48 results on '"Jérôme Ganne"'
Search Results
2. When Proterozoic Crusts Became Thick: New Insights from Magma Petrology
- Author
-
Jérôme Ganne, Xiaojun Feng, Helen McFarlane, Mélina Macouin, Sonia Rousse, Seta Naba, Abraham Traoré, and Florent Hodel
- Subjects
magma chemistry ,crustal thickness ,statistical petrology ,proterozoic ,Geology ,QE1-996.5 - Abstract
The Earth’s continental crust represents the outermost envelope of the solid Earth, controlling exchanges within the geosphere and reflecting geodynamics processes. One of the fundamental issues of Earth Science aims to determine crustal thickness in past geodynamic environments in order to discuss the evolution of certain geodynamic processes through time. Despite presenting a continuing challenge, the evolution of crustal thickness during the last 3 billion years can be investigated using indirect clues yielded by the chemical signature of mafic magmas and associated ferromagnesian minerals (pyroxene, amphibole). Here, we present a new statistical assessment of a global database of magmatic and mineral chemical information. Analysis reveals the increasing occurrence of high-temperature pyroxenes and amphiboles growing in Ca-rich, Fe-poor magma since ~1 Ga, which contrasts with lower temperature conditions of minerals crystallization throughout the Meso- and Palaeoproterozoic times. This is interpreted to reflect temporal changes in the control of Earth’s crust on mantle-derived magma composition, related to changes in lithospheric thickness and mantle secular cooling. We propose that thick existing crust is associated with deeper, hotter magmatic reservoirs, potentially elucidating the mineral chemistry and the contrasting iron content between primary and derivative mafic magmas. Based on both the chemical and mineral information of mafic magma, an integrated approach provides qualitative estimates of past crustal thickness and associated magmatic systems. Our findings indicate that the Proterozoic was characterized by thicker crustal sections (>40⁻50 km) relative to the Phanerozoic and Archean (
- Published
- 2018
- Full Text
- View/download PDF
3. Role of Volcano-Sedimentary Basins in the Formation of Greenstone-Granitoid Belts in the West African Craton: A Numerical Model
- Author
-
Xiaojun Feng, Enyuan Wang, Jérôme Ganne, Prince Amponsah, and Roland Martin
- Subjects
mantle potential temperature ,olivine liquidus temperature ,thermo-mechanical model ,exhumation ,Eburnean Orogeny ,West African Craton (WAC) ,Mineralogy ,QE351-399.2 - Abstract
Greenstone belts in the West African Craton (WAC) are separated by several generations of granitoids intruded at ca. 2.18–1.98 Ga. Simultaneous folding and exhumation play an important role in the formation of greenstone-granitoid belts. However, the overall tectonic regime and origin of granitoids remain controversial. In this study, we present the estimates of the mantle potential temperature (Tp) for the WAC, which yields values of about 1500–1600 °C, pressure estimates of initial and final melting yield values of about 3.7–5.2 GPa and 1–1.3 GPa, respectively. Subsequently, 2D thermo-mechanical models have been constructed to explore the width of volcano-sedimentary basin on spatial-temporal evolution of diapirs that emplaced in the lower-middle crust during compression. The models show that the width of the volcano-sediment layer plays an important role in the formation mechanisms of greenstone-granitoid belts. The lower crust beneath sedimentary sequences is deformed into a buckle fold during the first compressional stage, through which relief uplifts slowly. Subsequently, the buckle fold is further deformed into several individual folds. Diapirs made of lower crust rocks ascend and emplace in the middle-upper crust resulting from instability. Benefitting from the mantle temperature, the pressure estimates and the numerical modelling results, a new geodynamic model was constructed. This model indicates that a series of sheet-like granitoids possibly derived from either subducted mélanges, lower crust and/or mantle melting that are accumulated at depths of the subcontinental mantle would channel along diapirs before feeding the upper crust. When the granitoids arrive at the solidified lids of the diapirs, they would favour migrating horizontally and intrude into the upper crust through weakening zones between the diapirs. Our geodynamic model also suggests an asymmetry of structures between the upper and middle-lower crust, with the dome-like granitoids overlying high-grade sedimentary synforms and high-grade diapirs underlying low-grade greenstone belts.
- Published
- 2018
- Full Text
- View/download PDF
4. 200 Ma of magmatism along the northern border of the West African Craton during Pan-African convergence
- Author
-
Alex Bisch, Antoine Triantafyllou, Gweltaz Mahéo, Jamal El Kabouri, Olivier Bruguier, Delphine Bosch, Julien Berger, Jérôme Ganne, and Frédéric Christophoul
- Abstract
Convergence zones are marked by a variety of settings that may follow each other in modern-day tectonics, including compressive phases such as subduction, obduction, collision but also extensive ones such as back-arc opening or stress-relaxation during orogenesis. Hence, the protracted evolution leading to a super-continent block amalgamation may be difficult to decipher and so may be the forcings on external enveloppes such as volcanism or erosion caused by the different phases.This question arises critically at the time of the Pan-African Orogenesis (1-0.5 Ga) assembling Gondwana, a time of supposedly dramatic and diachronical changes for external envelopes: glaciations of debated scales, deposition of various Banded Iron Formations, first (Ediacarian) fauna, replacement by Cambrian faunas. Our goal is to explore in detail the geodynamical succession leading to the amalgamation of blocks along the northern margin of the West African Craton (WAC), outcropping in the Central Anti-Atlas region, Morocco. This region is characterized by the occurrence of extended convergence-related magmatism, ophiolite emplacement and basins fillings (including BIF) during Cryogenian and Ediacaran periods.Data obtained from compilation of cartographic work, whole-rock geochemistry and datation reveals a polyphased but still poorly constrained evolution through proxies of continentality (εNd) and of crustal thickness (Sr/Y ratio). We present new data spanning metamorphic petrology, basin stratigraphy, coupled datation and trace element analysis in detrital zircons in order to better understand the evolution of the geodynamic, magmatic and drainage systems. We propose a geodynamic scenario based on these data: Development of an early oceanic arc (760-720 Ma) with juvenile magmatic signature (3
- Published
- 2023
5. A Major tectonic transition towards the beginning of Neoarchean: Implication from mantle potential temperature (Tp)
- Author
-
Sarbajit Dash, EVSSK Babu, and Jérôme Ganne
- Abstract
Various physicochemical conditions e.g., pressure, temperature, and degree of fractionation control the mafic magma composition during mantle melting and its emplacement in the crust. Constraining the composition of ancient mafic magmas can greatly aid to the understanding of the thermal condition of the mantle and the mechanics of the convective mantle throughout Earth's history. In this study we re-evaluate the mantle potential temperature (Tp) from Archean (3800Ma) to Proterozoic (563Ma) basalts derived from a depleted mantle from greenstone belts, and ophiolites assuming these are the direct product of upper mantle melting in an oceanic mantle condition. To calculate the Tp, a redox condition of Fe +3/FeTotal=0.1 is considered at the magma source. Tp values calculated from basaltic compositions whose ages are > 2800Ma reveal a hotter ambient mantle. Similarly, Tp values during the Proterozoic reveal presence of colder ambient mantle. However, we found the first evidence of colder ambient mantle during the Neoarchean (2800Ma-2500Ma) from different cratons worldwide, where the Tp values are significantly less (< 1500°C) than the previous published studies. Various petrological and geochemical studies have pointed to a major geodynamic change during the Neoarchean period e.g., a global peak in andesitic crust production, occurrences of high and intermediate metamorphism in rock record, emergence of collisional fold belt, first appearance of passive margin, higher plate velocity, supply of vast amount of sediments to ocean floor, and emergence of Sanukitoids; all of which require operation of plate tectonics during the Neoarchean. On the other hand, a transition from a mantle dominated by Tp >1500°C, to one with Tp
- Published
- 2022
6. Less is not always more: A more inclusive data-filtering approach to secular mantle cooling
- Author
-
Ross N. Mitchell and Jérôme Ganne
- Subjects
General Medicine - Published
- 2022
7. Effect of pre-existing faults on the distribution of lower crust exhumation under extension: numerical modelling and implications for NW Ghana
- Author
-
Prince Ofori Amponsah, Xiaojun Feng, Jérôme Ganne, Roland Martin, Enyuan Wang, and Mark Jessell
- Subjects
010504 meteorology & atmospheric sciences ,Metamorphic rock ,Facies ,General Earth and Planetary Sciences ,Numerical modeling ,Crust ,Shear zone ,010502 geochemistry & geophysics ,Petrology ,01 natural sciences ,Geology ,0105 earth and related environmental sciences ,General Environmental Science - Abstract
3D thermo-mechanical models have been constructed to explore the influence of pre-existing faults on the temporal-spatial distribution of high-grade amphibolite-granulite facies metamorphic rocks during extension. The different dip amounts of three pre-existing faults (refer to the Bole-Nangodi shear zones, the Jirapa shear zone and the Bulenga shear zone in the study area) are studied in models. The results show the lower crust exhumes occur at a relatively low rate prior to attaining a Stretching Factor = 4.2%. The partially molten lower crustal rocks tend to move (up to 20 km) towards the center of the model and focus exhumation in regions where pre-existing faults intersect. The high-strain corridors in models are used to understand the loci of exhumation in the Bole-Bulenga domain of NW Ghana. Accordingly, in the eastern and western parts of the high-grade rock corridors in NW Ghana, partially molten rocks exhumed from the lower into middle-upper crustal levels are interpreted to have been dominantly facilitated by the km-scale high-strain corridors. In the central part of the Bole-Bulenga domain, the high-grade rocks are interpreted to have been exhumed because of a coupling between two mechanisms: (1) The exhumation of partially molten rocks between the Jirapa and Bole-Nangodi faults increases in spatially due to the reduction in space from north to south. (2) The exhumation of lower partially molten rocks in the central part, as a result of inherited orthogonal (E-W) structures.
