198 results on '"J-M, Park"'
Search Results
2. Weakening of tropical sea breeze convective systems through interactions of aerosol, radiation, and soil moisture
- Author
-
J. M. Park and S. C. van den Heever
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
This study investigates how the enhanced loading of microphysically and radiatively active aerosol particles impacts tropical sea breeze convective systems and whether these impacts are modulated by the many environments that support these cloud systems. Comparisons of two 130-member pristine and polluted ensembles demonstrate that aerosol direct effects reduce the surface incoming shortwave radiation and the surface outgoing longwave radiation. Changes in the ensemble median values of the surface latent heat flux, the mixed layer depth, the mixed layer convective available potential energy, the maximum inland sea breeze extent, and the sea breeze frontal lift suggest that enhanced aerosol loading generally creates a less favorable environment for sea breeze convective systems. However, the sign and magnitude of these aerosol-induced changes are occasionally modulated by the surface, wind, and low-level thermodynamic conditions. As reduced surface fluxes and instability inhibit the convective boundary layer development, updraft velocities of the daytime cumulus convection developing ahead of the sea breeze front are robustly reduced in polluted environments across the environments tested. Statistical emulators and variance-based sensitivity analyses reveal that the soil saturation fraction is the most important environmental factor contributing to the updraft velocity variance of this daytime cumulus convection, but that it becomes a less important contributor with enhanced aerosol loading. It is also demonstrated that increased aerosol loading generally results in a weakening of the sea-breeze-initiated convection. This suppression is particularly robust when the sea-breeze-initiated convection is shallower and, hence, restricted to warm rain processes. While the less favorable convective environment arising from aerosol direct effects also restricts the development of sea-breeze-initiated deep convection in some cases, the response does appear to be environmentally modulated, with some cases producing stronger convective updrafts in more polluted environments. Sea breeze precipitation is ubiquitously suppressed with enhanced aerosol loading across all of the environments tested; however, the magnitude of this suppression remains a function of the initial environment. Altogether, our results highlight the importance of evaluating both direct and indirect aerosol effects on convective systems under the wide range of convective environments.
- Published
- 2022
- Full Text
- View/download PDF
3. Ongoing Evolution of DRAM Scaling via Third Dimension -Vertically Stacked DRAM -.
- Author
-
Jung-Won Han, S. H. Park, Moonyoung Jeong, K. N. Kim, H. J. Kim, J. C. Shin, S. M. Park, S. H. Shin, S. W. Park, K. S. Lee, J. H. Lee, S. H. Kim, B. C. Kim, Myoung H. Jung, I. Y. Yoon, H. Kim, S. U. Jang, K. J. Park, Y. K. Kim, I. G. Kim, J. H. Oh, S. Y. Han, B. S. Kim, Bong Jin Kuh, and J. M. Park
- Published
- 2023
- Full Text
- View/download PDF
4. Measurement of High-energy Cosmic-Ray Proton Spectrum from the ISS-CREAM Experiment
- Author
-
G. H. Choi, E. S. Seo, S. Aggarwal, Y. Amare, D. Angelaszek, D. P. Bowman, Y. C. Chen, M. Copley, L. Derome, L. Eraud, C. Falana, A. Gerrety, J. H. Han, H. G. Huh, A. Haque, Y. S. Hwang, H. J. Hyun, H. B. Jeon, J. A. Jeon, S. Jeong, S. C. Kang, H. J. Kim, K. C. Kim, M. H. Kim, H. Y. Lee, J. Lee, M. H. Lee, L. Lu, J. P. Lundquist, L. Lutz, A. Menchaca-Rocha, O. Ofoha, H. Park, I. H. Park, J. M. Park, N. Picot-Clemente, R. Scrandis, J. R. Smith, R. Takeishi, N. Vedenkin, P. Walpole, R. P. Weinmann, H. Wu, J. Wu, Z. Yin, Y. S. Yoon, and H. G. Zhang
- Published
- 2022
- Full Text
- View/download PDF
5. Core-Pedestal Plasma Configurations in Advanced Tokamaks
- Author
-
Ehab Hassan, C. E. Kessel, J. M. Park, W. R. Elwasif, R. E. Whitfield, K. Kim, P. B. Snyder, D. B. Batchelor, D. E. Bernholdt, M. R. Cianciosa, D. L. Green, and K. J. H. Law
- Subjects
Nuclear and High Energy Physics ,Nuclear Energy and Engineering ,Mechanical Engineering ,General Materials Science ,Civil and Structural Engineering - Published
- 2023
6. Anti-Corrosive Effects of Calcareous Deposit Films Formed by Electrodeposition in Submerged and Tidal Zones
- Author
-
J. M. Park, M. H. Lee, and S. H. Lee
- Subjects
General Materials Science - Abstract
In this study, homogeneous calcareous deposit films were formed via electrodeposition, and the characteristics of the films were studied using various surface analytical techniques. In addition, the optimal conditions were determined, and the anti-corrosive effect was confirmed via electrodeposition to form uniform and compact aragonite films in marine environments such as submerged and tidal zones. The calcareous deposit films formed in the tidal zone were thinner compared to those formed in the submerged zone. However, the aragonite–CaCO3 ratio in the tidal zone was high and the films were firm and dense. The adhesion properties were excellent at 3 and 1 A/m2, and the current density was reduced by more than 90% because the films were formed on the steel surface.
- Published
- 2022
7. A sub-2 Kelvin cryogenic magneto-terahertz scattering-type scanning near-field optical microscope (cm-THz-sSNOM)
- Author
-
R. H. J. Kim, J.-M. Park, S. J. Haeuser, L. Luo, and J. Wang
- Subjects
Instrumentation - Abstract
We have developed a versatile near-field microscopy platform that can operate at high magnetic fields and below liquid-helium temperatures. We use this platform to demonstrate an extreme terahertz (THz) nanoscope operation and to obtain the first cryogenic magneto-THz time-domain nano-spectroscopy/imaging at temperatures as low as 1.8 K, magnetic fields of up to 5 T, and with operation of 0–2 THz. Our Cryogenic Magneto-Terahertz Scattering-type Scanning Near-field Optical Microscope (or cm-THz-sSNOM) instrument is comprised of three main equipment: (i) a 5 T split pair magnetic cryostat with a custom made insert, (ii) a custom sSNOM instrument capable of accepting ultrafast THz excitation, and (iii) a MHz repetition rate, femtosecond laser amplifier for broadband THz pulse generation and sensitive detection. We apply the cm-THz-sSNOM to obtain proof of principle measurements of superconductors and topological semimetals. The new capabilities demonstrated break grounds for studying quantum materials that require an extreme environment of cryogenic operation and/or applied magnetic fields in nanometer space, femtosecond time, and THz energy scales.
- Published
- 2023
8. The Boronated Scintillator Detector of the ISS-CREAM Experiment
- Author
-
Y Amare, T Anderson, D J Angelaszek, N Anthony, K Cheryian, G H Choi, M Copley, S Coutu, L Derome, L Eraud, L Hagenau, J H Han, H G Huh, Y S Hwang, H J Hyun, S Im, H B Jeon, J A Jeon, S Jeong, S C Kang, H J Kim, K C Kim, M H Kim, H Y Lee, J Lee, M H Lee, J Liang, J T Link, L Lu, L Lutz, A Menchaca-Rocha, T Mernik, John W Mitchell, S I Mognet, S Morton, M Nester, S Nutter, O Ofoha, H Park, I H Park, J M Park, N Picot-Clemente, R Quinn, E S Seo, J R Smith, P Walpole, R P Weinmann, J Wu, and Y S Yoon
- Subjects
Astrophysics - Abstract
The Cosmic Ray Energetics And Mass for the International Space Station (ISS-CREAM) instrument is a next-generation experiment for the direct detection and study of cosmic-ray nuclei and electrons. With a long exposure in low Earth orbit, the experiment will determine the particle fluxes and spectral details of cosmic-ray nuclei from hydrogen to iron, over an energy range of about 10(exp 12) eV to > 10(exp 15) eV, and of cosmic-ray electrons over an energy range of about 5x10(exp 10) eV to > 10(exp 13) eV. The instrument was deployed to the ISS in August 2017 on the SpaceX CRS-12 mission. We review the design, implementation and performance of one of the ISS-CREAM detector systems: a boron loaded scintillation detector used in discriminating electron-induced events from the much more abundant cosmic-ray nuclei.
- Published
- 2019
- Full Text
- View/download PDF
9. Effect of By-product Feed-based Silage Feeding on the Performance, Blood Metabolites, and Carcass Characteristics of Hanwoo Steers (a Field Study)
- Author
-
Y. I. Kim, J. M. Park, Y. H. Lee, M. Lee, D. Y. Choi, and W. S. Kwak
- Subjects
Spent Mushroom Substrate ,By-product Feed ,Silage ,Meat Quality ,Steer ,Hanwoo ,Animal culture ,SF1-1100 ,Animal biochemistry ,QP501-801 - Abstract
This study was conducted to determine the effects of feeding by-product feed (BF)-based silage on the performance, blood metabolite parameters, and carcass characteristics of Hanwoo steers. The BF-based silage was composed of 50% spent mushroom substrate, 21% recycled poultry bedding, 15% cut ryegrass straw, 10.8% rice bran, 2% molasses, 0.6% bentonite, and 0.6% microbial additive (on a wet basis), and ensiled for over 5 d. Fifteen steers were allocated to three diets during the growing and fattening periods (3.1 and 9.8 months, respectively): a control diet (concentrate mix and free access to rice straw), a 50% BF-based silage diet (control diet+50% of maximum BF-based silage intake), and a 100% BF-based silage diet (the same amount of concentrate mix and ad libitum BF-based silage). The BF-based silage was fed during the growing and fattening periods, and was replaced with larger particles of rice straw during the finishing period. After 19.6 months of the whole period all the steers were slaughtered. Compared with feeding rice straw, feeding BF-based silage tended (p = 0.10) to increase the average daily gain (27%) and feed efficiency (18%) of the growing steers, caused by increased voluntary feed intake. Feeding BF-based silage had little effect on serum constituents, electrolytes, enzymes, or the blood cell profiles of fattening steers, except for low serum Ca and high blood urea concentrations (p
- Published
- 2015
- Full Text
- View/download PDF
10. Visualizing heterogeneous dipole fields by terahertz light coupling in individual nano-junctions used in transmon qubits
- Author
-
Jigang Wang, Richard Kim, J-M Park, Samuel Haeuser, C Huang, D Cheng, T Koschny, Jin-Su Oh, L Zhou, M Kramer, L Luo, Cameron Kopas, H Cansizoglu, J Mutus, and K Yadavalli
- Subjects
Condensed Matter - Materials Science ,Computer Science::Emerging Technologies ,Condensed Matter - Mesoscale and Nanoscale Physics ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,Physics::Optics ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences - Abstract
The fundamental challenge underlying superconducting quantum computing is to characterize heterogeneity and disorder in the underlying quantum circuits. These nonuniform distributions often lead to local electric field concentration, charge scattering, dissipation and ultimately decoherence. It is particularly challenging to probe deep sub-wavelength electric field distribution under electromagnetic wave coupling at individual nano-junctions and correlate them with structural imperfections from interface and boundary, ubiquitous in Josephson junctions (JJ) used in transmon qubits. A major obstacle lies in the fact that conventional microscopy tools are incapable of measuring simultaneous at nanometer and terahertz, "nano-THz" scales, which often associate with frequency-dependent charge scattering in nano-junctions. Here we directly visualize interface nano-dipole near-field distribution of individual Al/AlO$_{x}$/Al junctions used in transmon qubits. Our THz nanoscope images show a remarkable asymmetry across the junction in electromagnetic wave-junction coupling response that manifests as "hot" vs "cold" cusp spatial electrical field structures and correlates with defected boundaries from the multi-angle deposition processes in JJ fabrication inside qubit devices. The asymmetric nano-dipole electric field contrast also correlates with distinguishing, "overshoot" frequency dependence that characterizes the charge scattering and dissipation at nanoscale, hidden in responses from topographic, structural imaging and spatially-averaged techniques. The real space mapping of junction dipole fields and THz charge scattering can be extended to guide qubit nano-fabrication for ultimately optimizing qubit coherence times.
- Published
- 2022
11. Tritium Distribution in the Low-Level and Intermediate-Level Wastes of a Korean CANDU Reactor
- Author
-
J. M. Park, H. J. Ahn, Y. K. Choi, T. J. Kim, B. K. Lee, S. B. Park, and Mu-Hyun Baik
- Subjects
Nuclear and High Energy Physics ,CANDU reactor ,business.industry ,020209 energy ,Mechanical Engineering ,Nuclear engineering ,02 engineering and technology ,Nuclear power ,Intermediate level ,01 natural sciences ,Nuclear decommissioning ,010305 fluids & plasmas ,Coolant ,Nuclear Energy and Engineering ,0103 physical sciences ,0202 electrical engineering, electronic engineering, information engineering ,Environmental science ,General Materials Science ,Tritium ,business ,Civil and Structural Engineering - Abstract
Korea Hydro & Nuclear Power Company, Ltd., has operated the Wolsong Tritium Removal Facility (WTRF) since 2007 to reduce tritium concentrations in the moderator and coolant of the Wolsong nuclear p...
