1. CTANet: Confidence-Based Threshold Adaption Network for Semi-Supervised Segmentation of Uterine Regions from MR Images for HIFU Treatment
- Author
-
C. Zhang, G. Yang, F. Li, Y. Wen, Y. Yao, H. Shu, A. Simon, J.-L. Dillenseger, J.-L. Coatrieux, Laboratory of Image Science and Technology [Nanjing] (LIST), Southeast University [Jiangsu]-School of Computer Science and Engineering, Centre de Recherche en Information Biomédicale sino-français (CRIBS), Université de Rennes (UR)-Southeast University [Jiangsu]-Institut National de la Santé et de la Recherche Médicale (INSERM), Nanjing Southeast University (SEU), Chongqing University [Chongqing], National Engineering Research Center of Ultrasound Medicine, Laboratoire Traitement du Signal et de l'Image (LTSI), and Université de Rennes (UR)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
HIFU therapy ,semi-supervised segmentation ,[INFO.INFO-IM]Computer Science [cs]/Medical Imaging ,Biomedical Engineering ,Biophysics ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,uterine fibroids ,[SDV.MHEP.GEO]Life Sciences [q-bio]/Human health and pathology/Gynecology and obstetrics ,HIFU therapy semi-supervised segmentation threshold-adaptation uterine fibroids ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,threshold-adaptation ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] - Abstract
International audience; ObjectivesThe accurate preoperative segmentation of the uterus and uterine fibroids from magnetic resonance images (MRI) is an essential step for diagnosis and real-time ultrasound guidance during high-intensity focused ultrasound (HIFU) surgery. Conventional supervised methods are effective techniques for image segmentation. Recently, semi-supervised segmentation approaches have been reported in the literature. One popular technique for semi-supervised methods is to use pseudo-labels to artificially annotate unlabeled data. However, many existing pseudo-label generations rely on a fixed threshold used to generate a confidence map, regardless of the proportion of unlabeled and labeled data.Materials and MethodsTo address this issue, we propose a novel semi-supervised framework called Confidence-based Threshold Adaptation Network (CTANet) to improve the quality of pseudo-labels. Specifically, we propose an online pseudo-labels method to automatically adjust the threshold, producing high-confident unlabeled annotations and boosting segmentation accuracy. To further improve the network's generalization to fit the diversity of different patients, we design a novel mixup strategy by regularizing the network on each layer in the decoder part and introducing a consistency regularization loss between the outputs of two sub-networks in CTANet.ResultsWe compare our method with several state-of-the-art semi-supervised segmentation methods on the same uterine fibroids dataset containing 297 patients. The performance is evaluated by the Dice similarity coefficient, the precision, and the recall. The results show that our method outperforms other semi-supervised learning methods. Moreover, for the same training set, our method approaches the segmentation performance of a fully supervised U-Net (100% annotated data) but using 4 times less annotated data (25% annotated data, 75% unannotated data).ConclusionExperimental results are provided to illustrate the effectiveness of the proposed semi-supervised approach. The proposed method can contribute to multi-class segmentation of uterine regions from MRI for HIFU treatment.
- Published
- 2023
- Full Text
- View/download PDF