- Published
- 2019
8. Source and deposition age of the Dialé-Daléma metasedimentary series (Kédougou-Kéniéba Inlier, Senegal) constrained by U–Pb geochronology on detrital zircon grains
- Author
-
J. Kone, S. Duchene, Lenka Baratoux, Jérôme Ganne, F. Diatta, Pavel Pitra, Olivier Bruguier, Nicolas Thébaud, Olivier Vanderhaeghe, P. Ndiaye, Université Cheikh Anta Diop [Dakar, Sénégal] (UCAD), Géosciences Environnement Toulouse (GET), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), The University of Western Australia (UWA), Géosciences Montpellier, Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Université des Antilles (UA)-Centre National de la Recherche Scientifique (CNRS), Institut Fondamental d'Afrique Noire (IFAN), Géosciences Rennes (GR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)-Centre National de la Recherche Scientifique (CNRS), P934B, West African Exploration Initiative, French Embassy, Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA), Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR), Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Centre National d'Études Spatiales [Toulouse] (CNES), and Institut Fondamental d'Afrique Noire Cheikh Anata Diop (IFAN)
- Subjects
geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Volcanic arc ,Archean ,Geochemistry ,Metamorphism ,Geology ,010502 geochemistry & geophysics ,01 natural sciences ,Volcanic rock ,Craton ,Batholith ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,Geochronology ,0105 earth and related environmental sciences ,Earth-Surface Processes ,Zircon - Abstract
International audience; The Dialé-Daléma metasedimentary series is exposed in the Kédougou-Kéniéba Inlier that corresponds to the northwestern branch of the Eburnean orogenic belt in the southern West African Craton. Here we conducted a U–Pb geochronological study on metapelites, metagraywackes and metavolcanic breccia of the Dialé-Daléma metasedimentary series in order to identify the sedimentary sources and establish the lithostratigraphic sequence of the Kedougou-Kenieba Inlier. This new U–Pb geochronological dataset from five samples representing different stratigraphic levels yield a dominant population of Paleoproterozoic detrital zircon grains with ages ranging from c. 2200 to 2100 Ma. The youngest weighted mean ages at c. 2120 Ma are identical for all five samples within error and provide a maximum deposition age for the sediments of the Dialé-Daléma series. The dominant ages are similar to those obtained on metamorphosed plutonic and volcanic rocks of the Mako belt and thus suggest a dominant proximal source for the clastic sediments of the Dialé-Daléma series and a distal or geographically isolated position relative to the Archean Leo-Man or Réguibat craton nuclei. Deposition ages are only a few Myr older than available ages for metamorphism and intrusion of plutons forming the Saraya batholith. This is consistent with deposition along an active convergence zone marked by the succession, within a few tens of Myr, of (1) magmatic accretion of the Mako plutonic and volcanic rocks in the context of volcanic arc, associated with local uplift, exhumation and erosion at c. 2200-2160 Ma, (2) deposition of clastic sediments forming the Dialé-Daléma series at c. 2120-2110 Ma followed by (3) their burial and exhumation at c. 2090–2060 partially contemporaneous with (4) the intrusion of the Saraya batholith at c. 2080–2070 Ma.
- Published
- 2020
9. Strain Partitioning and Exhumation in Oblique Taiwan Collision: Role of Rift Architecture and Plate Kinematics
- Author
-
Frédéric Mouthereau, Lucas Mesalles, Jérôme Ganne, Marta Bonzani, Maxime Daudet, Abdeltif Lahfid, Clément Conand, Andrew Lin, Slawek Giletycz, Géosciences Environnement Toulouse (GET), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), and Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)
- Subjects
strain partitioning ,Rift ,transcurrent deformation ,Taiwan ,Oblique case ,Metamorphism ,Kinematics ,Collision ,Strain partitioning ,Geophysics ,oblique collision ,Oblique collision ,Geochemistry and Petrology ,metamorphism ,[SDU]Sciences of the Universe [physics] ,Raman spectroscopy ,Seismology ,Geology - Abstract
International audience; Taiwan is an archetypal example of continental accretionary wedges. Yet the generally poor knowledge of three-dimensional strain distribution over time and role of architecture of the rifted margin shed doubt on the cylindrical two-dimensional kinematic models of Taiwan collision. Here we provide new field-based constraints on strain distribution, new Raman Spectroscopy on Carbonaceous Materials temperatures and apply mica-chlorite multiequilibrium approach to determine pressure-temperature in the Central Range of Taiwan. We identify three distinct structural domains that define zones of orthogonal shortening in the western Backbone Range and left-lateral ductile shearing overprinted by left-lateral transtensional brittle deformation in eastern Central Range. Field surveys show the lack of nappe stacking in the Backbone Range. Combining new temperature estimates with existing thermochronological constraints we emphasize that western Taiwan mostly inherited preorogenic thermal history. We show that metamorphic peak conditions of 5-6 kbar and 330-400 °C in the eastern Backbone Range and HP rocks of the Yuli Belt exhumed along the P-T paths related to transcurrent deformation. We propose a three-dimensional kinematic model of Taiwan accounting for the oblique motion of the Philippine Sea Plate relative to the plate boundary and the reactivation of a NS striking transform fault in the South China Sea rifted margin. Recent and ongoing strain partitioning in the Taiwan accretionary wedge is reflected by the coexistence of brittle left-lateral shear, oblique extension, and contraction. Our results have impact on orogen-based plate kinematic reconstructions that consider two-dimensional kinematic evolution of orogens.
- Published
- 2020
10. Neoproterozoic magmatic evolution of the southern Ouaddai Massif (Chad)
- Author
-
Moussa Isseini, Felix Djerossem, Armin Zeh, Jérôme Ganne, Julien Berger, Olivier Vanderhaeghe, Géosciences Environnement Toulouse (GET), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université de N'Djaména, Institut für Angewandte Geowissenschaften [Darmstadt], Technische Universität Darmstadt - Technical University of Darmstadt (TU Darmstadt), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), and Technische Universität Darmstadt (TU Darmstadt)
- Subjects
010504 meteorology & atmospheric sciences ,Greenschist ,Geography & travel ,Geochemistry ,010502 geochemistry & geophysics ,Anatexis ,01 natural sciences ,peraluminous granites ,Central Africa Orogenic Belt ,Metamorphic facies ,0105 earth and related environmental sciences ,ddc:910 ,geography ,geography.geographical_feature_category ,Pan-African ,shoshonitic magmatism ,Andesite ,lcsh:QE1-996.5 ,Quartz monzonite ,Geology ,Saharan Metacraton ,Massif ,lcsh:Geology ,Batholith ,[SDU]Sciences of the Universe [physics] ,Zircon - Abstract
International audience; This paper presents new petrological, geochemical, isotopic (Nd) and geochronological data on magmatic rocks from the poorly known southern Ouaddaï massif, located at the southern edge of the socalled Saharan metacraton. This area is made of greenschist to amphibolite facies metasediments intruded by large pre-to syn-tectonic batholiths of leucogranites and an association of monzonite, granodiorite and biotite granite forming a late tectonic high-K calc-alkaline suite. U-Pb zircon dating yields ages of 635 ± 3 Ma and 613 ± 8 Ma on a peraluminous biotite-leucogranite (containing numerous inherited Archean and Paleoproterozoic zircon cores) and a muscovite-leucogranite, respectively. Geochemical fingerprints are very similar to some evolved Himalayan leucogranites suggesting their parental magmas were formed after muscovite and biotite dehydration melting of metasedimentary rocks. A biotite-granite sample belonging to the late tectonic high-K to shoshonitic suite contains zircon rims that yield an age of 540 ± 5 Ma with concordant inherited cores crystallized around 1050 Ma. Given the high-Mg# (59) andesitic composition of the intermediate pyroxene-monzonite, the very similar trace-element signature between the different rock types and the unradiogenic isotopic signature for Nd, the late-kinematic high-K to shoshonitic rocks formed after melting of the enriched mantle and further differentiation in the crust. These data indicate that the southern Ouaddaï was part of the Pan-African belt. It is proposed that it represents a continental back-arc basin characterized by a high-geothermal gradient during Early Ediacaran leading to anatexis of middle to lower crustal levels. After tectonic inversion during the main Pan-African phase, late kinematic high-K to shoshonitic plutons emplaced during the final post-collisional stage.