- Published
- 2020
12. Association between time to treatment and functional outcomes according to the Diffusion‐Weighted Imaging Alberta Stroke Program Early Computed Tomography Score in endovascular stroke therapy
- Author
-
J.‐T. Kim, B.‐H. Cho, K.‐H. Choi, M.‐S. Park, B. J. Kim, J.‐M. Park, K. Kang, S. J. Lee, J. G. Kim, J.‐K. Cha, D.‐H. Kim, H.‐W. Nah, T. H. Park, S.‐S. Park, K. B. Lee, J. Lee, K.‐S. Hong, Y.‐J. Cho, H.‐K. Park, B.‐C. Lee, K.‐H. Yu, M. S. Oh, D.‐E. Kim, W.‐S. Ryu, J. C. Choi, J.‐H. Kwon, W.‐J. Kim, D.‐I. Shin, S. I. Sohn, J.‐H. Hong, J. S. Lee, H.‐J. Bae, J. L. Saver, and K.‐H. Cho
- Subjects
Male ,medicine.medical_specialty ,Stroke patient ,Time to treatment ,Computed tomography ,Alberta ,Brain Ischemia ,Time-to-Treatment ,03 medical and health sciences ,0302 clinical medicine ,Modified Rankin Scale ,Internal medicine ,medicine ,Humans ,Prospective Studies ,cardiovascular diseases ,030212 general & internal medicine ,Good outcome ,Stroke ,Aged ,Aged, 80 and over ,medicine.diagnostic_test ,business.industry ,Magnetic resonance imaging ,Middle Aged ,medicine.disease ,Diffusion Magnetic Resonance Imaging ,Treatment Outcome ,Neurology ,Cardiology ,Female ,Neurology (clinical) ,business ,030217 neurology & neurosurgery ,Diffusion MRI - Abstract
BACKGROUND AND PURPOSE The rate at which the chance of a good outcome of endovascular stroke therapy (EVT) decays with time when eligible patients are selected by baseline diffusion-weighted magnetic resonance imaging (DWI-MRI) and whether ischaemic core size affects this rate remain to be investigated. METHODS This study analyses a prospective multicentre registry of stroke patients treated with EVT based on pretreatment DWI-MRI that was categorized into three groups: small [Diffusion-Weighted Imaging Alberta Stroke Program Early Computed Tomography Score (DWI-ASPECTS)] (8-10), moderate (5-7) and large (
- Published
- 2019
13. Identification of Targeted Regions on an Analogue Site of the Moon by Using Deep Learning Segmentation Algorithm
- Author
-
K. B. Lee, H. S. Shin, J. M. Park, and S. C. Hong
- Subjects
Identification (information) ,business.industry ,Computer science ,Deep learning ,Segmentation ,Pattern recognition ,Artificial intelligence ,business - Published
- 2021
14. Ultrafast Control of Excitonic Rashba Fine Structure by Phonon Coherence in the Metal Halide Perovskite CH_{3}NH_{3}PbI_{3}
- Author
-
Z, Liu, C, Vaswani, X, Yang, X, Zhao, Y, Yao, Z, Song, D, Cheng, Y, Shi, L, Luo, D-H, Mudiyanselage, C, Huang, J-M, Park, R H J, Kim, J, Zhao, Y, Yan, K-M, Ho, and J, Wang
- Abstract
We discover hidden Rashba fine structure in CH_{3}NH_{3}PbI_{3} and demonstrate its quantum control by vibrational coherence through symmetry-selective vibronic (electron-phonon) coupling. Above a critical threshold of a single-cycle terahertz pump field, a Raman phonon mode distinctly modulates the middle excitonic states with persistent coherence for more than ten times longer than the ones on two sides that predominately couple to infrared phonons. These vibronic quantum beats, together with first-principles modeling of phonon periodically modulated Rashba parameters, identify a threefold excitonic fine structure splitting, i.e., optically forbidden, degenerate dark states in between two bright ones with a narrow, ∼3 nm splitting. Harnessing of vibronic quantum coherence and symmetry inspires light-perovskite quantum control and sub-THz-cycle "Rashba engineering" of spin-split bands for ultimate multifunction device.
- Published
- 2020
15. Influence of soil organic matter content on leaf minerals, fruit quality, and soil chemical properties in ‘Gamhong’/M.9 apple orchard
- Author
-
S. E. Lee, P.H. Yi, B. N. Chung, G. Selvakumar, and J. M. Park
- Subjects
Rhizosphere ,chemistry.chemical_compound ,Horticulture ,Soil test ,chemistry ,Soil organic matter ,Shoot ,Environmental science ,Orchard ,Livestock manure ,Phosphate ,Positive correlation - Abstract
This research was conducted to find out the effect of soil organic matter (SOM) on the seasonal changes of leaf mineral content, fruit quality attributes, and soil chemical properties in 'Gamhong'/M.9 apple orchard. Leaf, soil, and fruit samples were collected over a period of three years (2014-2016) from 60 'Gamhong'/M.9 apple orchards in Yeongju and Mungyeong areas of Korea. Leaf samples were collected every month from the middle of the shoot from May to August, and the rhizosphere soil samples were collected in July. Based on the SOM content, the samples were grouped into five different categories. There were no significant differences between the ranges of SOM content in terms of fruit quality attributes. However, positive correlation (r=0.51**) was observed between SOM and soil available phosphate content. In addition, leaf phosphorous (P) from May to July was observed to be affected by SOM content. In conclusion, long time over-application of livestock manure can lead to soil phosphate accumulation and high phosphorus uptake by apple trees.
- Published
- 2018
16. Scintillation Properties of Ce3+ Doped Silicon-Magnesium-Aluminum-Lithium Glass Scintillators by using Radiation Sources
- Author
-
MinJeong Kim, Jakrapong Kaewkhao, A. Khan, J. M. Park, J. Y. Cho, G. S. Kim, Hongjoo Kim, S. J. Kang, Shin-Won Kang, and Pabitra Aryal
- Subjects
010302 applied physics ,Materials science ,Silicon ,Doping ,Analytical chemistry ,General Physics and Astronomy ,chemistry.chemical_element ,02 engineering and technology ,Scintillator ,021001 nanoscience & nanotechnology ,01 natural sciences ,Emission intensity ,Light intensity ,chemistry ,0103 physical sciences ,Lithium ,Emission spectrum ,0210 nano-technology ,Luminescence - Abstract
Glass scintillators can be doped with different elements to improve their luminescence properties. In this study, we present 0.5 wt% Ce3+-doped (58−x)SiO2-4MgO-18Al2O3-20Li2O and (58−x)SiO2- 4MgO-18Al2O3-20LiF glass scintillators. We used a pulsed laser to measure the laser-induced emission spectrum and the decay time with decreasing temperature from 300 K to 10 K. The light intensity of both glass samples increased with decreasing temperature from 300 K to 10 K. Additionally, the two glass samples exhibited a fast decay time of approximately 25 ns. In the photo-induced spectrum, an excitation peak at 312 nm and two emission peaks, at 370 nm and 700 nm, were observed in both the glass samples. The X-ray-induced emission intensity of former is approximately six times higher than that of latter, and only former glass sample exhibits a proton-induced emission spectrum.
- Published
- 2018
17. Pharmacokinetic drug interaction and safety after coadministration of clarithromycin, amoxicillin, and ilaprazole: a randomised, open-label, one-way crossover, two parallel sequences study
- Author
-
Byung Won Yoo, Byung Hak Jin, J. M. Park, Min Soo Park, Jun Yeon Lee, Jae Soo Shin, and Jung Hye Kim
- Subjects
Male ,Gastroenterology ,2-Pyridinylmethylsulfinylbenzimidazoles ,chemistry.chemical_compound ,0302 clinical medicine ,Clarithromycin ,polycyclic compounds ,Pharmacology (medical) ,Drug Interactions ,Cross-Over Studies ,biology ,Ilaprazole ,General Medicine ,Middle Aged ,Healthy Volunteers ,Anti-Bacterial Agents ,030220 oncology & carcinogenesis ,030211 gastroenterology & hepatology ,Drug Therapy, Combination ,Patient Safety ,medicine.drug ,Adult ,medicine.medical_specialty ,medicine.drug_class ,Drug interaction ,Cmax ,Proton-pump inhibitor ,Proton pump inhibitor ,Risk Assessment ,Helicobacter Infections ,03 medical and health sciences ,Young Adult ,Pharmacokinetics ,Internal medicine ,Republic of Korea ,medicine ,Humans ,Pharmacology ,Helicobacter pylori ,business.industry ,Amoxicillin ,Proton Pump Inhibitors ,Pharmacokinetics and Disposition ,biology.organism_classification ,chemistry ,business - Abstract
Purpose Ilaprazole, the latest proton pump inhibitor, can be used with clarithromycin and amoxicillin as a triple therapy regimen for eradicating Helicobacter pylori. The aim of this study was to evaluate pharmacokinetic drug interactions and safety profiles after coadministration of clarithromycin, amoxicillin, and ilaprazole. Methods A randomised, open-label, one-way crossover, two parallel sequences study was conducted in 32 healthy subjects. In part 1, the subjects received a single dose of ilaprazole 10 mg in period 1 and clarithromycin 500 mg and amoxicillin 1000 mg twice daily for 6 days in period 2. In part 2, the subjects received clarithromycin 500 mg and amoxicillin 1000 mg once in period 1 and ilaprazole 10 mg twice daily for 6 days in period 2. In both sequences, the three drugs were coadministrated once on day 5 in period 2. Pharmacokinetic evaluations of ilaprazole (part 1), and clarithromycin and amoxicillin (part 2) were conducted. Results Twenty-eight subjects completed the study. For ilaprazole, the peak concentration (Cmax) slightly decreased from 479 (ilaprazole alone) to 446 ng/mL (triple therapy) [Geometric least square mean ratio (90% confidence interval), 0.93 (0.70–1.22)]. The area under the concentration-time curve from 0 h to the last measurable concentration (AUClast) slightly increased from 3301 to 3538 μg·h/mL [1.07 (0.85–1.35)]. For clarithromycin, the Cmax slightly decreased from 1.87 to 1.72 μg/mL [0.90 (0.70–1.15)], and AUClast slightly increased from 14.6 to 16.5 μg·h/mL [1.09 (0.87–1.37)]. For amoxicillin, the Cmax slightly decreased from 9.37 to 8.14 μg/mL [0.86 (0.74–1.01)], and AUClast slightly decreased from 27.9 to 26.7 μg·h/mL [0.98 (0.83–1.16)]. These changes in the PK parameters of each drug were not statistically significant. Conclusions The coadministration of ilaprazole, clarithromycin, and amoxicillin was tolerable and did not cause a significant PK drug interaction. Thus, a triple therapy regimen comprising ilaprazole, clarithromycin, and amoxicillin may be an option for the eradication of H. pylori. Clinicaltrials.gov number: NCT02998437. Electronic supplementary material The online version of this article (10.1007/s00228-018-2489-2) contains supplementary material, which is available to authorized users.
- Published
- 2018
18. Optical properties in the visible luminescence of SiO2:B2O3:CaO:GdF3 glass scintillators containing CeF3
- Author
-
Jakrapong Kaewkhao, Sujita Karki, B. Damdee, S. Kaewjaeng, H. J. Kim, J. M. Park, and Suchart Kothan
- Subjects
Materials science ,Proton ,Electromagnetic spectrum ,Doping ,Analytical chemistry ,General Physics and Astronomy ,Luminescence spectra ,02 engineering and technology ,Radiation ,Scintillator ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Condensed Matter::Materials Science ,0210 nano-technology ,Luminescence ,Absorption (electromagnetic radiation) - Abstract
CeF3-doped silicaborate-calcium-gadolinium glass scintillators, with the formula 10SiO2:(55-x)B2O3:10CaO:25GdF3:xCeF3, were fabricated by the melt-quenching technique. The doping concentration of the CeF3 was from 0.00 mol% to 0.20 mol%. The optical properties of the CeF3 doped glass scintillators were studied by using various radiation sources. The transition state of the CeF3-doped glass scintillators studied by using the absorption and photo-luminescence spectrum results. The X-ray, photo, proton and laser-induced luminescence spectra were also studied to understand the luminescence mechanism under various conditions. To understand the temperature dependence, the laser-induced luminescence and the decay component of the CeF3-doped glass scintillator were studied while the temperature was varied from 300 K to 10 K. The emission wavelength spectrum showed from 350 nm to 55 nm under various radiation sources. Also the CeF3-doped glass scintillator have one decay component as 34 ns at room temperature.
- Published
- 2017
19. Effects of the Interactivity of Mobile Fitness Application on Exercise Self Efficacy and Attitude
- Author
-
J. M Park and Ghee-Young Noh
- Subjects
Health (social science) ,General Computer Science ,Multimedia ,General Mathematics ,05 social sciences ,Applied psychology ,General Engineering ,030229 sport sciences ,computer.software_genre ,050105 experimental psychology ,Education ,03 medical and health sciences ,0302 clinical medicine ,General Energy ,Interactivity ,Exercise self efficacy ,0501 psychology and cognitive sciences ,Psychology ,computer ,General Environmental Science - Published
- 2017
20. Real Time 3D Pose Estimation of Both Human Hands via RGB-Depth Camera and Deep Convolutional Neural Networks
- Author
-
Dong-Luong Dinh, Soo Yeol Lee, G. Gi, J. M. Park, Taeyeon Kim, Tae-Seong Kim, and Hye Min Park
- Subjects
Computer science ,business.industry ,Deep learning ,RGB color model ,Segmentation ,Computer vision ,Artificial intelligence ,3D pose estimation ,business ,Classifier (UML) ,Pose ,Convolutional neural network ,Gesture - Abstract
3D human hand pose estimation (HPE) is an essential methodology for smart human computer interfaces. Especially, 3D hand pose estimation without attached or hand-held sensors provides a more natural and convenient way. In this work, we present a HPE system with a single RGB-Depth camera and deep learning methodologies which recognizes 3D hand poses of both hands in real-time. Our HPE system consists of four steps: hands detection and segmentation, right and left hand classification using a Convolutional Neural Network (CNN) classifier, hand pose estimation using a deep CNN regressor, and 3D hand pose reconstruction. First, both hands are detected and segmented from each RGB and depth images using skin detection and depth cutting algorithms. Second, a CNN classifier is used to distinguish right and left hands. Our CNN classifier consists of three convolutional layers and two fully connected layers, and uses the segmented depth images as input. Third, a trained deep CNN regressor estimates the key sixteen joints of hands in 3D from the segmented left and right depth hands separately. The regressor is hierarchically composed of multiple convolutional layers, pooling layers and dense fully connected layers to estimate the hand joints from the segmented hand depth images. Finally, 3D hand pose of each hand gets reconstructed from the estimated hand joints. The results show that our CNN classifier distinguishes the right and left hands with an accuracy of 96.9%. The 3D human hand poses are estimated with an average distance error of 8.48 mm. The presented HPE system can be used in various application fields including medical VR, AR, and MR applications. Our presented HPE system should allow natural hand gesture interfaces to interact with various medical contents.
