Roméo Juge, Naveen Sisodia, Joseba Urrestarazu Larrañaga, Qiang Zhang, Van Tuong Pham, Kumari Gaurav Rana, Brice Sarpi, Nicolas Mille, Stefan Stanescu, Rachid Belkhou, Mohamad-Assaad Mawass, Nina Novakovic-Marinkovic, Florian Kronast, Markus Weigand, Joachim Gräfe, Sebastian Wintz, Simone Finizio, Jörg Raabe, Lucia Aballe, Michael Foerster, Mohamed Belmeguenai, Liliana D. Buda-Prejbeanu, Johan Pelloux-Prayer, Justin M. Shaw, Hans T. Nembach, Laurent Ranno, Gilles Gaudin, Olivier Boulle, SPINtronique et TEchnologie des Composants (SPINTEC), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Laboratoire des Sciences des Procédés et des Matériaux (LSPM), Université Paris 13 (UP13)-Institut Galilée-Université Sorbonne Paris Cité (USPC)-Centre National de la Recherche Scientifique (CNRS), and ANR-17-CE24-0045,SKYLOGIC,Manipulation de skyrmions magnétiques pour des applications logique-mémoire(2017)
Magnetic skyrmions are topological spin textures that hold great promise as nanoscale information carriers in non-volatile memory and logic devices. While room-temperature magnetic skyrmions and their current-induced manipulation were recently demonstrated, the stray field resulting from their finite magnetization as well as their topological charge limit their minimum size and reliable motion in tracks. Antiferromagnetic (AF) skyrmions allow these limitations to be lifted owing to their vanishing magnetization and net zero topological charge, promising room-temperature, ultrasmall skyrmions, fast dynamics, and insensitivity to external magnetic fields. While room-temperature AF spin textures have been recently demonstrated, the observation and controlled nucleation of AF skyrmions operable at room temperature in industry-compatible synthetic antiferromagnetic (SAF) material systems is still lacking. Here we demonstrate that isolated skyrmions can be stabilized at zero field and room temperature in a fully compensated SAF. Using X-ray microscopy techniques, we are able to observe the skyrmions in the different SAF layers and demonstrate their antiparallel alignment. The results are substantiated by micromagnetic simulations and analytical models using experimental parameters, which confirm the chiral SAF skyrmion spin texture and allow the identification of the physical mechanisms that control the SAF skyrmion size and stability. We also demonstrate the local nucleation of SAF skyrmions via local current injection as well as ultrafast laser excitations at zero field. These results will enable the utilization of SAF skyrmions in skyrmion-based devices.