- Published
- 2020
11. Magmatism: A crustal and geodynamic perspective
- Author
-
Jérôme Ganne and Xiaojun Feng
- Subjects
010504 meteorology & atmospheric sciences ,Continental crust ,Geochemistry ,Geology ,Crust ,010502 geochemistry & geophysics ,01 natural sciences ,Supercontinent ,Mantle (geology) ,Cretaceous ,Oceanic crust ,Magmatism ,Slab ,0105 earth and related environmental sciences - Abstract
The Earth's continental crust constitutes a major interface between the inner and outer envelops of the planet, controlling the differentiation of magmas produced in the mantle and their transfer to the surface. This close link facilitates the use of different chemical proxies to qualitatively unravel the crustal thickness related to fossil magmatic systems based on the message carried by magmas. This paper aims to bridge different results of statistical petrology, recently obtained at different scales of observation, in a global geodynamic model. Statistical analyses applied to a large multidimensional database of magmatic rocks show that crustal thickness could actually exert a first-order control on the composition of magmas, which become more calc-alkaline and comparatively less tholeiitic with increasing crustal thickness. Using this correlation, we document the progressive build-up of a thick (>40 km) Jurassic to Cretaceous accretionary belt along the Circum-Pacific Orogenic Belts (CPOB) that bounded the Panthalassa Ocean. The destruction of this thick belt started at ca. 125 Ma and was initially recorded by the thinnest magmatic systems hosting amphibole-bearing magma. Thinning of the CPOB became widespread in the northern regions of western America and in the western Pacific after ca. 75 Ma, possibly in response to oceanic plate segmentation, which triggered slab rollback and overriding plate extension. This chemical evolution is superimposed on a more global evolution of magma controlled by the temperature of the mantle that has gradually decreased since 200 Ma. Although the relative contribution of crust vs mantle cooling in the chemical signature of magmatic rocks should be further explored in the future, our results offer a new global perspective of the magmatic history of Pangea, the last supercontinent.
- Published
- 2018
12. Onset of the supercontinent cycle: Evidence for multiple oceanic arc accretion events in the Paleoproterozoic Sefwi Greenstone Belt of the West African Craton
- Author
-
Robin Armit, Mark Jessell, Nicolas Thébaud, Christopher Spencer, Lenka Baratoux, Peter G Betts, Jérôme Ganne, H. B. McFarlane, Laurent Ailleres, Luis A. Parra-Avila, Géosciences Environnement Toulouse (GET), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), The University of Western Australia (UWA), ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS), Macquarie University, The Institute for Geoscience Research [Perth] (TIGeR), School of Earth and Planetary Science [Perth - Curtin university], Curtin University [Perth], Planning and Transport Research Centre (PATREC)-Planning and Transport Research Centre (PATREC)-Curtin University [Perth], Planning and Transport Research Centre (PATREC)-Planning and Transport Research Centre (PATREC), Institut Fondamental d'Afrique Noire (IFAN), Université Cheikh Anta Diop [Dakar, Sénégal] (UCAD), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), and Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)
- Subjects
geography ,Subduction-related accretion-collision ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Gabbro ,Mantle wedge ,Partial melting ,Geochemistry ,Juvenile ,Geology ,Greenstone belt ,West African Craton ,Paleoproterozoic ,010502 geochemistry & geophysics ,Anatexis ,01 natural sciences ,Craton ,Geochemistry and Petrology ,[SDU]Sciences of the Universe [physics] ,magmatism ,Zircon U-Pb - Lu-Hf isotopes ,Mafic ,0105 earth and related environmental sciences ,Terrane - Abstract
Greenstone belts preserved in the West African Craton (2300-2070 Ma) provide key information for understanding the petrogenetic processes and geodynamic setting for juvenile crust formation during a nascent Paleoproterozoic plate tectonic regime. New geochemical and isotopic data are presented for the magmatic suites exposed in Sefwi Greenstone Belt, SW Ghana. We define five distinct plutonic suites, with extrusive equivalents, including: 1) two generations of high SiO2, Na2O-rich tonalite-trondhjemite-granodiorite (TTG) granitoids; 2) calc-alkaline, LILE-enriched diorites; 3) tholeiitic pyroxenite, gabbro and layered mafic intrusives; 4) high-K quartz monzonites; and, 5) incompatible element-rich, two-mica granites and muscovite leucogranites. Trace element patterns of most magmatic suites display negative Nb-Ta, P and Ti anomalies and weakly positive Pb anomalies, suggesting magma genesis in a subduction setting with minor crustal contamination/assimilation. Complementary zircon U-Pb and Lu-Hf data indicate contemporaneous emplacement of diorites (epsilon Hf-(t) = + 2.5 to + 5.4) and low-HREE TTGs (epsilon Hf-(t) = + 4.3 to + 7.6) between ca. 2159 and 2153 Ma, derived from contrasting sources, namely the partial melting of the metasomatised mantle wedge and high-pressure partial melting of low-K mafic sources, respectively. High-HREE TTGS are attributed to the shallow, partial melting of mafic material. The emplacement of high-K quartz monzonites (epsilon Hf-(t) = +2.5 to +5.2) at ca. 2135 Ma reveals mixing of mantle-derived magmas and remelting of existing TTGs in the crustal pile. Consistently positive epsilon Hf-(t) values indicate predominantly radiogenic, though heterogeneous, magma sources during crustal growth, derived from precursory material extracted from the depleted mantle and an older crustal component with a minimum age of 2650 Ma. Magmatogenesis of two-mica granites and leucogranites (ca. 2092 and 2081 Ma) is interpreted to be the product of crustal anatexis during an oceanic arc-arc collisional event, with a proposed suture parallel to the NW margin of the Sefwi Belt. We hypothesise that the formation and accretion of the West African Craton reflects the rapid amalgamation of individual oceanic arc terranes, providing potential insight into the transitional plate tectonic regime that may have characterised the Earth between 3000 and 2000 Ma.
- Published
- 2019
13. U-Pb-Hf isotopic systematics of zircons from granites and metasediments of southern Ouaddaï (Chad), implications for crustal evolution and provenance in the Central Africa Orogenic Belt
- Author
-
Jérôme Ganne, Felix Djerossem, Armin Zeh, Olivier Vanderhaeghe, Moussa Isseini, and Julien Berger
- Subjects
Provenance ,geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Greenschist ,Metamorphic rock ,Geochemistry ,Detritus (geology) ,Metamorphism ,Geology ,Crust ,010502 geochemistry & geophysics ,01 natural sciences ,Craton ,Geochemistry and Petrology ,0105 earth and related environmental sciences ,Zircon - Abstract
We present the first combined U-Pb ages and Lu-Hf isotope data of zircon grains from the southern Ouaddai area in Eastern Chad in the Central Africa Orogenic Belt. Zircon xenocrysts from granites and detrital zircons from quartzites of the Ouaddai document crustal accretion from depleted mantle sources at 3.0 ± 0.5 Ga, rarely up to 3.8 Ga, and for subsequent reworking during four magmatic events, during the Neoarchean at ca. 2.6 Ga (eHft = −7.0 to 4.6), Paleoproterozoic at ca. 1.9–2.1 Ga (eHft = −17.7 to 5.3), Mesoproterozoic at ca. 1.1 Ga (eHft = −15.3 to 5.9), and Neoproterozoic/early Cambrian at 635–540 Ma (eHft = −31.1 to 1.4). Superchondritic eHft values point to new crust addition during all four events. Metamorphic zircon rims yield a Concordia age of 600 ± 2 Ma, and provide evidence that greenschist to amphibolite-facies metamorphism affecting the quartzites occurred between syn-tectonic (635 Ma) and post-kinematic (540 Ma) granite intrusions. Our new set of zircon data, combined with field relationships, also indicate that the quartzite precursor rocks were deposited between 1045 and 635 Ma, possibly after 670 Ma in a basin that subsequently became the Central Africa Orogenic Belt. The detritus was supplied from surrounding cratons, although the sources of the Mesoproterozoic zircons remain ambiguous. Comparison of age-eHft data from worldwide sources suggests sediment supply from the Irumide, Katanga and Mozambique belts, located to the south-east of the Congo Craton. Paleogeographic reconstructions further require sediment transport prior to final closure of several oceanic basins surrounding Central and Northern Africa during the Neoproterozoic, comprising the Khomas and Mozambique oceans
- Published
- 2021
14. The structural evolution of the Dialé-Daléma basin, Kédougou-Kéniéba Inlier, eastern Senegal
- Author
-
P. Ndiaye, Mahamadane Diène, Jérôme Ganne, F. Diatta, and Prince Ofori Amponsah
- Subjects
010504 meteorology & atmospheric sciences ,Metamorphic rock ,Tectonic phase ,Geology ,Orogeny ,Fold (geology) ,Structural basin ,010502 geochemistry & geophysics ,01 natural sciences ,Sinistral and dextral ,Shear (geology) ,Clockwise ,Petrology ,Seismology ,0105 earth and related environmental sciences ,Earth-Surface Processes - Abstract
The Diale-Dalema group is located in the eastern part of the Kedougou-Kenieba Inlier (KKI) and is essentially composed of Paleoproterozoic rock formations. Lithostructural studies in this area, hassuggested, often controversial, deformational regimes and geodynamic evolution models. In this study, we suggest the existence of an initial tangential D1 deformation and transpressional D2 deformational phases. D1 is characterized by an initial metamorphic schistosity denoted as S1 and by F1 folds with the main shortening stress direction generally oriented in NW-SE direction. D2 in the study area is divided into two stages. The first stage designated as D2a is coaxial and compressive in nature. It is characterized by a N-S to NNE-SSW trending metamorphic schistosity termed S2a. The D2a phase evolves gradually to a transcurrent phase connoted as D2b and characterized by a NNE-SSW S2b metamorphic schistosity which is axial planar to the F2b folds with subvertical fold axes. During the D2 phase, the main shortening stress direction rotates gradually in a clockwise motion from an E-W to a NW-SE direction within a continuum of deformation. The third deformation phase D3 in the Diale-Dalema basin, is also divided into two stages, thus D3a and D3b. D3a is transcurrent and transtensive in nature and is characterized by NE-SW sinistral shear corridors with local extensional jogs. During this deformation stage, the maximum shortening stress (σ1) direction acts in a N-S direction and rotate to a NE-SW direction, thereby creating a N-S transcurrent dextral shear corridors. D3b component of the D3 deformation is compressive in nature with a weak sinistral shear component. The D4 corresponds to a N-S extensional phase which is characterized by E-W directed normal faults. D4 in the study area denotes the final stage of the evolution of the Eburnean orogeny in the KKI.