- Published
- 2019
21. DIII-D research towards establishing the scientific basis for future fusion reactors
- Author
-
L. Abadie, T. W. Abrams, J. Ahn, T. Akiyama, P. Aleynikov, J. Allcock, E. O. Allen, S. Allen, J. P. Anderson, A. Ashourvan, M. E. Austin, J. Bak, K. K. Barada, N. Barbour, L. Bardoczi, J. Barr, J. L. Barton, E. M. Bass, D. Battaglia, L. R. Baylor, J. Beckers, E. A. Belli, J. W. Berkery, N. Bertelli, J. M. Bialek, J. A. Boedo, R. L. Boivin, P. T. Bonoli, A. Bortolon, M. D. Boyer, R. E. Brambila, B. Bray, D. P. Brennan, A. R. Briesemeister, S. A. Bringuier, M. W. Brookman, D. L. Brower, B. R. Brown, W. D. Brown, D. Buchenauer, M. G. Burke, K. H. Burrell, J. Butt, R. J. Buttery, I. Bykov, J. M. Candy, J. M. Canik, N. M. Cao, L. Carbajal Gomez, L. C. Carlson, T. N. Carlstrom, T. A. Carter, W. Cary, L. Casali, M. Cengher, V. S. Chan, B. Chen, J. Chen, M. Chen, R. Chen, Xi Chen, W. Choi, C. Chrobak, C. Chrystal, R. M. Churchill, M. Cianciosa, C. F. Clauser, M. Clement, J. Coburn, C. S. Collins, A. W. Cooper, B. M. Covele, J. W. Crippen, N. A. Crocker, B. J. Crowley, A. Dal Molin, E. M. Davis, J. S. deGrassie, C. A. del-Castillo-Negrete, L. F. Delgado-Aparicio, A. Diallo, S. J. Diem, R. Ding, S. Ding, W. Ding, J. L. Doane, D. C. Donovan, J. Drake, D. Du, H. Du, X. Du, V. Duarte, J. D. Duran, N. W. Eidietis, D. Elder, D. Eldon, W. Elwasif, T. E. Ely, K. M. Eng, K. Engelhorn, D. Ennis, K. Erickson, D. R. Ernst, T. E. Evans, M. E. Fenstermacher, N. M. Ferraro, J. R. Ferron, D. F. Finkenthal, P. A. Fisher, B. Fishler, S. M. Flanagan, J. A. Fooks, L. Frassinetti, H. G. Frerichs, Y. Fu, T. Fulop, Q. Gao, F. Garcia, A. M. Garofalo, A. Gattuso, L. Giacomelli, E. M. Giraldez, C. Giroud, F. Glass, P. Gohil, X. Gong, Y. A. Gorelov, R. S. Granetz, D. L. Green, C. M. Greenfield, B. A. Grierson, R. J. Groebner, W. H. Grosnickle, M. Groth, H. J. Grunloh, H. Y. Guo, W. Guo, J. Guterl, R. C. Hager, S. Hahn, F. D. Halpern, H. Han, M. J. Hansink, J. M. Hanson, J. Harris, S. R. Haskey, D. R. Hatch, W. W. Heidbrink, J. Herfindal, D. N. Hill, M. D. Hill, E. T. Hinson, C. T. Holcomb, C. G. Holland, L. D. Holland, E. M. Hollmann, A. M. Holm, R. Hong, M. Hoppe, S. Houshmandyar, J. Howard, N. T. Howard, Q. Hu, W. Hu, H. Huang, J. Huang, Y. Huang, G. A. Hughes, J. Hughes, D. A. Humphreys, A. W. Hyatt, K. Ida, V. Igochine, Y. In, S. Inoue, A. Isayama, R. C. Isler, V. A. Izzo, M. R. Jackson, A. E. Jarvinen, Y. Jeon, H. Ji, X. Jian, R. Jimenez, C. A. Johnson, I. Joseph, D. N. Kaczala, D. H. Kaplan, J. Kates-Harbeck, A. G. Kellman, D. H. Kellman, C. E. Kessel, K. Khumthong, C. C. Kim, H. Kim, J. Kim, K. Kim, S. H. Kim, W. Kimura, J. R. King, A. Kirk, K. Kleijwegt, M. Knolker, A. Kohn, E. Kolemen, M. Kostuk, G. J. Kramer, P. Kress, D. M. Kriete, R. J. La Haye, F. M. Laggner, H. Lan, M. J. Lanctot, R. Lantsov, L. L. Lao, C. J. Lasnier, C. Lau, K. Law, D. Lawrence, J. Le, R. L. Lee, M. Lehnen, R. Leon, A. W. Leonard, M. Lesher, J. A. Leuer, G. Li, K. Li, K. T. Liao, Z. Lin, C. Liu, F. Liu, Y. Liu, Z. Liu, S. Loch, N. C. Logan, J. M. Lohr, J. Lore, T. C. Luce, N. C. Luhmann, R. Lunsford, C. Luo, Z. Luo, L. Lupin-Jimenez, A. Lvovskiy, B. C. Lyons, X. Ma, R. Maingi, M. A. Makowski, P. Mantica, M. Manuel, M. W. Margo, A. Marinoni, E. Marmar, W. C. Martin, R. L. Masline, G. K. Matsunaga, D. M. Mauzey, P. S. Mauzey, J. T. Mcclenaghan, G. R. Mckee, A. G. Mclean, H. S. Mclean, E. Meier, S. J. Meitner, J. E. Menard, O. Meneghini, G. Merlo, W. H. Meyer, D. C. Miller, W. J. Miller, C. P. Moeller, K. J. Montes, M. A. Morales, S. Mordijck, A. Moser, R. A. Moyer, S. A. Muller, S. Munaretto, M. Murakami, C. J. Murphy, C. M. Muscatello, C. E. Myers, A. Nagy, G. A. Navratil, R. M. Nazikian, A. L. Neff, T. F. Neiser, A. Nelson, P. Nguyen, R. Nguyen, J. H. Nichols, M. Nocente, R. E. Nygren, R. C. O'Neill, T. Odstrcil, S. Ohdachi, M. Okabayashi, E. Olofsson, M. Ono, D. M. Orlov, T. H. Osborne, N. A. Pablant, D. C. Pace, R. R. Paguio, A. Pajares Martinez, C. Pan, A. Pankin, J. M. Park, J. Park, Y. Park, C. T. Parker, S. E. Parker, P. B. Parks, C. J. Pawley, C. A. Paz-Soldan, W. A. Peebles, B. G. Penaflor, T. W. Petrie, C. C. Petty, Y. Peysson, A. Y. Pigarov, D. A. Piglowski, R. I. Pinsker, P. Piovesan, N. Piper, R. A. Pitts, J. D. Pizzo, M. L. Podesta, F. M. Poli, D. Ponce, M. Porkolab, G. D. Porter, R. Prater, J. Qian, O. Ra, T. Rafiq, R. Raman, C. Rand, G. C. Randall, J. M. Rauch, C. Rea, M. L. Reinke, J. Ren, Q. Ren, Y. Ren, T. L. Rhodes, J. Rice, T. D. Rognlien, J. C. Rost, W. L. Rowan, D. L. Rudakov, A. Salmi, B. S. Sammuli, C. M. Samuell, A. M. Sandorfi, C. Sang, O. J. Sauter, D. P. Schissel, L. Schmitz, O. Schmitz, E. J. Schuster, J. T. Scoville, A. Seltzman, I. Sfiligoi, M. Shafer, H. Shen, T. Shi, D. Shiraki, H. Si, D. R. Smith, S. P. Smith, J. A. Snipes, P. B. Snyder, E. R. Solano, W. M. Solomon, A. C. Sontag, V. A. Soukhanovskii, D. A. Spong, W. M. Stacey, G. M. Staebler, L. Stagner, B. Stahl, P. C. Stangeby, T. J. Stoltzfus-Dueck, D. P. Stotler, E. J. Strait, D. Su, L. E. Sugiyama, A. A. Sulyman, Y. Sun, C. Sung, W. A. Suttrop, Y. Suzuki, A. Svyatkovskiy, R. M. Sweeney, S. Taimourzadeh, M. Takechi, T. Tala, H. Tan, S. Tang, X. Tang, D. Taussig, G. Taylor, N. Z. Taylor, T. S. Taylor, A. Teklu, D. M. Thomas, M. B. Thomas, K. E. Thome, A. R. Thorman, R. A. Tinguely, B. J. Tobias, J. F. Tooker, H. Torreblanca, A. Torrezan De Sousa, G. L. Trevisan, D. Truong, F. Turco, A. D. Turnbull, E. A. Unterberg, P. Vaezi, P. J. Vail, M. A. Van Zeeland, M. Velasco Enriquez, M. C. Venkatesh, B. S. Victor, F. Volpe, M. R. Wade, M. L. Walker, J. R. Wall, G. M. Wallace, R. E. Waltz, G. Wang, H. Wang, Y. Wang, Z. Wang, F. Wang, S. H. Ward, J. G. Watkins, M. Watkins, W. P. Wehner, M. Weiland, D. B. Weisberg, A. S. Welander, A. E. White, R. B. White, D. Whyte, T. A. Wijkamp, R. Wilcox, T. Wilks, H. R. Wilson, A. Wingen, E. Wolfe, M. Wu, W. Wu, S. J. Wukitch, T. Xia, N. Xiang, B. Xiao, R. Xie, G. Xu, H. Xu, X. Xu, Z. Yan, Q. Yang, X. Yang, M. Yoshida, G. Yu, J. H. Yu, M. Yu, S. A. Zamperini, L. Zeng, B. Zhao, D. Zhao, H. Zhao, Y. Zhao, Y. Zhu, B. Zywicki, Abadie, L, Abrams, T, Ahn, J, Akiyama, T, Aleynikov, P, Allcock, J, Allen, E, Allen, S, Anderson, J, Ashourvan, A, Austin, M, Bak, J, Barada, K, Barbour, N, Bardoczi, L, Barr, J, Barton, J, Bass, E, Battaglia, D, Baylor, L, Beckers, J, Belli, E, Berkery, J, Bertelli, N, Bialek, J, Boedo, J, Boivin, R, Bonoli, P, Bortolon, A, Boyer, M, Brambila, R, Bray, B, Brennan, D, Briesemeister, A, Bringuier, S, Brookman, M, Brower, D, Brown, B, Brown, W, Buchenauer, D, Burke, M, Burrell, K, Butt, J, Buttery, R, Bykov, I, Candy, J, Canik, J, Cao, N, Carbajal Gomez, L, Carlson, L, Carlstrom, T, Carter, T, Cary, W, Casali, L, Cengher, M, Chan, V, Chen, B, Chen, J, Chen, M, Chen, R, Chen, X, Choi, W, Chrobak, C, Chrystal, C, Churchill, R, Cianciosa, M, Clauser, C, Clement, M, Coburn, J, Collins, C, Cooper, A, Covele, B, Crippen, J, Crocker, N, Crowley, B, Dal Molin, A, Davis, E, Degrassie, J, del-Castillo-Negrete, C, Delgado-Aparicio, L, Diallo, A, Diem, S, Ding, R, Ding, S, Ding, W, Doane, J, Donovan, D, Drake, J, Du, D, Du, H, Du, X, Duarte, V, Duran, J, Eidietis, N, Elder, D, Eldon, D, Elwasif, W, Ely, T, Eng, K, Engelhorn, K, Ennis, D, Erickson, K, Ernst, D, Evans, T, Fenstermacher, M, Ferraro, N, Ferron, J, Finkenthal, D, Fisher, P, Fishler, B, Flanagan, S, Fooks, J, Frassinetti, L, Frerichs, H, Fu, Y, Fulop, T, Gao, Q, Garcia, F, Garofalo, A, Gattuso, A, Giacomelli, L, Giraldez, E, Giroud, C, Glass, F, Gohil, P, Gong, X, Gorelov, Y, Granetz, R, Green, D, Greenfield, C, Grierson, B, Groebner, R, Grosnickle, W, Groth, M, Grunloh, H, Guo, H, Guo, W, Guterl, J, Hager, R, Hahn, S, Halpern, F, Han, H, Hansink, M, Hanson, J, Harris, J, Haskey, S, Hatch, D, Heidbrink, W, Herfindal, J, Hill, D, Hill, M, Hinson, E, Holcomb, C, Holland, C, Holland, L, Hollmann, E, Holm, A, Hong, R, Hoppe, M, Houshmandyar, S, Howard, J, Howard, N, Hu, Q, Hu, W, Huang, H, Huang, J, Huang, Y, Hughes, G, Hughes, J, Humphreys, D, Hyatt, A, Ida, K, Igochine, V, In, Y, Inoue, S, Isayama, A, Isler, R, Izzo, V, Jackson, M, Jarvinen, A, Jeon, Y, Ji, H, Jian, X, Jimenez, R, Johnson, C, Joseph, I, Kaczala, D, Kaplan, D, Kates-Harbeck, J, Kellman, A, Kellman, D, Kessel, C, Khumthong, K, Kim, C, Kim, H, Kim, J, Kim, K, Kim, S, Kimura, W, King, J, Kirk, A, Kleijwegt, K, Knolker, M, Kohn, A, Kolemen, E, Kostuk, M, Kramer, G, Kress, P, Kriete, D, La Haye, R, Laggner, F, Lan, H, Lanctot, M, Lantsov, R, Lao, L, Lasnier, C, Lau, C, Law, K, Lawrence, D, Le, J, Lee, R, Lehnen, M, Leon, R, Leonard, A, Lesher, M, Leuer, J, Li, G, Li, K, Liao, K, Lin, Z, Liu, C, Liu, F, Liu, Y, Liu, Z, Loch, S, Logan, N, Lohr, J, Lore, J, Luce, T, Luhmann, N, Lunsford, R, Luo, C, Luo, Z, Lupin-Jimenez, L, Lvovskiy, A, Lyons, B, Ma, X, Maingi, R, Makowski, M, Mantica, P, Manuel, M, Margo, M, Marinoni, A, Marmar, E, Martin, W, Masline, R, Matsunaga, G, Mauzey, D, Mauzey, P, Mcclenaghan, J, Mckee, G, Mclean, A, Mclean, H, Meier, E, Meitner, S, Menard, J, Meneghini, O, Merlo, G, Meyer, W, Miller, D, Miller, W, Moeller, C, Montes, K, Morales, M, Mordijck, S, Moser, A, Moyer, R, Muller, S, Munaretto, S, Murakami, M, Murphy, C, Muscatello, C, Myers, C, Nagy, A, Navratil, G, Nazikian, R, Neff, A, Neiser, T, Nelson, A, Nguyen, P, Nguyen, R, Nichols, J, Nocente, M, Nygren, R, O'Neill, R, Odstrcil, T, Ohdachi, S, Okabayashi, M, Olofsson, E, Ono, M, Orlov, D, Osborne, T, Pablant, N, Pace, D, Paguio, R, Pajares Martinez, A, Pan, C, Pankin, A, Park, J, Park, Y, Parker, C, Parker, S, Parks, P, Pawley, C, Paz-Soldan, C, Peebles, W, Penaflor, B, Petrie, T, Petty, C, Peysson, Y, Pigarov, A, Piglowski, D, Pinsker, R, Piovesan, P, Piper, N, Pitts, R, Pizzo, J, Podesta, M, Poli, F, Ponce, D, Porkolab, M, Porter, G, Prater, R, Qian, J, Ra, O, Rafiq, T, Raman, R, Rand, C, Randall, G, Rauch, J, Rea, C, Reinke, M, Ren, J, Ren, Q, Ren, Y, Rhodes, T, Rice, J, Rognlien, T, Rost, J, Rowan, W, Rudakov, D, Salmi, A, Sammuli, B, Samuell, C, Sandorfi, A, Sang, C, Sauter, O, Schissel, D, Schmitz, L, Schmitz, O, Schuster, E, Scoville, J, Seltzman, A, Sfiligoi, I, Shafer, M, Shen, H, Shi, T, Shiraki, D, Si, H, Smith, D, Smith, S, Snipes, J, Snyder, P, Solano, E, Solomon, W, Sontag, A, Soukhanovskii, V, Spong, D, Stacey, W, Staebler, G, Stagner, L, Stahl, B, Stangeby, P, Stoltzfus-Dueck, T, Stotler, D, Strait, E, Su, D, Sugiyama, L, Sulyman, A, Sun, Y, Sung, C, Suttrop, W, Suzuki, Y, Svyatkovskiy, A, Sweeney, R, Taimourzadeh, S, Takechi, M, Tala, T, Tan, H, Tang, S, Tang, X, Taussig, D, Taylor, G, Taylor, N, Taylor, T, Teklu, A, Thomas, D, Thomas, M, Thome, K, Thorman, A, Tinguely, R, Tobias, B, Tooker, J, Torreblanca, H, Torrezan De Sousa, A, Trevisan, G, Truong, D, Turco, F, Turnbull, A, Unterberg, E, Vaezi, P, Vail, P, Van Zeeland, M, Velasco Enriquez, M, Venkatesh, M, Victor, B, Volpe, F, Wade, M, Walker, M, Wall, J, Wallace, G, Waltz, R, Wang, G, Wang, H, Wang, Y, Wang, Z, Wang, F, Ward, S, Watkins, J, Watkins, M, Wehner, W, Weiland, M, Weisberg, D, Welander, A, White, A, White, R, Whyte, D, Wijkamp, T, Wilcox, R, Wilks, T, Wilson, H, Wingen, A, Wolfe, E, Wu, M, Wu, W, Wukitch, S, Xia, T, Xiang, N, Xiao, B, Xie, R, Xu, G, Xu, H, Xu, X, Yan, Z, Yang, Q, Yang, X, Yoshida, M, Yu, G, Yu, J, Yu, M, Zamperini, S, Zeng, L, Zhao, B, Zhao, D, Zhao, H, Zhao, Y, Zhu, Y, and Zywicki, B
- Subjects
Physics ,Nuclear and High Energy Physics ,fusion ,model ,Tokamak ,DIII-D ,Divertor ,Mechanics ,Plasma ,Fusion power ,Dissipation ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Pedestal ,Heat flux ,law ,Physics::Plasma Physics ,0103 physical sciences ,010306 general physics ,tokamak ,plasma ,energy - Abstract
DIII-D research is addressing critical challenges in preparation for ITER and the next generation of fusion devices through focusing on plasma physics fundamentals that underpin key fusion goals, understanding the interaction of disparate core and boundary plasma physics, and developing integrated scenarios for achieving high performance fusion regimes. Fundamental investigations into fusion energy science find that anomalous dissipation of runaway electrons (RE) that arise following a disruption is likely due to interactions with RE-driven kinetic instabilities, some of which have been directly observed, opening a new avenue for RE energy dissipation using naturally excited waves. Dimensionless parameter scaling of intrinsic rotation and gyrokinetic simulations give a predicted ITER rotation profile with significant turbulence stabilization. Coherence imaging spectroscopy confirms near sonic flow throughout the divertor towards the target, which may account for the convection-dominated parallel heat flux. Core-boundary integration studies show that the small angle slot divertor achieves detachment at lower density and extends plasma cooling across the divertor target plate, which is essential for controlling heat flux and erosion. The Super H-mode regime has been extended to high plasma current (2.0 MA) and density to achieve very high pedestal pressures (~30 kPa) and stored energy (3.2 MJ) with H 98y2 ≈ 1.6–2.4. In scenario work, the ITER baseline Q = 10 scenario with zero injected torque is found to have a fusion gain metric independent of current between q 95 = 2.8–3.7, and a lower limit of pedestal rotation for RMP ELM suppression has been found. In the wide pedestal QH-mode regime that exhibits improved performance and no ELMs, the start-up counter torque has been eliminated so that the entire discharge uses ≈0 injected torque and the operating space is more ITER-relevant. Finally, the high- (⩽3.8) hybrid scenario has been extended to the high-density levels necessary for radiating divertor operation, achieving ~40% divertor heat flux reduction using either argon or neon with P tot up to 15 MW.
