1. A low-mass dark matter search using ionization signals in XENON100
- Author
-
XENON100 Collaboration, Aprile, E., Aalbers, J., Agostini, F., Alfonsi, M., Amaro, F. D., Anthony, M., Arneodo, F., Barrow, P., Baudis, L., Bauermeister, B., Benabderrahmane, M. L., Berger, T., Breur, P. A., Brown, A., Bruenner, E. Brown S., Bruno, G., Budnik, R., Buss, A., Bütikofer, L., Cardoso, J. M. R., Cervantes, M., Cichon, D., Coderre, D., Colijn, A. P., Conrad, J., Cussonneau, J. P., Decowski, M. P., de Perio, P., Di Gangi, P., Di Giovanni, A., Duchovni, E., Ferella, A. D., Fieguth, A., Franco, D., Fulgione, W., Galloway, M., Garbini, M., Geis, C., Goetzke, L. W., Greene, Z., Grignon, C., Gross, E., Hasterok, C., Hogenbirk, E., Itay, R., Kaminsky, B., Kessler, G., Kish, A., Landsman, H., Lang, R. F., Levinson, L., Calloch, M. Le, Levy, C., Linde, F., Lindemann, S., Lindner, M., Lopes, J. A. M., Lyashenko, A., Manfredini, A., Undagoitia, T. Marrodán, Masbou, J., Massoli, F. V., Masson, D., Mayani, D., Fernandez, A. J. Melgarejo, Meng, Y., Messina, M., Micheneau, K., Miguez, B., Molinario, A., Murra, M., Naganoma, J., Oberlack, U., Orrigo, S. E. A., Pakarha, P., Pelssers, B., Persiani, R., Piastra, F., Pienaar, J., Plante, G., Priel, N., Rauch, L., Reichard, S., Reuter, C., Rizzo, A., Rosendahl, S., Rupp, N., Santos, J. M. F. dos, Sartorelli, G., Scheibelhut, M., Schindler, S., Schreiner, J., Schumann, M., Lavina, L. Scotto, Selvi, M., Shagin, P., Simgen, H., Stein, A., Thers, D., Tiseni, A., Trinchero, G., Tunnell, C. D., von Sivers, M., Wall, R., Wang, H., Weber, M., Wei, Y., Weinheimer, C., Wulf, J., and Zhang, Y.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,High Energy Physics - Experiment ,High Energy Physics - Phenomenology ,Physics - Instrumentation and Detectors - Abstract
We perform a low-mass dark matter search using an exposure of 30\,kg$\times$yr with the XENON100 detector. By dropping the requirement of a scintillation signal and using only the ionization signal to determine the interaction energy, we lowered the energy threshold for detection to 0.7\,keV for nuclear recoils. No dark matter detection can be claimed because a complete background model cannot be constructed without a primary scintillation signal. Instead, we compute an upper limit on the WIMP-nucleon scattering cross section under the assumption that every event passing our selection criteria could be a signal event. Using an energy interval from 0.7\,keV to 9.1\,keV, we derive a limit on the spin-independent WIMP-nucleon cross section that excludes WIMPs with a mass of 6\,GeV/$c^2$ above $1.4 \times 10^{-41}$\,cm$^2$ at 90\% confidence level., Comment: 6 pages; 7 figures; PRD. Additional file in source material, s2stot, contains the full list of events passing all selection cuts. Limit data points in TeX; Corrected LUX points used for comparison and respective reference in figure 5
- Published
- 2016
- Full Text
- View/download PDF