- Published
- 2017
15. The Cordierite-Orthoamphibole Rocks of the Variscan Dome of Gavarnie-GèDre-Héas: The Gedrite of Gèdre (Hautes Pyrénées, France)
- Author
-
Jérôme Ganne, Didier Béziat, Youssef Driouch, Pierre Debat, Jacques Martignole, and Leo M. Kriegsman
- Subjects
010504 meteorology & atmospheric sciences ,Metamorphic rock ,Geochemistry ,Cordierite ,engineering.material ,010502 geochemistry & geophysics ,Migmatite ,01 natural sciences ,Gedrite ,Geochemistry and Petrology ,visual_art ,Staurolite ,engineering ,visual_art.visual_art_medium ,Plagioclase ,Geology ,Biotite ,Ilmenite ,0105 earth and related environmental sciences - Abstract
The low- P /high- T Variscan metamorphic dome of Gavarnie-Gedre-Heas, Central Pyrenees, harbors a small (1 m 3 ) but special cordierite and orthoamphibole-bearing enclave embedded within an anatectic granite. Compared to other cordierite-orthoamphibole occurrences described in the literature, the enclave shows singular characteristics: (1) its mineral composition is unique with cordierite (Crd) + gedrite (Ged) + biotite ss (Bt) + staurolite (St) + garnet (Grt) + spinel (Spl) + corundum (Crn) + ilmenite (Ilm) and sulfides (Sulf), but lacking quartz (Qtz), plagioclase (Pl), and aluminosilicate minerals; and (2) its chemical composition, with low SiO 2 , high Al 2 O 3 , K 2 O, and TiO 2 and high Fe 2 O 3T /MgO. The Crd-Oam-bearing rocks also occur as layers in stromatic migmatites that show a mineral composition (Bt + Crd + Ged + Pl + Qtz + Ilm + Grt ± St) and a chemical composition more akin to other described occurrences. The cordierite-orthoamphibole enclave records a succession of metamorphic reactions: (1) local Crd-Oam growth at the expense of Bt with release of K 2 O; (2) development of coronas of Crd ± Ilm ± Grt around St; (3) isochemical breakdown of St to Crd + Spl + Crn. In the Ged-bearing layers in interlayered migmatites, the formation of the Crd-Oam assemblage involves the consumption of Bt, Pl, and Qtz. Mass balance calculations show that in the enclave most reactions took place in an open system with addition of Si and release of K 2 O. Pseudosections indicate a clockwise P-T path, with high-temperature conditions (700–730 °C) at decreasing pressure (from 5.6 to 3 kbar). This fits the P-T path of other metamorphic domes of the Variscan Central Pyrenees.
- Published
- 2017
16. Primary magmas and mantle temperatures through time
- Author
-
Jérôme Ganne and Xiaojun Feng
- Subjects
010504 meteorology & atmospheric sciences ,Archean ,010502 geochemistry & geophysics ,01 natural sciences ,Mantle (geology) ,Boundary layer ,Plate tectonics ,Geophysics ,Mantle convection ,Geochemistry and Petrology ,Lithosphere ,Mafic ,Petrology ,Chemical composition ,Geology ,0105 earth and related environmental sciences - Abstract
Chemical composition of mafic magmas is a critical indicator of physicochemical conditions, such as pressure, temperature, and fluid availability, accompanying melt production in the mantle and its evolution in the continental or oceanic lithosphere. Recovering this information has fundamental implications in constraining the thermal state of the mantle and the physics of mantle convection throughout the Earth's history. Here a statistical approach is applied to a geochemical database of about 22,000 samples from the mafic magma record. Potential temperatures (Tps) of the mantle derived from this database, assuming melting by adiabatic decompression and a Ti-dependent (Fe2O3/TiO2 = 0.5) or constant redox condition (Fe2+/∑Fe = 0.9 or 0.8) in the magmatic source, are thought to be representative of different thermal “horizons” (or thermal heterogeneities) in the ambient mantle, ranging in depth from a shallow sublithospheric mantle (Tp minima) to a lower thermal boundary layer (Tp maxima). The difference of temperature (ΔTp) observed between Tp maxima and minima did not change significantly with time (∼170°C). Conversely, a progressive but limited cooling of ∼150°C is proposed since ∼2.5 Gyr for the Earth's ambient mantle, which falls in the lower limit proposed by Herzberg et al. [2010] (∼150–250°C hotter than today). Cooling of the ambient mantle after 2.5 Ga is preceded by a high-temperature plateau evolution and a transition from dominant plumes to a plate tectonics geodynamic regime, suggesting that subductions stabilized temperatures in the Archaean mantle that was in warming mode at that time.
- Published
- 2017
17. Statistical petrology reveals a link between supercontinents cycle and mantle global climate
- Author
-
Jérôme Ganne, Vincent De Andrade, Patrice Rey, and Xiaojun Feng
- Subjects
Dike ,geography ,mantle heating ,magma thermicity ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Earth science ,Pangea supercontinent ,global cycles ,010502 geochemistry & geophysics ,01 natural sciences ,Supercontinent ,Mantle (geology) ,Mantle plume ,Plate tectonics ,Geophysics ,Geochemistry and Petrology ,Lithosphere ,Magmatism ,Flood basalt ,geostatistics ,Geology ,0105 earth and related environmental sciences - Abstract
The breakup of supercontinents is accompanied by the emplacement of continental flood basalts and dike swarms, the origin of which is often attributed to mantle plumes. However, convection modeling has showed that the formation of supercontinents result in the warming of the sub-continental asthenospheric mantle (SCAM), which could also explain syn-breakup volcanism. Temperature variations during the formation then breakup of supercontinents are therefore fundamental to understand volcanism related to supercontinent cycles. Magmatic minerals record the thermal state of their magmatic sources. Here we present a data mining analysis on the first global compilation of chemical information on magmatic rocks and minerals formed over the past 600 million years: a time period spanning the aggregation and breakup of Pangea, the last supercontinent. We show that following a period of increasingly hotter Mgrich magmatism with dominant tholeiitic affinity during the aggregation of Pangea, lower-temperature minerals crystallized within Mg-poorer magma with a dominant calc-alkaline affinity during Pangea disassembly. These trends reflect temporal changes in global mantle climate and global plate tectonics in response to continental masses assembly and dispersal. We also show that the final amalgamation of Pangea at similar to 300 Myr led to a long period of lithospheric collapse and cooling until the major step of Pangea disassembly started at similar to 125 Myr. The geological control on the geosphere magma budget has implications on the oxidation state and temperature of the Earth's outer envelopes in the Phanerozoic and may have exerted indirect influence on the evolution of climate and life on Earth.