- Published
- 2019
22. Secure web PACS using government-licensed certificate.
- Author
-
J. M. Park, S. W. Choi, S. C. Park, and B. W. Yoon
- Published
- 2004
23. DIII-D research towards establishing the scientific basis for future fusion reactors
- Author
-
Abadie, L, Abrams, T, Ahn, J, Akiyama, T, Aleynikov, P, Allcock, J, Allen, E, Allen, S, Anderson, J, Ashourvan, A, Austin, M, Bak, J, Barada, K, Barbour, N, Bardoczi, L, Barr, J, Barton, J, Bass, E, Battaglia, D, Baylor, L, Beckers, J, Belli, E, Berkery, J, Bertelli, N, Bialek, J, Boedo, J, Boivin, R, Bonoli, P, Bortolon, A, Boyer, M, Brambila, R, Bray, B, Brennan, D, Briesemeister, A, Bringuier, S, Brookman, M, Brower, D, Brown, B, Brown, W, Buchenauer, D, Burke, M, Burrell, K, Butt, J, Buttery, R, Bykov, I, Candy, J, Canik, J, Cao, N, Carbajal Gomez, L, Carlson, L, Carlstrom, T, Carter, T, Cary, W, Casali, L, Cengher, M, Chan, V, Chen, B, Chen, J, Chen, M, Chen, R, Chen, X, Choi, W, Chrobak, C, Chrystal, C, Churchill, R, Cianciosa, M, Clauser, C, Clement, M, Coburn, J, Collins, C, Cooper, A, Covele, B, Crippen, J, Crocker, N, Crowley, B, Dal Molin, A, Davis, E, Degrassie, J, del-Castillo-Negrete, C, Delgado-Aparicio, L, Diallo, A, Diem, S, Ding, R, Ding, S, Ding, W, Doane, J, Donovan, D, Drake, J, Du, D, Du, H, Du, X, Duarte, V, Duran, J, Eidietis, N, Elder, D, Eldon, D, Elwasif, W, Ely, T, Eng, K, Engelhorn, K, Ennis, D, Erickson, K, Ernst, D, Evans, T, Fenstermacher, M, Ferraro, N, Ferron, J, Finkenthal, D, Fisher, P, Fishler, B, Flanagan, S, Fooks, J, Frassinetti, L, Frerichs, H, Fu, Y, Fulop, T, Gao, Q, Garcia, F, Garofalo, A, Gattuso, A, Giacomelli, L, Giraldez, E, Giroud, C, Glass, F, Gohil, P, Gong, X, Gorelov, Y, Granetz, R, Green, D, Greenfield, C, Grierson, B, Groebner, R, Grosnickle, W, Groth, M, Grunloh, H, Guo, H, Guo, W, Guterl, J, Hager, R, Hahn, S, Halpern, F, Han, H, Hansink, M, Hanson, J, Harris, J, Haskey, S, Hatch, D, Heidbrink, W, Herfindal, J, Hill, D, Hill, M, Hinson, E, Holcomb, C, Holland, C, Holland, L, Hollmann, E, Holm, A, Hong, R, Hoppe, M, Houshmandyar, S, Howard, J, Howard, N, Hu, Q, Hu, W, Huang, H, Huang, J, Huang, Y, Hughes, G, Hughes, J, Humphreys, D, Hyatt, A, Ida, K, Igochine, V, In, Y, Inoue, S, Isayama, A, Isler, R, Izzo, V, Jackson, M, Jarvinen, A, Jeon, Y, Ji, H, Jian, X, Jimenez, R, Johnson, C, Joseph, I, Kaczala, D, Kaplan, D, Kates-Harbeck, J, Kellman, A, Kellman, D, Kessel, C, Khumthong, K, Kim, C, Kim, H, Kim, J, Kim, K, Kim, S, Kimura, W, King, J, Kirk, A, Kleijwegt, K, Knolker, M, Kohn, A, Kolemen, E, Kostuk, M, Kramer, G, Kress, P, Kriete, D, La Haye, R, Laggner, F, Lan, H, Lanctot, M, Lantsov, R, Lao, L, Lasnier, C, Lau, C, Law, K, Lawrence, D, Le, J, Lee, R, Lehnen, M, Leon, R, Leonard, A, Lesher, M, Leuer, J, Li, G, Li, K, Liao, K, Lin, Z, Liu, C, Liu, F, Liu, Y, Liu, Z, Loch, S, Logan, N, Lohr, J, Lore, J, Luce, T, Luhmann, N, Lunsford, R, Luo, C, Luo, Z, Lupin-Jimenez, L, Lvovskiy, A, Lyons, B, Ma, X, Maingi, R, Makowski, M, Mantica, P, Manuel, M, Margo, M, Marinoni, A, Marmar, E, Martin, W, Masline, R, Matsunaga, G, Mauzey, D, Mauzey, P, Mcclenaghan, J, Mckee, G, Mclean, A, Mclean, H, Meier, E, Meitner, S, Menard, J, Meneghini, O, Merlo, G, Meyer, W, Miller, D, Miller, W, Moeller, C, Montes, K, Morales, M, Mordijck, S, Moser, A, Moyer, R, Muller, S, Munaretto, S, Murakami, M, Murphy, C, Muscatello, C, Myers, C, Nagy, A, Navratil, G, Nazikian, R, Neff, A, Neiser, T, Nelson, A, Nguyen, P, Nguyen, R, Nichols, J, Nocente, M, Nygren, R, O'Neill, R, Odstrcil, T, Ohdachi, S, Okabayashi, M, Olofsson, E, Ono, M, Orlov, D, Osborne, T, Pablant, N, Pace, D, Paguio, R, Pajares Martinez, A, Pan, C, Pankin, A, Park, J, Park, Y, Parker, C, Parker, S, Parks, P, Pawley, C, Paz-Soldan, C, Peebles, W, Penaflor, B, Petrie, T, Petty, C, Peysson, Y, Pigarov, A, Piglowski, D, Pinsker, R, Piovesan, P, Piper, N, Pitts, R, Pizzo, J, Podesta, M, Poli, F, Ponce, D, Porkolab, M, Porter, G, Prater, R, Qian, J, Ra, O, Rafiq, T, Raman, R, Rand, C, Randall, G, Rauch, J, Rea, C, Reinke, M, Ren, J, Ren, Q, Ren, Y, Rhodes, T, Rice, J, Rognlien, T, Rost, J, Rowan, W, Rudakov, D, Salmi, A, Sammuli, B, Samuell, C, Sandorfi, A, Sang, C, Sauter, O, Schissel, D, Schmitz, L, Schmitz, O, Schuster, E, Scoville, J, Seltzman, A, Sfiligoi, I, Shafer, M, Shen, H, Shi, T, Shiraki, D, Si, H, Smith, D, Smith, S, Snipes, J, Snyder, P, Solano, E, Solomon, W, Sontag, A, Soukhanovskii, V, Spong, D, Stacey, W, Staebler, G, Stagner, L, Stahl, B, Stangeby, P, Stoltzfus-Dueck, T, Stotler, D, Strait, E, Su, D, Sugiyama, L, Sulyman, A, Sun, Y, Sung, C, Suttrop, W, Suzuki, Y, Svyatkovskiy, A, Sweeney, R, Taimourzadeh, S, Takechi, M, Tala, T, Tan, H, Tang, S, Tang, X, Taussig, D, Taylor, G, Taylor, N, Taylor, T, Teklu, A, Thomas, D, Thomas, M, Thome, K, Thorman, A, Tinguely, R, Tobias, B, Tooker, J, Torreblanca, H, Torrezan De Sousa, A, Trevisan, G, Truong, D, Turco, F, Turnbull, A, Unterberg, E, Vaezi, P, Vail, P, Van Zeeland, M, Velasco Enriquez, M, Venkatesh, M, Victor, B, Volpe, F, Wade, M, Walker, M, Wall, J, Wallace, G, Waltz, R, Wang, G, Wang, H, Wang, Y, Wang, Z, Wang, F, Ward, S, Watkins, J, Watkins, M, Wehner, W, Weiland, M, Weisberg, D, Welander, A, White, A, White, R, Whyte, D, Wijkamp, T, Wilcox, R, Wilks, T, Wilson, H, Wingen, A, Wolfe, E, Wu, M, Wu, W, Wukitch, S, Xia, T, Xiang, N, Xiao, B, Xie, R, Xu, G, Xu, H, Xu, X, Yan, Z, Yang, Q, Yang, X, Yoshida, M, Yu, G, Yu, J, Yu, M, Zamperini, S, Zeng, L, Zhao, B, Zhao, D, Zhao, H, Zhao, Y, Zhu, Y, Zywicki, B, L. Abadie, T. W. Abrams, J. Ahn, T. Akiyama, P. Aleynikov, J. Allcock, E. O. Allen, S. Allen, J. P. Anderson, A. Ashourvan, M. E. Austin, J. Bak, K. K. Barada, N. Barbour, L. Bardoczi, J. Barr, J. L. Barton, E. M. Bass, D. Battaglia, L. R. Baylor, J. Beckers, E. A. Belli, J. W. Berkery, N. Bertelli, J. M. Bialek, J. A. Boedo, R. L. Boivin, P. T. Bonoli, A. Bortolon, M. D. Boyer, R. E. Brambila, B. Bray, D. P. Brennan, A. R. Briesemeister, S. A. Bringuier, M. W. Brookman, D. L. Brower, B. R. Brown, W. D. Brown, D. Buchenauer, M. G. Burke, K. H. Burrell, J. Butt, R. J. Buttery, I. Bykov, J. M. Candy, J. M. Canik, N. M. Cao, L. Carbajal Gomez, L. C. Carlson, T. N. Carlstrom, T. A. Carter, W. Cary, L. Casali, M. Cengher, V. S. Chan, B. Chen, J. Chen, M. Chen, R. Chen, Xi Chen, W. Choi, C. Chrobak, C. Chrystal, R. M. Churchill, M. Cianciosa, C. F. Clauser, M. Clement, J. Coburn, C. S. Collins, A. W. Cooper, B. M. Covele, J. W. Crippen, N. A. Crocker, B. J. Crowley, A. Dal Molin, E. M. Davis, J. S. deGrassie, C. A. del-Castillo-Negrete, L. F. Delgado-Aparicio, A. Diallo, S. J. Diem, R. Ding, S. Ding, W. Ding, J. L. Doane, D. C. Donovan, J. Drake, D. Du, H. Du, X. Du, V. Duarte, J. D. Duran, N. W. Eidietis, D. Elder, D. Eldon, W. Elwasif, T. E. Ely, K. M. Eng, K. Engelhorn, D. Ennis, K. Erickson, D. R. Ernst, T. E. Evans, M. E. Fenstermacher, N. M. Ferraro, J. R. Ferron, D. F. Finkenthal, P. A. Fisher, B. Fishler, S. M. Flanagan, J. A. Fooks, L. Frassinetti, H. G. Frerichs, Y. Fu, T. Fulop, Q. Gao, F. Garcia, A. M. Garofalo, A. Gattuso, L. Giacomelli, E. M. Giraldez, C. Giroud, F. Glass, P. Gohil, X. Gong, Y. A. Gorelov, R. S. Granetz, D. L. Green, C. M. Greenfield, B. A. Grierson, R. J. Groebner, W. H. Grosnickle, M. Groth, H. J. Grunloh, H. Y. Guo, W. Guo, J. Guterl, R. C. Hager, S. Hahn, F. D. Halpern, H. Han, M. J. Hansink, J. M. Hanson, J. Harris, S. R. Haskey, D. R. Hatch, W. W. Heidbrink, J. Herfindal, D. N. Hill, M. D. Hill, E. T. Hinson, C. T. Holcomb, C. G. Holland, L. D. Holland, E. M. Hollmann, A. M. Holm, R. Hong, M. Hoppe, S. Houshmandyar, J. Howard, N. T. Howard, Q. Hu, W. Hu, H. Huang, J. Huang, Y. Huang, G. A. Hughes, J. Hughes, D. A. Humphreys, A. W. Hyatt, K. Ida, V. Igochine, Y. In, S. Inoue, A. Isayama, R. C. Isler, V. A. Izzo, M. R. Jackson, A. E. Jarvinen, Y. Jeon, H. Ji, X. Jian, R. Jimenez, C. A. Johnson, I. Joseph, D. N. Kaczala, D. H. Kaplan, J. Kates-Harbeck, A. G. Kellman, D. H. Kellman, C. E. Kessel, K. Khumthong, C. C. Kim, H. Kim, J. Kim, K. Kim, S. H. Kim, W. Kimura, J. R. King, A. Kirk, K. Kleijwegt, M. Knolker, A. Kohn, E. Kolemen, M. Kostuk, G. J. Kramer, P. Kress, D. M. Kriete, R. J. La Haye, F. M. Laggner, H. Lan, M. J. Lanctot, R. Lantsov, L. L. Lao, C. J. Lasnier, C. Lau, K. Law, D. Lawrence, J. Le, R. L. Lee, M. Lehnen, R. Leon, A. W. Leonard, M. Lesher, J. A. Leuer, G. Li, K. Li, K. T. Liao, Z. Lin, C. Liu, F. Liu, Y. Liu, Z. Liu, S. Loch, N. C. Logan, J. M. Lohr, J. Lore, T. C. Luce, N. C. Luhmann, R. Lunsford, C. Luo, Z. Luo, L. Lupin-Jimenez, A. Lvovskiy, B. C. Lyons, X. Ma, R. Maingi, M. A. Makowski, P. Mantica, M. Manuel, M. W. Margo, A. Marinoni, E. Marmar, W. C. Martin, R. L. Masline, G. K. Matsunaga, D. M. Mauzey, P. S. Mauzey, J. T. Mcclenaghan, G. R. Mckee, A. G. Mclean, H. S. Mclean, E. Meier, S. J. Meitner, J. E. Menard, O. Meneghini, G. Merlo, W. H. Meyer, D. C. Miller, W. J. Miller, C. P. Moeller, K. J. Montes, M. A. Morales, S. Mordijck, A. Moser, R. A. Moyer, S. A. Muller, S. Munaretto, M. Murakami, C. J. Murphy, C. M. Muscatello, C. E. Myers, A. Nagy, G. A. Navratil, R. M. Nazikian, A. L. Neff, T. F. Neiser, A. Nelson, P. Nguyen, R. Nguyen, J. H. Nichols, M. Nocente, R. E. Nygren, R. C. O'Neill, T. Odstrcil, S. Ohdachi, M. Okabayashi, E. Olofsson, M. Ono, D. M. Orlov, T. H. Osborne, N. A. Pablant, D. C. Pace, R. R. Paguio, A. Pajares Martinez, C. Pan, A. Pankin, J. M. Park, J. Park, Y. Park, C. T. Parker, S. E. Parker, P. B. Parks, C. J. Pawley, C. A. Paz-Soldan, W. A. Peebles, B. G. Penaflor, T. W. Petrie, C. C. Petty, Y. Peysson, A. Y. Pigarov, D. A. Piglowski, R. I. Pinsker, P. Piovesan, N. Piper, R. A. Pitts, J. D. Pizzo, M. L. Podesta, F. M. Poli, D. Ponce, M. Porkolab, G. D. Porter, R. Prater, J. Qian, O. Ra, T. Rafiq, R. Raman, C. Rand, G. C. Randall, J. M. Rauch, C. Rea, M. L. Reinke, J. Ren, Q. Ren, Y. Ren, T. L. Rhodes, J. Rice, T. D. Rognlien, J. C. Rost, W. L. Rowan, D. L. Rudakov, A. Salmi, B. S. Sammuli, C. M. Samuell, A. M. Sandorfi, C. Sang, O. J. Sauter, D. P. Schissel, L. Schmitz, O. Schmitz, E. J. Schuster, J. T. Scoville, A. Seltzman, I. Sfiligoi, M. Shafer, H. Shen, T. Shi, D. Shiraki, H. Si, D. R. Smith, S. P. Smith, J. A. Snipes, P. B. Snyder, E. R. Solano, W. M. Solomon, A. C. Sontag, V. A. Soukhanovskii, D. A. Spong, W. M. Stacey, G. M. Staebler, L. Stagner, B. Stahl, P. C. Stangeby, T. J. Stoltzfus-Dueck, D. P. Stotler, E. J. Strait, D. Su, L. E. Sugiyama, A. A. Sulyman, Y. Sun, C. Sung, W. A. Suttrop, Y. Suzuki, A. Svyatkovskiy, R. M. Sweeney, S. Taimourzadeh, M. Takechi, T. Tala, H. Tan, S. Tang, X. Tang, D. Taussig, G. Taylor, N. Z. Taylor, T. S. Taylor, A. Teklu, D. M. Thomas, M. B. Thomas, K. E. Thome, A. R. Thorman, R. A. Tinguely, B. J. Tobias, J. F. Tooker, H. Torreblanca, A. Torrezan