J. M. Morookian, and Raymond K. Lam
- Subjects
Biometry ,genetic structures ,Biometrics ,Eye Movements ,Computer science ,Materials Science (miscellaneous) ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,Video Recording ,Video camera ,Image processing ,Eye ,Sensitivity and Specificity ,Industrial and Manufacturing Engineering ,Pupil ,law.invention ,Optics ,law ,Digital image processing ,Image Interpretation, Computer-Assisted ,Photography ,Humans ,Computer vision ,Diagnosis, Computer-Assisted ,Business and International Management ,Hardware architecture ,business.industry ,Ophthalmoscopes ,Eye movement ,Reproducibility of Results ,Equipment Design ,Gaze ,Equipment Failure Analysis ,Ophthalmoscopy ,Light intensity ,Eye tracking ,Feasibility Studies ,Artificial intelligence ,business ,Algorithms - Abstract
Eye tracking is one of the latest technologies that has shown potential in several areas, including biometrics; human–computer interactions for people with and without disabilities; and noninvasive monitoring, detection, and even diagnosis of physiological and neurological problems in individuals. Current noninvasive eye-tracking methods achieve a 30-Hz rate with a low accuracy in gaze estimation, which is insufficient for many applications. We propose a new noninvasive optical eye-tracking system that is capable of operating at speeds as high as 6–12 kHz. A new CCD video camera and hardware architecture are used, and a novel fast algorithm leverages specific features of the input CCD camera to yield a real-time eye-tracking system. A field-programmable gate array is used to control the CCD camera and to execute the operations. Initial results show the excellent performance of our system under severe head-motion and low-contrast conditions.
- Published
- 2005
17. Raw bit error rate (BER) measurements of a fully populated optical code division multiple access (CDMA) system
- Author
-
J.L. Lambert, Robert M. Gagliardi, L.A. Bergman, Antonio J. Mendez, and J.-M. Morookian
- Subjects
Matrix (mathematics) ,Transmission (telecommunications) ,Code division multiple access ,Computer science ,Real-time computing ,Cellular network ,Electronic engineering ,Bandwidth (computing) ,Bit error rate ,Transceiver ,Thresholding ,Computer Science::Information Theory - Abstract
Optical CDMA is one of the few multiple access concepts which permit concurrent, non-blocking virtual channels. However, conventional approaches with linear codes induce stringent device requirements which stem from the bandwidth inefficiency, also denoted as the time penalty, of CDMA. In order to have the advantages of CDMA without its concommitant time penalty, we have been concentrating on multi-attribute CDMA. A previous paper reported on the analysis, design, and analog performance of bandwidth efficient matrix configurations. The research with analog transceivers validated the theory of constructing and implementing matrix codes. In the paper we go a step further and demonstrate the concurrent transmission of digital signals in a fully populated 4/spl times/4 optical matrix (CDMA) system by measuring its raw (no thresholding or processing) bit error rate. The authors measured a raw BER of 2.0*10E-9 at 155 Mb/s.
- Published
- 2002
- Full Text
- View/download PDF
18. Analyses and experiments of optical code division multiple access (CDMA) with code length near unity
- Author
-
Antonio J. Mendez, Robert M. Gagliardi, and J.-M. Morookian
- Subjects
business.industry ,Code division multiple access ,Computer science ,Data_CODINGANDINFORMATIONTHEORY ,Spectral efficiency ,Chip ,Bit error rate ,Code (cryptography) ,Electronic engineering ,Bandwidth (computing) ,Constant-weight code ,business ,Decoding methods ,Computer Science::Information Theory ,Computer network - Abstract
Optical code division multiple access (CDMA) has many attractive system features. In this paper we describe the analytical approach to encoding/decoding data with chips approaching the bit size (representing 100% bandwidth efficiency), and we describe the experimental performance in terms of bit error rate (BER) measurements.
- Published
- 2002
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.