- Published
- 2016
18. Episodic collisional orogenesis and lower crust exhumation during the Palaeoproterozoic Eburnean Orogeny: Evidence from the Sefwi Greenstone Belt, West African Craton
- Author
-
Mark Jessell, Jérôme Ganne, H. B. McFarlane, Laurent Ailleres, Peter G Betts, Sylvain Block, Lenka Baratoux, GET (GET), Ecole Nationale Supérieure des Télécommunications de Bretagne, The University of Western Australia (UWA), Institut Fondamental d'Afrique Noire (IFAN), and Université Cheikh Anta Diop [Dakar, Sénégal] (UCAD)
- Subjects
010504 meteorology & atmospheric sciences ,Geochemistry ,Exhumation ,Greenstone belt ,West African Craton ,010502 geochemistry & geophysics ,01 natural sciences ,Sefwi Greenstone Belt ,Lineation ,Transtension ,Geochemistry and Petrology ,Palaeoproterozoic ,Collisional orogenesis ,0105 earth and related environmental sciences ,geography ,geography.geographical_feature_category ,Geology ,Crust ,Orogeny ,Fold (geology) ,15. Life on land ,Craton ,[SDU]Sciences of the Universe [physics] ,Shear zone - Abstract
New constraints on the architecture, deformation sequence and tectonic evolution of the sparsely exposed Palaeoproterozoic Sefwi Greenstone Belt (ca. 2200-2070 Ma) in SW Ghana are derived from the integration of field observations, structural mapping and interpretation of regional airborne geophysical data. Our findings provide new insights into the tectonic evolution of the West African Craton during the Palaeoproterozoic Eburnean Orogeny (ca. 2150-2070 Ma). Domains of contrasting metamorphic grade comprising high-grade paragneisses and meta-volcanic rocks are tectonically juxtaposed against low-grade volcano-sedimentary packages. The earliest deformation event is characterised by a bedding-parallel high-grade metamorphic foliation (S-1) that is axial planar to isoclinal folds formed during NNW-SSE shortening and late-D-1 partial melting. This crustal thickening event generated biotite +/- muscovite granites emplaced parallel to the NW margin of the Sefwi Belt between ca. 2092 and 2081 Ma, providing a minimum age for D-1. D-2 deformation is characterised by a moderate to steeply dipping, ENE-WSW to NE-SW striking, penetrative S-2 mineral foliation. Within the Sefwi Belt, coaxial F-2 fold axes and L-2 stretching lineations pitch shallowly ENE-WSW to NE-SW, oblique to the major shear zones, indicative of ENE-WSW transtension and associated constrictional deformation. Differential exhumation of middle and lower crustal segments along NNE-striking D-2 extensional detachments was coincident with sinistral oblique reactivation of NE-SW regional-scale shear zones. The timing of exhumation is constrained by metamorphic monazite U-Pb ages at ca. 2073 Ma. Subsequent E-W shortening is associated with dextral reactivation of regional NE-SW striking shear zones and refolding of earlier structures away from the major shear zones. We propose that the NW margin of the Sefwi Belt represents the collision (D-1) of southern Ghana and central and NW Ghana/Ivory Coast which record different tectonic histories. Furthermore, we suggest the amalgamation of the West African Craton is the product of episodic collisional orogenesis, providing new insights into the evolution of orogenic processes during the Palaeoproterozoic.
- Published
- 2019
19. Evolution of a long-lived continental arc: a geochemical approach (Arequipa Batholith, Southern Peru)
- Author
-
Michel de Saint-Blanquat, Jérôme Ganne, Mathieu Benoit, and Sophie Demouy
- Subjects
Fractional crystallization (geology) ,Continental margin ,Outcrop ,Batholith ,Back-arc basin ,Geochemistry ,Present day ,Amphibole ,Geology ,Continental arc - Abstract
Batholith emplacements within a continental margin may bear witness of a magmatic input lasting for several million years. Consequently, the geochemical signatures of such sections are complex, and their understanding in terms of petrological processes, is crucial. The Arequipa section of the Coastal Batholith of Southern Peru was discontinuously constructed during several periods of magmatic activity, from the Jurassic to the Paleocene (200–175 Ma, and 90–60 Ma). Thermobarometric data on amphiboles indicates two main levels of emplacement at the batholith scale, the deepest between 5 and 7 km in depth and the second around 3.5 km. The present day outcropping of these different units at the same elevation argue for a large vertical movement along the Lluclla Fault System between 76 and 68 Ma. Both major/trace element contents and Nd-Sr isotopes show a large variability that is not random. The data dispersion is consistent with a two-staged evolutionary model of the magmatic arc, inspired by the MASH model: (i) an early stage dominated by hybridization and fractional crystallization processes, (ii) a late stage in which magmas were homogenized and mainly evolved by fractional crystallization. The change from one stage to another is controlled by the thermal state of the crustal arc section, especially the Deep Crustal Hot Zone.
- Published
- 2019
20. Tectonothermal Evolution of the Cameros Basin: Implications for Tectonics of North Iberia
- Author
-
Stéphanie Brichau, Jérôme Ganne, Frédéric Mouthereau, Abdeltif Lahfid, Matthias Bernet, Mélanie Balvay, J. Rat, A. Crémades, Cécile Gautheron, Géosciences Environnement Toulouse (GET), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Centre de Recherches Pétrographiques et Géochimiques (CRPG), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences de la Terre (ISTerre), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Bureau de Recherches Géologiques et Minières (BRGM) (BRGM), Géosciences Paris Sud (GEOPS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), and Univ Grenoble Alpes, CNRS, Inst Sci Terre, Grenoble, France
- Subjects
Rift ,010504 meteorology & atmospheric sciences ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Structural basin ,010502 geochemistry & geophysics ,rift-collision cycles ,01 natural sciences ,Paleontology ,Plate tectonics ,Tectonics ,Geophysics ,rift thermal imprint ,Geochemistry and Petrology ,[SDU]Sciences of the Universe [physics] ,Iberian-Europe plate boundary ,Sedimentary rock ,Cameros basin ,Mesozoic ,low-temperature thermochronology ,Cenozoic ,Ebro basin ,Geology ,0105 earth and related environmental sciences ,Zircon - Abstract
International audience; Constraining the way in which continental deformation is accommodated in time and space is essential to reconcile past plate movements with geological observations. Kinematic reconstructions of the Iberia-Europe plate boundary are still debated. Here we focus on an inverted Mesozoic rift basin, the Cameros basin, which is part of the Iberian chain. We use a combination of detrital low-temperature thermochronological techniques to define the time-temperature evolution of the basin from Mesozoic rifting to Cenozoic collision. Zircon fission-track analyses of Oligocene-Miocene sedimentary rocks yield two main age populations at 17010 and 10010Ma, reflecting (i) an Early Jurassic thermal event related to the Atlantic-Alpine Tethys opening and (ii) an Albo-Cenomanian thermal event related to the Bay of Biscay opening. Thermal modeling of combined zircon fission-track, apatite fission-track, and apatite (U-Th-Sm)/He data reveals that collision-related cooling of the Cameros basin started during the Paleocene (60Ma). A second cooling/exhumation phase of the basin is recorded from 35 to 25Ma. Initial cooling occurred after a protracted postrift period characterized by persistence of high geothermal gradients, a feature also recognized in the Pyrenees. Our results show that the Iberian chain shared the same Early to Late Jurassic tectonothermal evolution with the Atlantic-Alpine Tethyan rifted margins. From the Albian onward, the thermal evolution of the Cameros basin was very similar to that of the Pyrenees. This study shows that the preservation in mountain ranges of a succession of rifting events provide important clues for plate reconstructions.
- Published
- 2019
21. The exhumation along the Kenyase and Ketesso shear zones in the Sefwi terrane, West African Craton : a numerical study
- Author
-
Enyuan Wang, Mark Jessell, Roland Martin, Jérôme Ganne, and Xiaojun Feng
- Subjects
geography ,strike-slip faults ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Greenschist ,Transtension ,deformation ,numerical modelling ,Crust ,West African Craton ,010502 geochemistry & geophysics ,01 natural sciences ,Craton ,Eburnean Orogeny ,Sinistral and dextral ,Facies ,General Earth and Planetary Sciences ,Shear zone ,Petrology ,Geology ,0105 earth and related environmental sciences ,General Environmental Science ,Terrane - Abstract
High-grade (amphibolite-granulite facies) tectono-metamorphic domains in the Sefwi terrane of Ghana are separated from adjacent lower-grade (greenschist facies) greenstone belts by two main shear zones. The high-grade rocks presumably exhumed along the sinistral shear zones during the D2 ENE-WSW transtension (similar to 2073 Ma). To better understand the role boundary conditions and the spatial relationship of faults play in the exhumation of partially molten lower crust in the Sefwi terrane, ten 3D thermomechanical models have been constructed. The results show that the normal component of velocity boundary conditions mainly controls the exhumation (8-10 km) of the lower crust along pre-existing faults, while the exhumation in the relay zones between faults is controlled by the obliquity between the applied extensional velocity vector and the vertical wall on which it is applied. The strike of the exhumation belt made of partially molten lower crust rocks in the relay zone is sub-orthogonal to the horizontal maximum stretching axis. The isostatic compensation from low-density upper mantle to overlying crust (thinning) is higher under transtension than under extension. The lower crust exhumation influenced by inherited shear zones (ductile) can be used to better understand the loci of the high-grade rocks in the Sefwi terrane. We suggest that the Kukuom-Juaboso domain composed of amphibolite-migmatite facies rocks probably resulted from the concentration of partially molten rocks in the relay zone between the Ketesso and Kenyase shear zones during the D2 ENE-WSW transtension. The two shear zones probably underwent two main stages for growth and maturation from the D1 to D2 phases. The regional exhumation of the high-grade rocks in the Sefwi terrane probably occurred within < 5 Ma.