De Sousa, G. L. Trevisan, D. Truong, F. Turco, A. D. Turnbull, E. A. Unterberg, P. Vaezi, P. J. Vail, M. A. Van Zeeland, M. Velasco Enriquez, M. C. Venkatesh, B. S. Victor, F. Volpe, M. R. Wade, M. L. Walker, J. R. Wall, G. M. Wallace, R. E. Waltz, G. Wang, H. Wang, Y. Wang, Z. Wang, F. Wang, S. H. Ward, J. G. Watkins, M. Watkins, W. P. Wehner, M. Weiland, D. B. Weisberg, A. S. Welander, A. E. White, R. B. White, D. Whyte, T. A. Wijkamp, R. Wilcox, T. Wilks, H. R. Wilson, A. Wingen, E. Wolfe, M. Wu, W. Wu, S. J. Wukitch, T. Xia, N. Xiang, B. Xiao, R. Xie, G. Xu, H. Xu, X. Xu, Z. Yan, Q. Yang, X. Yang, M. Yoshida, G. Yu, J. H. Yu, M. Yu, S. A. Zamperini, L. Zeng, B. Zhao, D. Zhao, H. Zhao, Y. Zhao, Y. Zhu, B. Zywicki, Abadie, L, Abrams, T, Ahn, J, Akiyama, T, Aleynikov, P, Allcock, J, Allen, E, Allen, S, Anderson, J, Ashourvan, A, Austin, M, Bak, J, Barada, K, Barbour, N, Bardoczi, L, Barr, J, Barton, J, Bass, E, Battaglia, D, Baylor, L, Beckers, J, Belli, E, Berkery, J, Bertelli, N, Bialek, J, Boedo, J, Boivin, R, Bonoli, P, Bortolon, A, Boyer, M, Brambila, R, Bray, B, Brennan, D, Briesemeister, A, Bringuier, S, Brookman, M, Brower, D, Brown, B, Brown, W, Buchenauer, D, Burke, M, Burrell, K, Butt, J, Buttery, R, Bykov, I, Candy, J, Canik, J, Cao, N, Carbajal Gomez, L, Carlson, L, Carlstrom, T, Carter, T, Cary, W, Casali, L, Cengher, M, Chan, V, Chen, B, Chen, J, Chen, M, Chen, R, Chen, X, Choi, W, Chrobak, C, Chrystal, C, Churchill, R, Cianciosa, M, Clauser, C, Clement, M, Coburn, J, Collins, C, Cooper, A, Covele, B, Crippen, J, Crocker, N, Crowley, B, Dal Molin, A, Davis, E, Degrassie, J, del-Castillo-Negrete, C, Delgado-Aparicio, L, Diallo, A, Diem, S, Ding, R, Ding, S, Ding, W, Doane, J, Donovan, D, Drake, J, Du, D, Du, H, Du, X, Duarte, V, Duran, J, Eidietis, N, Elder, D, Eldon, D, Elwasif, W, Ely, T, Eng, K, Engelhorn, K, Ennis, D, Erickson, K, Ernst, D, Evans, T, Fenstermacher, M, Ferraro, N, Ferron, J, Finkenthal, D, Fisher, P, Fishler, B, Flanagan, S, Fooks, J, Frassinetti, L, Frerichs, H, Fu, Y, Fulop, T, Gao, Q, Garcia, F, Garofalo, A, Gattuso, A, Giacomelli, L, Giraldez, E, Giroud, C, Glass, F, Gohil, P, Gong, X, Gorelov, Y, Granetz, R, Green, D, Greenfield, C, Grierson, B, Groebner, R, Grosnickle, W, Groth, M, Grunloh, H, Guo, H, Guo, W, Guterl, J, Hager, R, Hahn, S, Halpern, F, Han, H, Hansink, M, Hanson, J, Harris, J, Haskey, S, Hatch, D, Heidbrink, W, Herfindal, J, Hill, D, Hill, M, Hinson, E, Holcomb, C, Holland, C, Holland, L, Hollmann, E, Holm, A, Hong, R, Hoppe, M, Houshmandyar, S, Howard, J, Howard, N, Hu, Q, Hu, W, Huang, H, Huang, J, Huang, Y, Hughes, G, Hughes, J, Humphreys, D, Hyatt, A, Ida, K, Igochine, V, In, Y, Inoue, S, Isayama, A, Isler, R, Izzo, V, Jackson, M, Jarvinen, A, Jeon, Y, Ji, H, Jian, X, Jimenez, R, Johnson, C, Joseph, I, Kaczala, D, Kaplan, D, Kates-Harbeck, J, Kellman, A, Kellman, D, Kessel, C, Khumthong, K, Kim, C, Kim, H, Kim, J, Kim, K, Kim, S, Kimura, W, King, J, Kirk, A, Kleijwegt, K, Knolker, M, Kohn, A, Kolemen, E, Kostuk, M, Kramer, G, Kress, P, Kriete, D, La Haye, R, Laggner, F, Lan, H, Lanctot, M, Lantsov, R, Lao, L, Lasnier, C, Lau, C, Law, K, Lawrence, D, Le, J, Lee, R, Lehnen, M, Leon, R, Leonard, A, Lesher, M, Leuer, J, Li, G, Li, K, Liao, K, Lin, Z, Liu, C, Liu, F, Liu, Y, Liu, Z, Loch, S, Logan, N, Lohr, J, Lore, J, Luce, T, Luhmann, N, Lunsford, R, Luo, C, Luo, Z, Lupin-Jimenez, L, Lvovskiy, A, Lyons, B, Ma, X, Maingi, R, Makowski, M, Mantica, P, Manuel, M, Margo, M, Marinoni, A, Marmar, E, Martin, W, Masline, R, Matsunaga, G, Mauzey, D, Mauzey, P, Mcclenaghan, J, Mckee, G, Mclean, A, Mclean, H, Meier, E, Meitner, S, Menard, J, Meneghini, O, Merlo, G, Meyer, W, Miller, D, Miller, W, Moeller, C, Montes, K, Morales, M, Mordijck, S, Moser, A, Moyer, R, Muller, S, Munaretto, S, Murakami, M, Murphy, C, Muscatello, C, Myers, C, Nagy, A, Navratil, G, Nazikian, R, Neff, A, Neiser, T, Nelson, A, Nguyen, P, Nguyen, R, Nichols, J, Nocente, M, Nygren, R, O'Neill, R, Odstrcil, T, Ohdachi, S, Okabayashi, M, Olofsson, E, Ono, M, Orlov, D, Osborne, T, Pablant, N, Pace, D, Paguio, R, Pajares Martinez, A, Pan, C, Pankin, A, Park, J, Park, Y, Parker, C, Parker, S, Parks, P, Pawley, C, Paz-Soldan, C, Peebles, W, Penaflor, B, Petrie, T, Petty, C, Peysson, Y, Pigarov, A, Piglowski, D, Pinsker, R, Piovesan, P, Piper, N, Pitts, R, Pizzo, J, Podesta, M, Poli, F, Ponce, D, Porkolab, M, Porter, G, Prater, R, Qian, J, Ra, O, Rafiq, T, Raman, R, Rand, C, Randall, G, Rauch, J, Rea, C, Reinke, M, Ren, J, Ren, Q, Ren, Y, Rhodes, T, Rice, J, Rognlien, T, Rost, J, Rowan, W, Rudakov, D, Salmi, A, Sammuli, B, Samuell, C, Sandorfi, A, Sang, C, Sauter, O, Schissel, D, Schmitz, L, Schmitz, O, Schuster, E, Scoville, J, Seltzman, A, Sfiligoi, I, Shafer, M, Shen, H, Shi, T, Shiraki, D, Si, H, Smith, D, Smith, S, Snipes, J, Snyder, P, Solano, E, Solomon, W, Sontag, A, Soukhanovskii, V, Spong, D, Stacey, W, Staebler, G, Stagner, L, Stahl, B, Stangeby, P, Stoltzfus-Dueck, T, Stotler, D, Strait, E, Su, D, Sugiyama, L, Sulyman, A, Sun, Y, Sung, C, Suttrop, W, Suzuki, Y, Svyatkovskiy, A, Sweeney, R, Taimourzadeh, S, Takechi, M, Tala, T, Tan, H, Tang, S, Tang, X, Taussig, D, Taylor, G, Taylor, N, Taylor, T, Teklu, A, Thomas, D, Thomas, M, Thome, K, Thorman, A, Tinguely, R, Tobias, B, Tooker, J, Torreblanca, H, Torrezan De Sousa, A, Trevisan, G, Truong, D, Turco, F, Turnbull, A, Unterberg, E, Vaezi, P, Vail, P, Van Zeeland, M, Velasco Enriquez, M, Venkatesh, M, Victor, B, Volpe, F, Wade, M, Walker, M, Wall, J, Wallace, G, Waltz, R, Wang, G, Wang, H, Wang, Y, Wang, Z, Wang, F, Ward, S, Watkins, J, Watkins, M, Wehner, W, Weiland, M, Weisberg, D, Welander, A, White, A, White, R, Whyte, D, Wijkamp, T, Wilcox, R, Wilks, T, Wilson, H, Wingen, A, Wolfe, E, Wu, M, Wu, W, Wukitch, S, Xia, T, Xiang, N, Xiao, B, Xie, R, Xu, G, Xu, H, Xu, X, Yan, Z, Yang, Q, Yang, X, Yoshida, M, Yu, G, Yu, J, Yu, M, Zamperini, S, Zeng, L, Zhao, B, Zhao, D, Zhao, H, Zhao, Y, Zhu, Y, Zywicki, B, L. Abadie, T. W. Abrams, J. Ahn, T. Akiyama, P. Aleynikov, J. Allcock, E. O. Allen, S. Allen, J. P. Anderson, A. Ashourvan, M. E. Austin, J. Bak, K. K. Barada, N. Barbour, L. Bardoczi, J. Barr, J. L. Barton, E. M. Bass, D. Battaglia, L. R. Baylor, J. Beckers, E. A. Belli, J. W. Berkery, N. Bertelli, J. M. Bialek, J. A. Boedo, R. L. Boivin, P. T. Bonoli, A. Bortolon, M. D. Boyer, R. E. Brambila, B. Bray, D. P. Brennan, A. R. Briesemeister, S. A. Bringuier, M. W. Brookman, D. L. Brower, B. R. Brown, W. D. Brown, D. Buchenauer, M. G. Burke, K. H. Burrell, J. Butt, R. J. Buttery, I. Bykov, J. M. Candy, J. M. Canik, N. M. Cao, L. Carbajal Gomez, L. C. Carlson, T. N. Carlstrom, T. A. Carter, W. Cary, L. Casali, M. Cengher, V. S. Chan, B. Chen, J. Chen, M. Chen, R. Chen, Xi Chen, W. Choi, C. Chrobak, C. Chrystal, R. M. Churchill, M. Cianciosa, C. F. Clauser, M. Clement, J. Coburn, C. S. Collins, A. W. Cooper, B. M. Covele, J. W. Crippen, N. A. Crocker, B. J. Crowley, A. Dal Molin, E. M. Davis, J. S. deGrassie, C. A. del-Castillo-Negrete, L. F. Delgado-Aparicio, A. Diallo, S. J. Diem, R. Ding, S. Ding, W. Ding, J. L. Doane, D. C. Donovan, J. Drake, D. Du, H. Du, X. Du, V. Duarte, J. D. Duran, N. W. Eidietis, D. Elder, D. Eldon, W. Elwasif, T. E. Ely, K. M. Eng, K. Engelhorn, D. Ennis, K. Erickson, D. R. Ernst, T. E. Evans, M. E. Fenstermacher, N. M. Ferraro, J. R. Ferron, D. F. Finkenthal, P. A. Fisher, B. Fishler, S. M. Flanagan, J. A. Fooks, L. Frassinetti, H. G. Frerichs, Y. Fu, T. Fulop, Q. Gao, F. Garcia, A. M. Garofalo, A. Gattuso, L. Giacomelli, E. M. Giraldez, C. Giroud, F. Glass, P. Gohil, X. Gong, Y. A. Gorelov, R. S. Granetz, D. L. Green, C. M. Greenfield, B. A. Grierson, R. J. Groebner, W. H. Grosnickle, M. Groth, H. J. Grunloh, H. Y. Guo, W. Guo, J. Guterl, R. C. Hager, S. Hahn, F. D. Halpern, H. Han, M. J. Hansink, J. M. Hanson, J. Harris, S. R. Haskey, D. R. Hatch, W. W. Heidbrink, J. Herfindal, D. N. Hill, M. D. Hill, E. T. Hinson, C. T. Holcomb, C. G. Holland, L. D. Holland, E. M. Hollmann, A. M. Holm, R. Hong, M. Hoppe, S. Houshmandyar, J. Howard, N. T. Howard, Q. Hu, W. Hu, H. Huang, J. Huang, Y. Huang, G. A. Hughes, J. Hughes, D. A. Humphreys, A. W. Hyatt, K. Ida, V. Igochine, Y. In, S. Inoue, A. Isayama, R. C. Isler, V. A. Izzo, M. R. Jackson, A. E. Jarvinen, Y. Jeon, H. Ji, X. Jian, R. Jimenez, C. A. Johnson, I. Joseph, D. N. Kaczala, D. H. Kaplan, J. Kates-Harbeck, A. G. Kellman, D. H. Kellman, C. E. Kessel, K. Khumthong, C. C. Kim, H. Kim, J. Kim, K. Kim, S. H. Kim, W. Kimura, J. R. King, A. Kirk, K. Kleijwegt, M. Knolker, A. Kohn, E. Kolemen, M. Kostuk, G. J. Kramer, P. Kress, D. M. Kriete, R. J. La Haye, F. M. Laggner, H. Lan, M. J. Lanctot, R. Lantsov, L. L. Lao, C. J. Lasnier, C. Lau, K. Law, D. Lawrence, J. Le, R. L. Lee, M. Lehnen, R. Leon, A. W. Leonard, M. Lesher, J. A. Leuer, G. Li, K. Li, K. T. Liao, Z. Lin, C. Liu, F. Liu, Y. Liu, Z. Liu, S. Loch, N. C. Logan, J. M. Lohr, J. Lore, T. C. Luce, N. C. Luhmann, R. Lunsford, C. Luo, Z. Luo, L. Lupin-Jimenez, A. Lvovskiy, B. C. Lyons, X. Ma, R. Maingi, M. A. Makowski, P. Mantica, M. Manuel, M. W. Margo, A. Marinoni, E. Marmar, W. C. Martin, R. L. Masline, G. K. Matsunaga, D. M. Mauzey, P. S. Mauzey, J. T. Mcclenaghan, G. R. Mckee, A. G. Mclean, H. S. Mclean, E. Meier, S. J. Meitner, J. E. Menard, O. Meneghini, G. Merlo, W. H. Meyer, D. C. Miller, W. J. Miller, C. P. Moeller, K. J. Montes, M. A. Morales, S. Mordijck, A. Moser, R. A. Moyer, S. A. Muller, S. Munaretto, M. Murakami, C. J. Murphy, C. M. Muscatello, C. E. Myers, A. Nagy, G. A. Navratil, R. M. Nazikian, A. L. Neff, T. F. Neiser, A. Nelson, P. Nguyen, R. Nguyen, J. H. Nichols, M. Nocente, R. E. Nygren, R. C. O'Neill, T. Odstrcil, S. Ohdachi, M. Okabayashi, E. Olofsson, M. Ono, D. M. Orlov, T. H. Osborne, N. A. Pablant, D. C. Pace, R. R. Paguio, A. Pajares