1. Next generation lunar laser retroreflectors for fundamental physics and lunar science
- Author
-
L. Porcelli, D. G. Currie, M. Muccino, S. Dell’Agnello, D. Wellnitz, P. Villoresi, G. Vallone, S. Capozziello, J. Carpenter, N. Boersma, L. Cacciapuoti, G. Bianco, C. Benedetto, D. Dequal, T. W. Murphy, J. Chandler, N. H. Johnson, V. Viswanathan, E. Mazarico, S. Merkowitz, L. Angelini, J. G. Williams, S. G. Turyshev, A. I. Ermakov, N. Rambaux, A. Fienga, C. Courde, J. Chabé, J.-M. Torre, A. Bourgoin, A. Hees, C. Le Poncin-Lafitte, G. Francou, S. Bouquillon, M.-C. Angonin, U. Schreiber, L. Biskupek, J. Müller, T. M. Eubanks, C. Wu, and S. Kopeikin
- Subjects
Physics (General) ,Lunar And Planetary Science And Exploration - Abstract
Lunar Laser Ranging (LLR) data represent a powerful tool to understand the dynamics of the Earth-Moon system and the deep lunar interior. Over the past five decades, the ground station technology has significantly improved, whereas the lunar laser retroreflector arrays (LRAs) on the lunar surface did not. Current instrumental LLR error budget is dominated by the spread of the returning laser pulse due to the large size of the arrays. Next-generation single solid lunar Cube Corner Retroreflectors (CCRs) of large optical diameter (whose LLR performance is unaffected by that time spread) aim to fully exploit the current laser ranging station capabilities to attain LLR accuracy below current centimeter value down to the desired millimeter level and much higher data collection rates. Such improvements will have a significant impact, enabling more refined ephemerides, improved tests of General Relativity (GR) and of other theories of relativistic gravity in the Sun-Earth-Moon system and improved knowledge of the properties of the lunar interior.
- Published
- 2021