- Published
- 2019
22. Effect of strain-weakening on Oligocene–Miocene self-organization of the Australian-Pacific plate boundary fault in southern New Zealand: Insights from numerical modelling
- Author
-
Prince Ofori Amponsah, Jérôme Ganne, Geoffrey E. Batt, Xiaojun Feng, Mark Jessell, Roland Martin, and Daqing Liu
- Subjects
geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Pacific Plate ,Fault (geology) ,010502 geochemistry & geophysics ,01 natural sciences ,Plate tectonics ,Geophysics ,Finite strain theory ,Shear stress ,Cohesion (geology) ,Shear zone ,Softening ,Geology ,Seismology ,0105 earth and related environmental sciences ,Earth-Surface Processes - Abstract
Tectonic inheritance acquired from past geological events can control the formation of new plate boundaries. The aim of this paper is to explore the role of inherited NE and NW trending fabrics and their rheological influence on the propagation of Oligocene–Miocene strike-slip faulting that matured to become the Australian-Pacific plate boundary fault in southern New Zealand. Strain weakening plays a significant role in controlling the formation, growth and evolution of strain localization. In this study, three-dimensional thermo-mechanical models have been used to explore the effect of strain weakening on the Oligocene–Miocene self-organization of strain localization. Strain weakening is simulated through decreasing either the coefficient of friction of upper crust, its cohesion, or the rheological viscosity contrast between the inherited structures and their surrounding wall rocks. Viscosity contrast is obtained by varying the viscosity of inherited structures. Softening coefficient ( α ) is a measure of strain weakening. Our experiments robustly demonstrate that a primary boundary shear zone becomes mature quicker when softening coefficients are increased. Deformation is focused along narrow high-strain shear zones in the centre of the model when the softening coefficients are high, whereas the strain is more diffuse with many shear zones spread over the model and possibly some high-strain shear zones focused near one border at lower softening coefficients. Varying the viscosity contrast has less effect on the distribution of maximum finite strain. Under simple-shear boundary conditions, NW trending inherited structures make a major contribution to forming early zones of highly focused strain, up to a shear strain of about γ = 3.7. During this process, most NE-trending structures move and rotate passively, accommodate less strain, or even be abandoned through time.
- Published
- 2016
23. Time and mode of exhumation of the Cordillera Blanca batholith (Peruvian Andes)
- Author
-
Jérôme Ganne, Stéphane Schwartz, Frédéric Herman, Audrey Margirier, Laurence Audin, and Xavier Robert
- Subjects
Extensional deformation ,geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Inversion (geology) ,Late Miocene ,010502 geochemistry & geophysics ,01 natural sciences ,Paleontology ,Geophysics ,Sill ,Space and Planetary Science ,Geochemistry and Petrology ,Batholith ,Stage (stratigraphy) ,Earth and Planetary Sciences (miscellaneous) ,Normal fault ,Quaternary ,Geomorphology ,Geology ,0105 earth and related environmental sciences - Abstract
The Cordillera Blanca batholith (12–5 Myr) forms the highest Peruvian summits and builds the footwall of the Cordillera Blanca normal fault (CBNF). Even if several models have been proposed, the processes driving both the exhumation of the Cordillera Blanca and extensional deformation along the CBNF are still debated. Here we quantify the emplacement depth and exhumation of the batholith of the northern Peru arc from the late Miocene to present. Based on a compilation of crystallization ages and new thermobarometry data in the Cordillera Blanca batholith, we propose that the batholith was emplaced at a depth of ~3 km in successive sills from 14 to 5 Ma. By contrast, the younger rocks exposed at the surface were emplaced the deepest (i.e., ~6 km) and are located close to the CBNF, suggesting post 5 Ma tilting. Furthermore, a formal inversion of the thermochronologic data indicates an increase of the exhumation rates in the Cordillera Blanca during the Quaternary. The higher predicted exhumation rates correlate with areas of high relief, both in the northern and central part of the Cordillera Blanca, suggesting that Quaternary valley carving by glaciations have a significant impact on the latest stage of the Cordillera Blanca exhumation (2–0 Ma).
- Published
- 2016
24. 3-D numerical modelling of the influence of pre-existing faults and boundary conditions on the distribution of deformation: Example of North-Western Ghana
- Author
-
Prince Ofori Amponsah, Xiaojun Feng, Mark Jessell, Roland Martin, and Jérôme Ganne
- Subjects
010504 meteorology & atmospheric sciences ,Deformation (mechanics) ,Eburnean orogeny ,Geology ,Orogeny ,West African Craton ,3D numerical modelling ,010502 geochemistry & geophysics ,01 natural sciences ,Deformation ,Simple shear ,Geochemistry and Petrology ,Shear stress ,Boundary value problem ,Density contrast ,Shear zone ,Strike-slip faults ,Seismology ,0105 earth and related environmental sciences ,Terrane - Abstract
High-strain zones bound and separate the high-grade tectono-metamorphic terranes from low-grade greenstone belts in the North-Western parts of Ghana. These belts are bounded by granitoid domains characterized by two main episodic pulses of magmatic intrusive events, which occurred between 2213 Ma and 2086 Ma. High-strain zones are thought to play a significant role in creating fluid pathways, particularly for partially molten material from lower crustal sources to the upper crust. In this study, a three-dimensional thermo-mechanical model has been used to explore the evolution of high-strain zones and relief under compressional and simple shear boundary conditions. Different orientations of a system of branched strike-slip faults were tested. The effects of the frictional angle and density contrast on the evolution of relief were also compared in this study. The resulting model indicates domains of tensile vs. compressional strain as well as shear zones. This shows that the internal fault zones as well as the host rock in between the faults behave as relatively weaker domains than the external regions. Under both applied compressive and simple shear boundary conditions, these weakened domains constitute preferential zones of tensile and shear strain accommodations in the upper crust, which may favour infilling by deeper partially molten rocks. This processes is suggested by the authors as the most likely processes to have occurred in pre-existing branched shear zones systems in North-Western Ghana during the Eburnean orogeny (around 2.20-2.10 Ga). The orientations of faults in these models play an important role in controlling the evolution of relief and localized deformation. In particular, greatest the largest relief is obtained when faults dip parallel to each other and when they are inclined at depth, as they thus facilitate strain rotation and material transfer from depth. The host rock density does not play a primary role in producing relief compared to variations in friction angle at crustal scale of our model. Relief increases by 200-300 m when the host rock density is increased by 200 kg/m(3), whereas relief reduces by about 1200 m when decreasing the host rock friction from phi =20 degrees to 10 degrees. This study suggests a model for interpreting the evolution and locus of exhumation of partially molten rocks in North-Western Ghana.
- Published
- 2016
25. 3D numerical modelling of the re-distribution of partially molten lower crust rocks in relay zones between faults during transtension: Implications for the Sefwi terrane, SW Ghana
- Author
-
Enyuan Wang, Roland Martin, Mark Jessell, Xiaojun Feng, and Jérôme Ganne
- Subjects
Shear rate ,Sinistral and dextral ,Deformation (mechanics) ,Facies ,Transtension ,Crust ,Shear zone ,Petrology ,Geology ,Terrane - Abstract
High-grade tectono-metamorphic domains in the Sefwi terrane of Ghana are separated from adjacent low-grade greenstone belts by two main shear zones. The high-grade rocks are thought to have been exhumed along sinistral shear zones during the D2 ENE-WSW transtension. To better understand the role boundary conditions and the spatial relationship of faults play in the re-distribution of partially molten lower crust, ten 3D thermo-mechanical models have been constructed. The results show that the normal component of velocity boundary conditions mainly controls the exhumation of the lower crust which occurred along pre-existing faults, while the exhumation in the relay zones between faults is controlled by the ratio of extension rate to shear rate applied at the boundaries. The strike of the exhumation belt made of partially molten lower crust rocks in the relay zone is sub-orthogonal to the transtension direction. The isostatic compensation from low-density upper mantle to overlying crust (thinning) is higher under transtension than under extension. The lower crust exhumation influenced by inherited shear zones can be used to better understand the loci of the high-grade rocks in the Sefwi terrane. We suggest that the Kukuom-Juaboso domain composed of up to amphibolite-migmatite facies probably resulted from the concentration of partially molten rocks in the relay zone between the Ketesso and Kenyase shear zones during the D2 ENE-WSW transtension. The two shear zones probably underwent two main stages for growth and maturation from the D1 to D2 deformation phases. The regional exhumation of the high-grade rocks in the Sefwi terrane probably occurred within a duration of less than 5Ma.
- Published
- 2018
26. Northward drift of the Azores plume in the Earth's mantle
- Author
-
Maëlis, Arnould, Jérôme, Ganne, Nicolas, Coltice, and Xiaojun, Feng
- Subjects
Tectonics ,Geodynamics ,Article ,Petrology - Abstract
Mantle plume fixity has long been a cornerstone assumption to reconstruct past tectonic plate motions. However, precise geochronological and paleomagnetic data along Pacific continuous hotspot tracks have revealed substantial drift of the Hawaiian plume. The question remains for evidence of drift for other mantle plumes. Here, we use plume-derived basalts from the Mid-Atlantic ridge to confirm that the upper-mantle thermal anomaly associated with the Azores plume is asymmetric, spreading over ~2,000 km southwards and ~600 km northwards. Using for the first time a 3D-spherical mantle convection where plumes, ridges and plates interact in a fully dynamic way, we suggest that the extent, shape and asymmetry of this anomaly is a consequence of the Azores plume moving northwards by 1–2 cm/yr during the past 85 Ma, independently from other Atlantic plumes. Our findings suggest redefining the Azores hotspot track and open the way for identifying how plumes drift within the mantle., Tectonic plate motions are often reconstructed based on the assumption that mantle plumes are fixed within the mantle. Here, the authors provide geochemical and geodynamic evidence to suggest that the asymmetry of the Azores thermal anomaly can be explained by northward motion of the Azores plume.