Martinez, C. Pan, A. Pankin, J. M. Park, J. Park, Y. Park, C. T. Parker, S. E. Parker, P. B. Parks, C. J. Pawley, C. A. Paz-Soldan, W. A. Peebles, B. G. Penaflor, T. W. Petrie, C. C. Petty, Y. Peysson, A. Y. Pigarov, D. A. Piglowski, R. I. Pinsker, P. Piovesan, N. Piper, R. A. Pitts, J. D. Pizzo, M. L. Podesta, F. M. Poli, D. Ponce, M. Porkolab, G. D. Porter, R. Prater, J. Qian, O. Ra, T. Rafiq, R. Raman, C. Rand, G. C. Randall, J. M. Rauch, C. Rea, M. L. Reinke, J. Ren, Q. Ren, Y. Ren, T. L. Rhodes, J. Rice, T. D. Rognlien, J. C. Rost, W. L. Rowan, D. L. Rudakov, A. Salmi, B. S. Sammuli, C. M. Samuell, A. M. Sandorfi, C. Sang, O. J. Sauter, D. P. Schissel, L. Schmitz, O. Schmitz, E. J. Schuster, J. T. Scoville, A. Seltzman, I. Sfiligoi, M. Shafer, H. Shen, T. Shi, D. Shiraki, H. Si, D. R. Smith, S. P. Smith, J. A. Snipes, P. B. Snyder, E. R. Solano, W. M. Solomon, A. C. Sontag, V. A. Soukhanovskii, D. A. Spong, W. M. Stacey, G. M. Staebler, L. Stagner, B. Stahl, P. C. Stangeby, T. J. Stoltzfus-Dueck, D. P. Stotler, E. J. Strait, D. Su, L. E. Sugiyama, A. A. Sulyman, Y. Sun, C. Sung, W. A. Suttrop, Y. Suzuki, A. Svyatkovskiy, R. M. Sweeney, S. Taimourzadeh, M. Takechi, T. Tala, H. Tan, S. Tang, X. Tang, D. Taussig, G. Taylor, N. Z. Taylor, T. S. Taylor, A. Teklu, D. M. Thomas, M. B. Thomas, K. E. Thome, A. R. Thorman, R. A. Tinguely, B. J. Tobias, J. F. Tooker, H. Torreblanca, A. Torrezan De Sousa, G. L. Trevisan, D. Truong, F. Turco, A. D. Turnbull, E. A. Unterberg, P. Vaezi, P. J. Vail, M. A. Van Zeeland, M. Velasco Enriquez, M. C. Venkatesh, B. S. Victor, F. Volpe, M. R. Wade, M. L. Walker, J. R. Wall, G. M. Wallace, R. E. Waltz, G. Wang, H. Wang, Y. Wang, Z. Wang, F. Wang, S. H. Ward, J. G. Watkins, M. Watkins, W. P. Wehner, M. Weiland, D. B. Weisberg, A. S. Welander, A. E. White, R. B. White, D. Whyte, T. A. Wijkamp, R. Wilcox, T. Wilks, H. R. Wilson, A. Wingen, E. Wolfe, M. Wu, W. Wu, S. J. Wukitch, T. Xia, N. Xiang, B. Xiao, R. Xie, G. Xu, H. Xu, X. Xu, Z. Yan, Q. Yang, X. Yang, M. Yoshida, G. Yu, J. H. Yu, M. Yu, S. A. Zamperini, L. Zeng, B. Zhao, D. Zhao, H. Zhao, Y. Zhao, Y. Zhu, and B. Zywicki
- Abstract
DIII-D research is addressing critical challenges in preparation for ITER and the next generation of fusion devices through focusing on plasma physics fundamentals that underpin key fusion goals, understanding the interaction of disparate core and boundary plasma physics, and developing integrated scenarios for achieving high performance fusion regimes. Fundamental investigations into fusion energy science find that anomalous dissipation of runaway electrons (RE) that arise following a disruption is likely due to interactions with RE-driven kinetic instabilities, some of which have been directly observed, opening a new avenue for RE energy dissipation using naturally excited waves. Dimensionless parameter scaling of intrinsic rotation and gyrokinetic simulations give a predicted ITER rotation profile with significant turbulence stabilization. Coherence imaging spectroscopy confirms near sonic flow throughout the divertor towards the target, which may account for the convection-dominated parallel heat flux. Core-boundary integration studies show that the small angle slot divertor achieves detachment at lower density and extends plasma cooling across the divertor target plate, which is essential for controlling heat flux and erosion. The Super H-mode regime has been extended to high plasma current (2.0 MA) and density to achieve very high pedestal pressures (∼30 kPa) and stored energy (3.2 MJ) with H 98y2 ≈ 1.6-2.4. In scenario work, the ITER baseline Q = 10 scenario with zero injected torque is found to have a fusion gain metric independent of current between q 95 = 2.8-3.7, and a lower limit of pedestal rotation for RMP ELM suppression has been found. In the wide pedestal QH-mode regime that exhibits improved performance and no ELMs, the start-up counter torque has been eliminated so that the entire discharge uses ≈0 injected torque and the operating space is more ITER-relevant. Finally, the high- (3.8) hybrid scenario has been extended to the high-density levels ne
- Published
- 2019
24. Luminescence properties of Ce3+ doped gadolinium-calcium-silicaborate glass scintillator
- Author
-
S. Kaewjeang, Utumma Maghanemi, D.H. Ha, Jakrapong Kaewkhao, Suchart Kothan, J. M. Park, and Hyunghoon Kim
- Subjects
Scintillation ,Radiation ,Materials science ,Absorption spectroscopy ,010308 nuclear & particles physics ,Gadolinium ,Doping ,Analytical chemistry ,chemistry.chemical_element ,02 engineering and technology ,Scintillator ,021001 nanoscience & nanotechnology ,Laser ,01 natural sciences ,law.invention ,chemistry ,law ,0103 physical sciences ,Emission spectrum ,0210 nano-technology ,Luminescence ,Instrumentation - Abstract
In this work, the Ce 3+ doped gadolinium-calcium-silicaborate glass scintillators of the composition ratio 25Gd 2 O 3 :10CaO:10SiO 2 :(55−x)B 2 O 3 :xCeF 3 , have been fabricated by using the melt-quenching technique. The doping concentration of the Ce 3+ was varied from 0.05 mol% to 2.5 mol%. The 4f-5d transition of the Ce 3+ allowed scintillation with a fast decay time. The absorption spectrum, X-ray induced emission spectrum, photo luminescence spectrum, laser luminescence spectrum and decay time of the scintillators were measured for studying the luminescence properties. From the X-ray induced emission spectrum result, we checked the trend between doping concentration and light yield. The laser induced luminescence spectrum was measured while changing the temperature from 300 K to 10 K. We also measured the decay time by using the laser excitation of the 0.15 mol% Ce 3+ doped glass scintillator.
- Published
- 2016
25. Fertility Variation and its Impact on Effective Population Size in Seed Stands of Tamarindus indica and Azadirachta indica
- Author
-
M. Varghese, J.-H. Song, Kyu-Suk Kang, Soon-Ho Kwon, J.-M. Park, and R. Kamalakannan
- Subjects
Variation (linguistics) ,Agronomy ,Effective population size ,media_common.quotation_subject ,Botany ,Genetics ,food and beverages ,Forestry ,Fertility ,Biology ,Azadirachta ,biology.organism_classification ,media_common - Abstract
Growth and reproductive traits were assessed in seed stands of two native Indian tree species Tamarindus indica and Azadirachta indica. Positive correlation between growth (height and GBH) and reproductive traits (male and female contribution) were found in both species. Fertility was estimated from the flower and fruit production of individuals. Based on the fertility variation among individuals, parental balance, femaleness index and status number (Ns) were determined. The option of equal seed collection among individuals was also considered for estimating Ns. The percentage of fertile trees was higher in the high flowering year in both species. The best male contributing individuals also showed high female contribution (fruit production). The parental contribution in seed stands showed high deviation from expectation; 20% individuals contributed about 70% of male and female gametes in both species. Femaleness index showed that female and male contribution of individual tree was more balanced in the good flowering year, compared to the poor year. Coefficient of variation in male and female fertility was higher in the low flowering year resulting in high fertility variation among individuals and low status number. In T. indica, the female contribution was less variable compared to that of male fertility whereas in A. indica the female fertility variation was higher than that of male fertility. The relative status number (Nr = Ns/N) of the stands was lower for male and female fertility compared to the combined (male and female) fertility of individual trees.
- Published
- 2015
26. 144P Clinical implication of DNA damage response gene in patients with stage II or III gastric cancer
- Author
-
J.W. Kim, H.Y. Min, S.E. Park, H.S. Kim, Jin Hwa Choi, J-M. Park, In Gyu Hwang, and K-C. Chi
- Subjects
Oncology ,business.industry ,DNA damage ,Cancer research ,Medicine ,Cancer ,In patient ,Hematology ,Stage ii ,business ,medicine.disease ,Gene - Published
- 2020
27. Evaluation of a new gamma emission imaging system and method for nuclear waste in nuclear power plant environments
- Author
-
Y. Kim, K. Y. Kim, J. M. Park, M. Hung, Jinhun Joung, J. W. Lim, and K. Bae
- Subjects
business.industry ,Nuclear engineering ,Attenuation ,Gamma ray ,Radioactive waste ,Hot spot (veterinary medicine) ,Nuclear power ,Nuclear decommissioning ,law.invention ,law ,Nuclear power plant ,Environmental science ,Deconvolution ,business - Abstract
We have developed a new radiation imaging method and system and it provides visualization of 2D or pseudo 3D distributions of gamma emitting sources selected along with superimposed CCD images.The main principle of the imaging method is recovering resolution degradation caused by attenuation and using an ultrahigh sensitive collimation. This is achieved by applying deconvolution of the system response function.To validate the performance of the new method within a real environment setup, we have conducted evaluation studies of various objects in controlled nuclear waste storage areas in nuclear power plants.The imaging system successfully demonstrated visualizing of contaminated hot spot locations with corresponding isotopes ID and activity.The new imaging technique and system are able to provide cost-effective solutions in the field of decommissioning, separation and decontamination of nuclear waste, and 24/7 radiation-leak monitoring of sites in NPP.
