1. Isothermal whole genome amplification from single and small numbers of cells: a new era for preimplantation genetic diagnosis of inherited disease
- Author
-
Anthony J. Rutherford, Alan H. Handyside, J Gedis Grudzinskas, Mark D. Robinson, Marie-Anne Shaw, Mark B. Omar, and Robert J. Simpson
- Subjects
Embryology ,Preimplantation genetic haplotyping ,Loop-mediated isothermal amplification ,Cystic Fibrosis Transmembrane Conductance Regulator ,Biology ,Pregnancy ,Genetics ,Humans ,Molecular Biology ,Preimplantation Diagnosis ,Whole Genome Amplification ,Genome, Human ,Genetic Diseases, Inborn ,Temperature ,Multiple displacement amplification ,MALBAC ,Obstetrics and Gynecology ,Cell Biology ,Nucleic acid amplification technique ,Embryo, Mammalian ,Molecular biology ,genomic DNA ,Reproductive Medicine ,Female ,Nucleic Acid Amplification Techniques ,Applications of PCR ,Developmental Biology - Abstract
Preimplantation genetic diagnosis (PGD) of single gene defects following assisted conception typically involves removal of single cells from preimplantation embryos and analysis using highly sensitive PCR amplification methods taking stringent precautions to prevent contamination from foreign or previously amplified DNA. Recently, whole genome amplification has been achieved from small quantities of genomic DNA by isothermal amplification with bacteriophage 29 DNA polymerase- and exonuclease-resistant random hexamer primers. Here we report that isothermal whole genome amplification from single and small numbers of lymphocytes and blastomeres isolated from cleavage stage embryos yielded microgram quantities of amplified DNA, and allowed analysis of 20 different loci, including the DeltaF508 deletion causing cystic fibrosis and polymorphic repeat sequences used in DNA fingerprinting. As with analysis by PCR-based methods, some preferential amplification or allele drop-out at heterozygous loci was detected with single cells. With 2-5 cells, amplification was more consistent and with 10 or 20 cells results were indistinguishable from genomic DNA. The use of isothermal whole genome amplification as a universal first step marks a new era for PGD since, unlike previous PCR-based methods, sufficient DNA is amplified for diagnosis of any known single gene defect by standard methods and conditions.
- Published
- 2004
- Full Text
- View/download PDF