- Published
- 2018
27. Role of Volcano-Sedimentary Basins in the Formation of Greenstone-Granitoid Belts in the West African Craton: A Numerical Model
- Author
-
Enyuan Wang, Roland Martin, Prince Ofori Amponsah, Jérôme Ganne, and Xiaojun Feng
- Subjects
lcsh:QE351-399.2 ,010504 meteorology & atmospheric sciences ,thermo-mechanical model ,010502 geochemistry & geophysics ,01 natural sciences ,Mantle (geology) ,olivine liquidus temperature ,mantle potential temperature ,Petrology ,0105 earth and related environmental sciences ,West African Craton (WAC) ,geography ,geography.geographical_feature_category ,lcsh:Mineralogy ,Subduction ,Geology ,Crust ,Fold (geology) ,Diapir ,Sedimentary basin ,Geotechnical Engineering and Engineering Geology ,exhumation ,Eburnean Orogeny ,Craton ,Tectonics - Abstract
Greenstone belts in the West African Craton (WAC) are separated by several generations of granitoids intruded at ca. 2.18-1.98 Ga. Simultaneous folding and exhumation play an important role in the formation of greenstone-granitoid belts. However, the overall tectonic regime and origin of granitoids remain controversial. In this study, we present the estimates of the mantle potential temperature (Tp) for the WAC, which yields values of about 1500-1600 degrees C, pressure estimates of initial and final melting yield values of about 3.7-5.2 GPa and 1-1.3 GPa, respectively. Subsequently, 2D thermo-mechanical models have been constructed to explore the width of volcano-sedimentary basin on spatial-temporal evolution of diapirs that emplaced in the lower-middle crust during compression. The models show that the width of the volcano-sediment layer plays an important role in the formation mechanisms of greenstone-granitoid belts. The lower crust beneath sedimentary sequences is deformed into a buckle fold during the first compressional stage, through which relief uplifts slowly. Subsequently, the buckle fold is further deformed into several individual folds. Diapirs made of lower crust rocks ascend and emplace in the middle-upper crust resulting from instability. Benefitting from the mantle temperature, the pressure estimates and the numerical modelling results, a new geodynamic model was constructed. This model indicates that a series of sheet-like granitoids possibly derived from either subducted melanges, lower crust and/or mantle melting that are accumulated at depths of the subcontinental mantle would channel along diapirs before feeding the upper crust. When the granitoids arrive at the solidified lids of the diapirs, they would favour migrating horizontally and intrude into the upper crust through weakening zones between the diapirs. Our geodynamic model also suggests an asymmetry of structures between the upper and middle-lower crust, with the dome-like granitoids overlying high-grade sedimentary synforms and high-grade diapirs underlying low-grade greenstone belts.
- Published
- 2018
28. The Marbat metamorphic core-complex (Southern Arabian Peninsula): Reassessment of the evolution of a Neoproterozoic island-arc from petrological, geochemical and U-Pb zircon data
- Author
-
Julien Berger, Jean-Louis Paquette, Damien Roques, Jérôme Ganne, Pierre Barbey, Yoann Denèle, Centre de Recherches Pétrographiques et Géochimiques (CRPG), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Géosciences Environnement Toulouse (GET), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire Magmas et Volcans (LMV-ENSMSE), École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-SPIN-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Magmas et Volcans (LMV), Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Institut de Recherche pour le Développement et la société-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Institut de Recherche pour le Développement et la société-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut de Recherche pour le Développement et la société-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut de Recherche pour le Développement et la société-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), and Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Institut national des sciences de l'Univers (INSU - CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,Oman ,Pluton ,Geochemistry ,Metamorphism ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,010502 geochemistry & geophysics ,01 natural sciences ,Geochemistry and Petrology ,Metamorphic facies ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Underplating ,Metamorphic core complex ,Geology ,Arabian-Nubian shield ,Tectonic underplating ,13. Climate action ,[SDU]Sciences of the Universe [physics] ,Tonian ,Neoproterozoic ,Protolith ,Zircon ,Zircon U-Pb - Abstract
The Marbat basement (Sultanate of Oman) belongs to the Neoproterozoic accretion domain of the Arabian-Nubian shield. We present new geochronological, petrological and geochemical data as an extension of our previous study (Denele et al., 2017) re-interpreting this basement as a metamorphic core complex (MCC). We showed that this MCC consists of a metamorphic unit (Juffa complex) separated by an extensional detachment from a plutonic unit (Sadh complex and Tonalite plutons). Geochemical data show that the Juffa metasediments correspond to volcanogenic graywackes, suggesting deposition in front of a juvenile magmatic arc. New in situ U-Pb zircon data show that the protolith of the Juffa paragneisses is Tonian in age (960-830 Ma). The Juffa complex recrystallized under amphibolite facies conditions (950 MPa, 630 degrees C) corresponding to thermal gradient of 17-18 degrees C/km, i.e. close to that observed in fore-arc environment subjected to tectonic underplating. It was then retrogressed (< 400 MPa, < 400 degrees C) during exhumation of the MCC. Phase assemblages of the Sadh complex and Tonalite plutons record magmatic temperatures estimated at 700-840 degrees C and 610-840 degrees C from hornblende and zircon-saturation thermometry, respectively; pressures are grossly estimated at ca. 250 MPa. These data and structural evidence led us to consider that the Sadh complex is a plutonic unit emplaced during exhumation of the MCC. Hence, we re-interpret the previously published zircon core U-Pb ages of the Banded gneisses (ca. 860-830 Ma) as inherited, and zircon rim ages (ca. 815 Ma) as the age of their intrusion. This suggests that the parent magma of all these granitoids could have interacted with volcanic material equivalent to the Juffa complex. Overall, the Marbat area developed during the Tonian and involved (i) deposition of volcanosediments (Juffa complex) in an island-arc environment (960-830 Ma); (ii) metamorphism under middle pressure conditions during tectonic underplating at ca. 820-815 Ma, followed by emplacement of plutonic rocks in the upper crust during initiation of the MCC at ca. 815-810 Ma; and (iii) late-tectonic intrusions associated with MCC amplification at ca. 800-790 Ma (Mahall intrusives and Tonalite plutons).
- Published
- 2018
29. Deep into magma plumbing systems : interrogating the crystal cargo of volcanic deposits
- Author
-
Xiaojun Feng, Olivier Bachmann, and Jérôme Ganne
- Subjects
Crystal ,geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Volcano ,Magma ,Geochemistry ,Geology ,010502 geochemistry & geophysics ,01 natural sciences ,0105 earth and related environmental sciences - Abstract
Volcanic units and their crystals carry a memory of hidden magma reservoirs. Here, through a statistical assessment of a worldwide compilation of volcanic bulk-rock and associated mineral data, we can quantify the proportion of crystals that appear in disequilibrium with their bulk-rock composition, over a large range of temperature conditions and magma types. Minerals in these erupted units are frequently in disequilibrium with their bulk-rock chemistries, particularly in crystal-rich material of intermediate composition (similar to dacites, with up to 60%-80% disequilibrium). The disequilibrium crystals can be grouped in two categories: (1) dominantly more evolved than their hosts (in mafic magmas), or (2) dominantly less evolved than their hosts (in intermediate and silicic magmas). We suggest that (1) crystal accumulation, and (2) mineral entrainment from preexisting shallower mush zones, together explain the presence of more evolved crystals in mafic systems, while mingling/mixing between resident intermediate to silicic magmas and more mafic recharges in upper crustal mush zones accounts for dominantly less-evolved character of minerals in intermediate to silicic volcanic rocks. The transition between the two domains occurs in the mid-crust, at intermediate composition and temperature (similar to 1000-1100 degrees C), coincident with the SiO 2 increase and FeO tot/density decrease seen in evolving magmas. This statistical information supports other petrological and geophysical evidence indicating dominantly mafic lower crustal mush zones, producing intermediate magmas that then ascend to shallower levels (building a granodioritic upper crust) and sometimes differentiate further to rhyolite/granite/pegmatite.