- Published
- 2018
28. Oligonol prevented the relapse of dextran sulfate sodium-ulcerative colitis through enhancing NRF2-mediated antioxidative defense mechanism
- Author
-
K-J, Kim, J-M, Park, J-S, Lee, Y S, Kim, N, Kangwan, Y-M, Han, E A, Kang, J M, An, Y K, Park, and K-B, Hahm
- Subjects
Male ,Colon ,NF-E2-Related Factor 2 ,Dextran Sulfate ,Anti-Inflammatory Agents ,JNK Mitogen-Activated Protein Kinases ,NF-kappa B ,Membrane Proteins ,Antioxidants ,Catechin ,Mice, Inbred C57BL ,Phenols ,NAD(P)H Dehydrogenase (Quinone) ,Secondary Prevention ,Animals ,Cytokines ,Colitis, Ulcerative ,Proto-Oncogene Proteins c-fos ,Heme Oxygenase-1 - Abstract
Repeated bouts of ulcerative colitis featured troublesome course of inflammatory bowel disease leading to fatal colitis-associated cancer, which is strongly associated with oxidative stress and sustained inflammation. Since oligonol, low molecular weighted polyphenol extracted from fruit lychee, showed antioxidative and anti-inflammatory actions, we hypothesized that oligonolcan prevent relapse of colitis. We compared oligonol with current gold standard therapeutics, sulfasalazine in preventive efficacy of relapse. First, dextran sulfate sodium (DSS)-induced colitis were made following pretreatment with oligonol, 10, 50, and 100 mg/kg for 7 days to measure therapeutic effect of oligonol and relapse model via repeated DSS administration was made following with either 50 mg/kg oligonol or 30 mg/kg sulfasalazine to explore relapse preventing action of oligonol in C57BL/6 mice. Detailed changes in colon were measured to explain molecular mechanisms. Pretreatment of 10, 50, 100 mg/kg oligonol (p.o.), significantly reduced DSS-induced colitis; total pathologic scores, colon length, and clinical symptom scores (P0.05). Oligonol pretreatment significantly decreased the levels of interleukin (IL)-1, IL-6, and tumor necrosis factor-α (TNF-α) as well as nuclear factor-κB (NF-κB), c-Fos, and c-Jun in affected colon tissues, but the expression of heme oxygenase-1 (HO-1) and NADH: quinone oxidoreductase-1(NQO-1) as well as total antioxidant concentration (P0.005) was significantly increased with oligonol. A relapse model established with repeated DSS administration led to high mortality. However, oligonol significantly ameliorated exacerbations of colitis, while sulfasalazine did not (P0.01). Significantly decreased expressions of cyclooxygenase-2 (COX-2), TNF-α, and macrophages inhibition were relapse preventing actions of oligonal, but significant action of oligonol relevant to relapse prevention was either significantly increased expressions of NQO-1 or significantly preserved mucin (P0.05). Concerted anti-inflammatory, antioxidative, and host defense enhancing actions of oligonol can be applied during maintenance therapy of IBD to prevent relapse of IBD.
- Published
- 2018
29. Effective ion charge (Z
- Author
-
S, Sarwar, H K, Na, and J M, Park
- Abstract
A visible bremsstrahlung detector array diagnostic system has been developed on the Korea Superconducting Tokamak Advanced Research (KSTAR) to view the whole minor radius in a narrow region of the continuum free of spectral lines. The interference filters coupled with photomultiplier tubes have been employed to determine the effective charge Z
- Published
- 2018
30. Evaluation of thermally-aged carbon fiber/epoxy composites using acoustic emission, electrical resistance, contact angle and thermogram
- Author
-
K. L. DeVries, H. S. Park, Y. M. Baek, J. M. Park, P. S. Shin, and J. H. Kim
- Subjects
Materials science ,Infrared ,02 engineering and technology ,Epoxy ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Contact angle ,Electrical resistance and conductance ,Acoustic emission ,visual_art ,Ultimate tensile strength ,Thermal ,visual_art.visual_art_medium ,Wetting ,Composite material ,0210 nano-technology - Abstract
Interfacial and mechanical properties of thermal aged carbon fiber reinforced epoxy composites (CFRP) were evaluated using acoustic emission (AE), electrical resistance (ER), contact angle (CA) and thermogram measurements. Unidirectional (UD)-composites were aged at 200, 300, and 400 °C to produce different interfacial conditions. The interfacial degradation was identified by Fourier transform infrared (FT-IR) spectroscopy after different thermal aging. AE and ER of UD composites were measured along 0, 30, 60 and 90 °. Changes in wavespeed, with thermal aging, were calculated using wave travel time from AE source to AE sensor and the changes in ER were measured. For a thermogram evaluation, the composites were laid upon on a hotplate and the increase in the surface temperature was measured. Static contact angle were measured after different thermal aging and elapsed times to evaluate wettability. Interlaminar shear Strength (ILSS) and tensile strength at transverse direction tests were also performed to explore the effects of thermal aging on mechanical and interfacial properties. While thermal aging of CFRPs was found to affect all these properties, the changes were particularly evident at 400 °C.
- Published
- 2018
31. Observation of Zeeman splitting of spectral lines and measurements of magnetic field pitch angle in KSTAR
- Author
-
J. M. Park, S. Sajjad, and H. K. Na
- Subjects
Zeeman effect ,Materials science ,Tokamak ,business.industry ,General Physics and Astronomy ,Polarization (waves) ,Spectral line ,Magnetic field ,law.invention ,symbols.namesake ,Optics ,Physics::Plasma Physics ,law ,symbols ,H-alpha ,Pitch angle ,Atomic physics ,business ,Circular polarization - Abstract
The Zeeman splitting of the Da (656.10 nm) and the Hα (656.28 nm) spectral lines and the different impurities from deuterium/hydrogen discharges in the KSTAR tokamak plasma have been observed in the visible region of the spectrum. The internal magnetic field strength has been determined by analyzing the circular polarization of the spectral lines emitted by the plasma. The radial magnetic field is obtained by using the Abel inversion technique. In addition, the magneticfield pitch angle is derived from the polarization characteristics of the σ component of the Zeeman triplet of the H emission at 656.28 nm by using a polarization-sensitive spectroscope.
- Published
- 2015
32. Measurements of the Scintillation Properties and the Radiation Hardness of the GAGG Single Crystal
- Author
-
J. M. Park, J. Y. Lee, J. K. Son, Sang Jun Kang, and H. L. Kim
- Subjects
Scintillation ,Materials science ,Optics ,business.industry ,Radiation damage ,General Physics and Astronomy ,business ,Single crystal ,Radiation hardening - Published
- 2015
33. Tribology Characteristics in 200 μm of Hexagonal Array Dimple Pattern
- Author
-
W. S. Choi, S.H. Angga, S. H. Kwon, S. G. Kwon, J. M. Park, J. S. Kim, S. W. Chung, and Y. H. Chae
- Published
- 2015
34. Luminescence Properties of Nd$_{2}$O$_{3}$-doped Gadolinium-Borate Glass Scintillators
- Author
-
D. H. Ha, J. Kaewhao, H. J. Kim, and J. M. Park
- Subjects
Materials science ,chemistry ,Gadolinium ,Inorganic chemistry ,Doping ,General Physics and Astronomy ,chemistry.chemical_element ,Borate glass ,Scintillator ,Luminescence - Published
- 2015
35. Detection and classification of the breast abnormalities in digital mammograms via regional Convolutional Neural Network
- Author
-
Patricio Rivera, Taeyeon Kim, G. Gi, Mohammed A. Al-masni, Tae-Seong Kim, J. M. Park, Edwin Valarezo, Mugahed A. Al-antari, and Seung-Moo Han
- Subjects
Engineering ,Artificial neural network ,medicine.diagnostic_test ,business.industry ,Deep learning ,Feature extraction ,CAD ,Breast Neoplasms ,02 engineering and technology ,Convolutional neural network ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,0302 clinical medicine ,Computer-aided diagnosis ,0202 electrical engineering, electronic engineering, information engineering ,medicine ,Mammography ,Preprocessor ,Humans ,020201 artificial intelligence & image processing ,Computer vision ,Artificial intelligence ,Neural Networks, Computer ,business - Abstract
Automatic detection and classification of the masses in mammograms are still a big challenge and play a crucial role to assist radiologists for accurate diagnosis. In this paper, we propose a novel computer-aided diagnose (CAD) system based on one of the regional deep learning techniques: a ROI-based Convolutional Neural Network (CNN) which is called You Only Look Once (YOLO). Our proposed YOLO-based CAD system contains four main stages: mammograms preprocessing, feature extraction utilizing multi convolutional deep layers, mass detection with confidence model, and finally mass classification using fully connected neural network (FC-NN). A set of training mammograms with the information of ROI masses and their types are used to train YOLO. The trained YOLO-based CAD system detects the masses and classifies their types into benign or malignant. Our results show that the proposed YOLO-based CAD system detects the mass location with an overall accuracy of 96.33%. The system also distinguishes between benign and malignant lesions with an overall accuracy of 85.52%. Our proposed system seems to be feasible as a CAD system capable of detection and classification at the same time. It also overcomes some challenging breast cancer cases such as the mass existing in the pectoral muscles or dense regions.
- Published
- 2017
36. Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system
- Author
-
Mugahed A. Al-antari, Patricio Rivera, G. Gi, Mun-Taek Choi, Seung-Moo Han, Taeyeon Kim, Tae-Seong Kim, Mohammed A. Al-masni, J. M. Park, and Edwin Valarezo
- Subjects
Computer science ,Feature extraction ,Health Informatics ,Breast Neoplasms ,02 engineering and technology ,Convolutional neural network ,030218 nuclear medicine & medical imaging ,Machine Learning ,03 medical and health sciences ,0302 clinical medicine ,Breast cancer ,0202 electrical engineering, electronic engineering, information engineering ,medicine ,Humans ,Diagnosis, Computer-Assisted ,Probability ,Artificial neural network ,Screening mammography ,business.industry ,Deep learning ,Reproducibility of Results ,Pattern recognition ,medicine.disease ,Computer Science Applications ,Radiology Information Systems ,Computer-aided diagnosis ,020201 artificial intelligence & image processing ,Female ,Artificial intelligence ,Neural Networks, Computer ,business ,Software ,Mammography - Abstract
Background and objective Automatic detection and classification of the masses in mammograms are still a big challenge and play a crucial role to assist radiologists for accurate diagnosis. In this paper, we propose a novel Computer-Aided Diagnosis (CAD) system based on one of the regional deep learning techniques, a ROI-based Convolutional Neural Network (CNN) which is called You Only Look Once (YOLO). Although most previous studies only deal with classification of masses, our proposed YOLO-based CAD system can handle detection and classification simultaneously in one framework. Methods The proposed CAD system contains four main stages: preprocessing of mammograms, feature extraction utilizing deep convolutional networks, mass detection with confidence, and finally mass classification using Fully Connected Neural Networks (FC-NNs). In this study, we utilized original 600 mammograms from Digital Database for Screening Mammography (DDSM) and their augmented mammograms of 2,400 with the information of the masses and their types in training and testing our CAD. The trained YOLO-based CAD system detects the masses and then classifies their types into benign or malignant. Results Our results with five-fold cross validation tests show that the proposed CAD system detects the mass location with an overall accuracy of 99.7%. The system also distinguishes between benign and malignant lesions with an overall accuracy of 97%. Conclusions Our proposed system even works on some challenging breast cancer cases where the masses exist over the pectoral muscles or dense regions.
- Published
- 2017
37. Non-local means filter denoising for DEXA images
- Author
-
Mohammed A. Al-masni, J.-S. Shin, Patricio Rivera, Mohamed K. Metwally, S.-J. Park, Edwin Valarezo, Tae-Seong Kim, Taeyeon Kim, Mugahed A. Al-antari, G. Gi, J. M. Park, Seung-Moo Han, and Dildar Hussain
- Subjects
Computer science ,Noise reduction ,Osteoporosis ,02 engineering and technology ,Signal-To-Noise Ratio ,Imaging phantom ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,Absorptiometry, Photon ,0302 clinical medicine ,Signal-to-noise ratio ,0202 electrical engineering, electronic engineering, information engineering ,medicine ,Computer vision ,Bone mineral ,Phantoms, Imaging ,business.industry ,Noise (signal processing) ,Detector ,Filter (signal processing) ,medicine.disease ,Non-local means ,Computer Science::Computer Vision and Pattern Recognition ,020201 artificial intelligence & image processing ,Artificial intelligence ,business - Abstract
Dual high and low energy images of Dual Energy X-ray Absorptiometry (DEXA) suffer from noises due to the use of weak amount of X-rays. Denoising these DEXA images could be a key process to enhance and improve a Bone Mineral Density (BMD) map which is derived from a pair of high and low energy images. This could further improve the accuracy of diagnosis of bone fractures, osteoporosis, and etc. In this paper, we present a denoising technique for dual high and low energy images of DEXA via non-local means filter (NLMF). The noise of dual DEXA images is modeled based on both source and detector noises of a DEXA system. Then, the parameters of the proposed NLMF are optimized for denoising utilizing the experimental data from uniform phantoms. The optimized NLMF is tested and verified with the DEXA images of the uniform phantoms and real human spine. The quantitative evaluation shows the improvement of Signal-to-Noise Ratio (SNR) for the high and low phantom images on the order of 30.36% and 27.02% and for the high and low real spine images on the order of 22.28% and 33.43%, respectively. Our work suggests that denoising via NLMF could be a key preprocessing process for clinical DEXA imaging.
- Published
- 2017
38. Human Activity Recognition Using a Single Wrist IMU Sensor via Deep Learning Convolutional and Recurrent Neural Nets
- Author
-
E. Valarezo, P. Rivera, J. M. Park, G. Gi, T. Y. Kim, M. A. Al-Antari, M. Al-Masni, and T.-S. Kim
- Published
- 2017
39. Partitioning of N-uptake from 1-year of fertigation with15N-urea in pot-lysimeter-grown M.9-grafted apple trees after 3 years of fertigation with unlabelled urea at three rates of N
- Author
-
M. J. Lee, Jong-Seok Park, S. M. Lee, J. M. Park, Hee-Myong Ro, and S. I. Yun
- Subjects
Irrigation ,Fertigation ,Phosphorus ,Potassium ,chemistry.chemical_element ,Drip irrigation ,Horticulture ,chemistry.chemical_compound ,Water potential ,Agronomy ,chemistry ,Lysimeter ,Genetics ,Urea - Abstract
SummaryThe total amounts of N derived from 15N-urea in the organs of 18 newly-bearing “maiden” apple trees and in the soil were determined after 1-year of fertigation with 15N-urea by drip irrigation, scheduled at a soil matric potential of –50 kPa. Prior to this treatment, the 18 “maiden” apple trees had been fertigated with three concentrations of N for 3 years: 17 mg N l–1 (low), 34 mg N l–1 (medium), or 67 mg N l–1 (high), and the same rates of 15N were chosen for treatment comparisons over the following 1 year. The trees were fertiligated with an aqueous stock solution of 15N-labelled urea (1.5 atom % 15N), KH2PO4, and KCl by drip irrigation. The phosphorus (P) and potassium (K) concentrations were constant, and set at 17 mg l–1 and 34 mg l–1, respectively. The total irrigation volume applied per tree was 363 l for the low, 430 l for the medium, and 216 l for the high N treatment.The corresponding supplies of N per tree were 6.17, 14.62, and 14.47 g, respectively. The total amounts of urea-N absorbed...
- Published
- 2014
40. P061 Probiotic kimchi prevented colitis-associated cancer
- Author
-
K B Hahm, Y M Han, and J M Park
- Subjects
Probiotic ,medicine.medical_specialty ,Randomization ,law ,business.industry ,Internal medicine ,Gastroenterology ,Medicine ,Colitis associated cancer ,General Medicine ,business ,law.invention - Published
- 2018
41. P071 Cancer preventive effect of recombinant TRAIL by ablation of oncogenic inflammation in colitis-associated cancer rather than anticancer effect
- Author
-
K B Hahm, J M Park, K C Lee, Y M Han, and S Hong
- Subjects
business.industry ,medicine.medical_treatment ,Gastroenterology ,Cancer ,Inflammation ,Colitis associated cancer ,General Medicine ,medicine.disease ,Ablation ,law.invention ,law ,Recombinant DNA ,medicine ,Cancer research ,medicine.symptom ,business - Published
- 2018
42. P114 Potassium competitive acid blocker, revaprazan, prevented indomethacin-induced intestinal permeability through tightening TJs
- Author
-
J M Park, K B Hahm, and Y M Han
- Subjects
chemistry.chemical_compound ,Intestinal permeability ,chemistry ,business.industry ,Potassium ,Gastroenterology ,Revaprazan ,Medicine ,chemistry.chemical_element ,General Medicine ,Pharmacology ,business ,medicine.disease - Published
- 2018
43. Aberrant expression of Wnt family contributes to the pathogenesis of diabetes-induced erectile dysfunction
- Author
-
J.-M. Park, Ji-Kan Ryu, Min Ji Choi, Hai-Rong Jin, Guo Nan Yin, S. H. Shin, Woo-Jean Kim, and Jun-Kyu Suh
- Subjects
Male ,medicine.medical_specialty ,animal structures ,Angiogenesis ,Urology ,Endocrinology, Diabetes and Metabolism ,Biology ,Streptozocin ,Diabetes Mellitus, Experimental ,Diabetes Complications ,Transforming Growth Factor beta1 ,Pathogenesis ,Extracellular matrix ,Endocrinology ,Vasculogenesis ,Erectile Dysfunction ,Fibrosis ,Proto-Oncogene Proteins ,Internal medicine ,medicine ,Animals ,Humans ,RNA, Small Interfering ,Wnt Signaling Pathway ,Cells, Cultured ,Tissue homeostasis ,Tube formation ,Extracellular Matrix Proteins ,Penile Erection ,Wnt signaling pathway ,Endothelial Cells ,Muscle, Smooth ,medicine.disease ,Mice, Inbred C57BL ,Wnt Proteins ,Reproductive Medicine ,RNA Interference ,Penis - Abstract
Diabetic erectile dysfunction (ED) has multiple causative factors, such as endothelial and smooth muscle dysfunction and cavernous fibrosis. Wnt signalling is essential for normal embryonic development and for tissue homeostasis in adults. Aberrant activation of Wnt family members has been implicated in tissue fibrosis and in angiogenesis. In this study, we investigated the differential expression of Wnts in the penises of mice with streptozotocin-induced diabetic ED. We also examined the effect of transforming growth factor-β1 (TGF-β1) on the expression of Wnts in primary cultured fibroblasts isolated from human tunica albuginea. Among the mouse and human Wnts tested, 16 mouse Wnts and 14 human Wnts were detected in the corpus cavernosum tissue of normal mice and in fibroblasts derived from human tunica albuginea respectively. We observed up-regulation of Wnt10b (known to be involved in tissue fibrosis) and down-regulation of Wnt16 (known to be involved in vasculogenesis and hematopoiesis), both in the diabetic condition in vivo and with treatment of fibroblasts with TGF-β1 in vitro. Wnt10b was mainly expressed in fibroblasts and Wnt16 was colocalized with smooth muscle cells in the corpus cavernosum tissue. Cavernous TGF-β1 protein expression and the degree of cavernous fibrosis determined by the ratio of collagen to smooth muscle content were significantly higher in diabetic mice than in controls. Cavernous endothelial content was significantly decreased by the diabetic condition. Overexpression of Wnt16 with plasmid vector accelerated tube formation in primary cultured mouse cavernous endothelial cells. However, down-regulation of Wnt10b with small interfering RNA did not decrease the production of extracellular matrix protein in human fibroblasts. This is the first report demonstrating the differential expression of Wnts in diabetic mouse penis. Aberrant Wnt expression might contribute to the pathogenesis of ED.
- Published
- 2013
44. First insights into the function of the sawshark rostrum through examination of rostral tooth microwear
- Author
-
R J, Nevatte, B E, Wueringer, D E, Jacob, J M, Park, and J E, Williamson
- Subjects
Predatory Behavior ,Animals ,Skates, Fish ,Spectrum Analysis, Raman ,Tooth ,Diet ,Elasmobranchii - Abstract
Potential roles of the rostrum of sawsharks (Pristiophoridae), including predation and self-defence, were assessed through a variety of inferential methods. Comparison of microwear on the surface of the rostral teeth of sawsharks and sawfishes (Pristidae) show that microwear patterns are alike and suggest that the elongate rostra in these two elasmobranch families are used for a similar purpose (predation). Raman spectroscopy indicates that the rostral teeth of both sawsharks and sawfishes are composed of hydroxyapatite, but differ in their collagen content. Sawfishes possess collagen throughout their rostral teeth whereas collagen is present only in the centre of the rostral teeth of sawsharks, which may relate to differences in ecological use. The ratio of rostrum length to total length in the common sawshark Pristiophorus cirratus was found to be similar to the largetooth sawfish Pristis pristis but not the knifetooth sawfish Anoxypristis cuspidata. Analysis of the stomach contents of P. cirratus indicates that the diet consists of demersal fishes and crustaceans, with shrimp from the family Pandalidae being the most important dietary component. No prey item showed evidence of wounds inflicted by the rostral teeth. In light of the similarities in microwear patterns, rostral tooth chemistry and diet with sawfishes, it is hypothesised that sawsharks use their rostrum in a similar manner for predation (sensing and capturing prey) and possibly for self-defence.
- Published
- 2016
45. Vision-based fusion of robust lane tracking and forward vehicle detection in a real driving environment
- Author
-
Wonseok Choi, Hyun-Chul Choi, Se-Young Oh, and J. M. Park
- Subjects
Computer science ,business.industry ,Template matching ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,ComputerApplications_COMPUTERSINOTHERSYSTEMS ,Tracking system ,Kalman filter ,ComputerSystemsOrganization_PROCESSORARCHITECTURES ,RANSAC ,Hyperbola ,Image stabilization ,Robustness (computer science) ,Automotive Engineering ,Computer vision ,Artificial intelligence ,Vanishing point ,business - Abstract
With the goal of developing an accurate and fast lane tracking system for the purpose of driver assistance, this paper proposes a vision-based fusion technique for lane tracking and forward vehicle detection to handle challenging conditions, i.e., lane occlusion by a forward vehicle, lane change, varying illumination, road traffic signs, and pitch motion, all of which often occur in real driving environments. First, our algorithm uses random sample consensus (RANSAC) and Kalman filtering to calculate the lane equation from the lane candidates found by template matching. Simple template matching and a combination of RANSAC and Kalman filtering makes calculating the lane equation as a hyperbola pair very quick and robust against varying illumination and discontinuities in the lane. Second, our algorithm uses a state transfer technique to maintain lane tracking continuously in spite of the lane changing situation. This reduces the computational time when dealing with the lane change because lane detection, which takes much more time than lane tracking, is not necessary with this algorithm. Third, false lane candidates from occlusions by frontal vehicles are eliminated using accurate regions of the forward vehicles from our improved forward vehicle detector. Fourth, our proposed method achieved robustness against road traffic signs and pitch motion using the adaptive region of interest and a constraint on the position of the vanishing point. Our algorithm was tested with image sequences from a real driving situation and demonstrated its robustness.
- Published
- 2012
46. Effect of MEM Vitamins Supplementation of In vitro Maturation Medium and In vitro Culture Medium on the Development of Porcine Embryos
- Author
-
Jong-Dai Kim, Humdai Park, J. M. Park, and Eun Ju Lee
- Subjects
Embryogenesis ,Untreated group ,Ovary ,Biology ,Oocyte ,Porcine embryos ,In vitro ,In vitro maturation ,Andrology ,medicine.anatomical_structure ,embryonic structures ,Immunology ,medicine ,Animal Science and Zoology ,Blastocyst ,Food Science - Abstract
This study was carried out to examine the influence of minimum essential medium (MEM) vitamins supplementation to in vitro maturation medium and in vitro culture medium on the development of porcine embryos. Porcine embryo development was investigated following cultivation in both in vitro maturation and culture medium with the supplementation of MEM vitamins (0, 0.1, 0.2 and 0.4%) using immature oocytes collected from the ovary of prepubertal gilts. Embryo development was observed and the total cell number in each blastocyst generated under the culture conditions was quantified following supplementation of the medium. The embryonic development rate of the blastocyst and hatched blastocyst was higher, but not significantly so, when 0.4% MEM vitamins were supplemented to the in vitro maturation medium of the porcine oocyte. Interestingly, the total number of cells in the blastocyst was significantly higher in the in vitro maturation MEM vitamins supplemented group compared to either the untreated group or the group which had MEM vitamins supplemented to both in vitro maturation and in vitro culture medium simultaneously (p
- Published
- 2011
47. Comparison of bolus transit patterns identified by esophageal impedance to barium esophagram in patients with dysphagia
- Author
-
C. N. Baik, I. S. Lee, S. N. Oh, Y. K. Cho, J. M. Park, Myung-Gyu Choi, S. W. Kim, I.-S. Chung, and K. Y. Choi
- Subjects
medicine.medical_specialty ,business.industry ,Esophagram ,digestive, oral, and skin physiology ,Gastroenterology ,Reflux ,chemistry.chemical_element ,Achalasia ,Barium ,General Medicine ,medicine.disease ,Dysphagia ,digestive system diseases ,Bolus (medicine) ,medicine.anatomical_structure ,chemistry ,Internal medicine ,otorhinolaryngologic diseases ,Medicine ,Esophageal spasm ,medicine.symptom ,Esophagus ,business ,Nuclear medicine - Abstract
SUMMARY Bolus transit through the esophagus has not been validated by videoesophagram in patients with dysphagia and changes in impedance with abnormal barium transit have not been described in those patients. The aim of this study was to compare esophageal impedance findings with barium esophagram measurements in patients with dysphagia. The consecutive patients with dysphagia underwent conventional multichannel esophageal impedance manometry, after which a barium videoesophagram was performed simultaneously with multichannel esophageal impedance manometry using a mean of three swallows of barium. Esophageal emptying patterns shown in the esophagogram were classified by the degree of intraesophageal stasis and presence of intraesophageal reflux. Bolus transit patterns in impedance were classified as complete and incomplete transit. Sixteen patients (M : F = 8 : 8, mean age, 47 years) were enrolled. Their manometric diagnosis were normal (n= 6), ineffective esophageal motility (n= 1), diffuse esophageal spasm (DES; n= 2), and achalasia (n= 7). Sixty-three swallows were analyzed. According to impedance analysis, 21/22 swallows with normal barium emptying showed complete transit (96%) and 31/32 swallows with severe stasis showed incomplete transit (97%). Nine swallows with mild stasis showed either complete or incomplete transit patterns in impedance. Swallows with mild barium stasis and complete transit in impedance were observed in patients who had received treatment (two patients with achalasia with history of esophageal balloonplasty and a patient with DES after nifedipine administration). Impedance reflected severe stasis with retrograde barium movement and described typical bolus transit patterns in patients with achalasia and DES. In conclusion, impedance-barium esophagram concordance is high for swallows with normal esophageal emptying and for severe barium stasis in patients with dysphagia.
- Published
- 2011
48. P089 Adalimumab and infliximab biosimilar ameliorated cachexic syndrome of Crohn Disease
- Author
-
E A Kang, Y M Han, K B Hahm, and J M Park
- Subjects
medicine.medical_specialty ,business.industry ,Crohn disease ,Internal medicine ,Gastroenterology ,medicine ,Adalimumab ,Biosimilar ,General Medicine ,business ,Infliximab ,medicine.drug - Published
- 2018
49. Epibulbar complex choristoma and hemimegalencephaly in linear sebaceous naevus syndrome
- Author
-
J M, Park, D S, Kim, J, Kim, M G, Lee, and S H, Oh
- Subjects
Male ,Nevus, Pigmented ,Hemimegalencephaly ,Pathology ,medicine.medical_specialty ,Eye Diseases ,Choristoma ,business.industry ,Lacrimal Apparatus ,Infant ,Nevus, Sebaceous of Jadassohn ,Dermatology ,Prognosis ,Capillaries ,Malformations of Cortical Development ,Cartilage ,Adipose Tissue ,Humans ,Medicine ,Abnormalities, Multiple ,business ,Linear sebaceous naevus syndrome - Abstract
Epidermal naevus syndrome is a group of congenital syndromes comprising epidermal naevi associated with a variety of developmental abnormalities of the ocular, nervous, skeletal, cardiovascular and urogenital systems. We describe a case of an 8-month-old boy with a brown alopecic plaque on his face and scalp and a vascularized epibulbar mass involving the entire cornea, which had been present since birth. Histopathological examination identified sebaceous naevus in combination with complex choristoma. Magnetic resonance imaging of the brain showed hemimegalencephaly.
- Published
- 2009
50. Understanding and Application of Different Breast Imaging Studies
- Author
-
J. M. Park
- Subjects
medicine.medical_specialty ,Modality (human–computer interaction) ,Modalities ,medicine.diagnostic_test ,Breast imaging ,business.industry ,Ultrasound ,Magnetic resonance imaging ,medicine ,Mammography ,Breast MRI ,Radiology, Nuclear Medicine and imaging ,Radiology ,business ,Breast ultrasound - Abstract
Summary There are many different imaging studies that can be used to evaluate breast lesions. This article will provide a brief introduction to each of the different examination modalities, including mammography, ultrasound and magnetic resonance imaging as well as image-guided invasive procedures. General guidelines for recommended use of each modality are suggested.
- Published
- 2009
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.