- Published
- 2018
30. Strike-slip metamorphic core complexes: Gneiss domes emplaced in releasing bends
- Author
-
Damien Roques, Pierre Barbey, Yoann Denèle, Jérôme Ganne, Dominique Chardon, Sonia Rousse, Géosciences Environnement Toulouse (GET), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Centre de Recherches Pétrographiques et Géochimiques (CRPG), and Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,Metamorphic core complex ,Geochemistry ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Geology ,010502 geochemistry & geophysics ,Strike-slip tectonics ,01 natural sciences ,[SDU]Sciences of the Universe [physics] ,Petrology ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Gneiss - Abstract
We investigate the development of a Neoproterozoic metamorphic core complex (MCC) in the Marbat area (southern Arabian Peninsula). The MCC is a gneiss dome emplaced in a releasing bend along a dextral strike-slip fault system. Dome emplacement-related extension was at a high angle to the long axis of the dome and 65 degrees from the strike-slip fault system. Shortening is recorded in the upper plate of the MCC in a direction normal to the extension direction. Extensional emplacement of the gneiss dome accommodated lower crust exhumation and contributed to the formation of a ductile strike-slip releasing bend from an initial fault step. The Marbat example allows defining transversal stretching-dominated strike-slip MCCs, which would represent the early development stages of longitudinal stretching-dominated strike-slip MCCs. Conversely, longitudinal stretching-dominated strike-slip MCCs produced at low finite extension would result from strike-slip-dominated transtension. This study bears important implications for lower crust exhumation under pulla-part basin systems in obliquely convergent or divergent settings.
- Published
- 2017
31. Geology of the world-class Kiaka polyphase gold deposit, West African Craton, Burkina Faso
- Author
-
Luc Siebenaller, Marc Poujol, Jérôme Ganne, Elodie Le Mignot, Laurie Reisberg, Aurélien Eglinger, A Fontaine, Koumangdiwè Ada, Anne-Sylvie André-Mayer, GeoRessources, Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre de recherches sur la géologie des matières premières minérales et énergétiques ( CREGU ) -Université de Lorraine ( UL ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire Chrono-environnement ( LCE ), Université Bourgogne Franche-Comté ( UBFC ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Franche-Comté ( UFC ), B2Gold Corp, Centre de Recherches Pétrographiques et Géochimiques ( CRPG ), Université de Lorraine ( UL ) -Centre National de la Recherche Scientifique ( CNRS ), Géosciences Environnement Toulouse ( GET ), Institut de Recherche pour le Développement ( IRD ) -Université Paul Sabatier - Toulouse 3 ( UPS ) -Observatoire Midi-Pyrénées ( OMP ) -Centre National de la Recherche Scientifique ( CNRS ), Géosciences Rennes ( GR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire des Sciences de l'Univers de Rennes ( OSUR ) -Centre National de la Recherche Scientifique ( CNRS ), Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Chrono-environnement (UMR 6249) (LCE), Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Centre de Recherches Pétrographiques et Géochimiques (CRPG), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Géosciences Environnement Toulouse (GET), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Géosciences Rennes (GR), Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR), Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Institut national des sciences de l'Univers (INSU - CNRS), Laboratoire Chrono-environnement - CNRS - UBFC (UMR 6249) (LCE), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 1 (UR1), and Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)
- Subjects
010504 meteorology & atmospheric sciences ,Greenschist ,Geochemistry ,[SDU.STU.PE]Sciences of the Universe [physics]/Earth Sciences/Petrography ,Metamorphism ,Eburnean orogeny ,010502 geochemistry & geophysics ,01 natural sciences ,Orogenic gold deposit ,U-Pb and Re-Os geochronology ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,Metamorphic facies ,0105 earth and related environmental sciences ,Earth-Surface Processes ,[ SDU.STU.PE ] Sciences of the Universe [physics]/Earth Sciences/Petrography ,Geothermobarometry ,Schist ,Magmatism ,Geology ,Fold (geology) ,[ SDU.STU.GC ] Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,Birimian volcano-sedimentary belt ,Geochronology ,Shear zone - Abstract
The Kiaka gold deposit is a major resource in West Africa, with measured and indicated resources of 124 Mt at 1.09 g/t Au (3.9 Moz) and inferred resources of 27 Mt at 0.83 g/t Au (0.8 Moz). Located within the Manga-Fada N'Gourma greenstone and plutonic belt in south of the Burkina Faso, the deposit is hosted by a metamorphosed volcano-sedimentary sequence of lithic-, quartz-biotite metagreywackes, aluminosilicate-bearing metapelites and garnet-orthopyroxene-bearing schists and volcanic units. Structural observations indicate four local deformation events: DK 1 , DK 2 and DK 3 and DK 4 . Respectively, these events are linked to regional D 1 E-W compression, D 2 NW-SE compression and lastly, D 3 - and D 4 -related reactivations along D 2 shear zones. The S 2 foliation and D 2 shear zones are developed during lower amphibolite facies metamorphism whereas retrogression occurs during D 3-4 reactivations along these shear zones at upper greenschist facies conditions. The emplacement of a dioritic intrusion, dated at 2140 ± 7 Ma (Concordia U-Pb age on magmatic zircon), is interpreted to be contemporaneous with sinistral displacement along mineralized, NE-trending D 2 shear zones. The intersection of these shears zones and the Markoye shear zone (dextral-reverse D 1 and sinistral-reverse D 2 reactivations) controlled the final geometry of the host rocks and the ore zones. Four subparallel elongated ore bodies are mainly hosted within D 2 -related shear zones and some are developed in an apparent axial plane of a F 2 isoclinal fold. Detailed petrographic studies have identified two main types of hydrothermal alteration associated with two stages of gold mineralization. The stage (1) corresponds to replacement zones with biotite and clinozoisite during the D 2 event associated with pyrrhotite ± pyrite, chalcopyrite (disseminated gold stage). The stage (2) occurs during reactivations of the D 2 -related auriferous shear zones (vein stage) and is characterized by diopside ± actinolite D 3 veins and veinlets and D 4 pervasive muscovite, ± chlorite, ± calcite in quartz-carbonate vein selvages and associated with pyrrhotite + arsenopyrite ± electrum, ± native gold and tellurobismuthite. The latter stage (2) could be divided into two sub-stages based on mineralogy and crosscutting relationship. A weighted average Re-Os pyrrhotite age at 2157 ± 24 Ma (Re-Os age based on 3 replicates) constraints the timing of the disseminated gold stage and represents the first absolute age for gold mineralization in the Manga Fada N'Gourma area. The timing of gold at Kiaka may be also coeval with one of the two lode gold event at ∼ ca. 2.16–2.15 Ga and occurred concomitant with tectono-thermal activity during Eo-Eburnean orogeny. The study of the Kiaka gold deposit emphasizes the importance of a multi-scale and multidisciplinary approach (field observations, petrography geothermobarometry and geochronology) to decipher the polyphase character of some Paleoproterozoic gold deposits.
- Published
- 2017
32. Probing crustal thickness evolution and geodynamic processes in the past from magma records:An integrated approach
- Author
-
Gideon Rosenbaum, V. De Andrade, Jérôme Ganne, X. Feng, Wouter P. Schellart, and Geology and Geochemistry
- Subjects
Basalt ,Geography ,Oceanic crust ,Statistical analyses ,Magma ,Geochemistry ,Slab ,SDG 14 - Life Below Water ,Integrated approach ,Geodesy ,Amphibole ,Cretaceous - Abstract
A new and simple integrated approach is proposed for qualitatively unravelling the crustal thickness of fossil magmatic systems based on the chemical and thermal records in amphibole-bearing magmatic rocks. Statistical analyses applied to a large multidimensional amphibole database show that Ti-rich and Si-poor magmatic amphiboles, which formed at high-temperature (T) conditions (>950 °C), were domi-nantly developed in basaltic to basaltic-andesitic (SiO2-poor, i.e., 40 km) Jurassic to Cretaceous accretionary belt along the circum-Pacific orogenic belts that bounded the Panthalassa Ocean. The destruction of this thick belt started at ca. 125 Ma and was initially recorded by the thinnest magmatic systems hosting amphibole-bearing magma. Thinning of the circum-Pacific orogenic belts became widespread in the northern regions of western America and in the western Pacific after ca. 75 Ma, possibly in response to oceanic plate segmentation, which triggered slab rollback and overriding plate extension.
- Published
- 2017
33. Geological setting of the Wassa gold deposit, SW Ghana
- Author
-
John Miller, Jérôme Ganne, Germán Velásquez, Yan Bourassa, Anne-Sylvie André-Mayer, Lenka Baratoux, Daniel Apau, Mark Jessell, Didier Béziat, Stéphane Perrouty, Luis A. Parra-Avila, Luc Siebenaller, Elodie Le Mignot, Laurent Ailleres, Stefano Salvi, University of Western Ontario (UWO), Centre for Exploration Targeting, The University of Western Australia (UWA), Golden Star Resources, GeoRessources, Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Institut national des sciences de l'Univers (INSU - CNRS), Instituto de Ciencias de la Tierra, Universidad Central de Venezuela (UCV), Géosciences Environnement Toulouse (GET), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), and Monash University [Clayton]
- Subjects
geography ,Mineralization (geology) ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Geochemistry ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Geology ,Gold deposit ,Orogeny ,engineering.material ,010502 geochemistry & geophysics ,01 natural sciences ,chemistry.chemical_compound ,chemistry ,Volcano ,Geochemistry and Petrology ,engineering ,Carbonate ,Economic Geology ,Sedimentary rock ,Pyrite ,0105 earth and related environmental sciences - Abstract
International audience; Including past production, current indicated and inferred resources, Wassa is a 5 Moz poly-deformed early-orogenic gold deposit located on the eastern flank of the Ashanti Belt, in southwest Ghana. It is hosted by metamorphosed volcanic, intrusive and sedimentary rocks of the Sefwi Group (ca. 2260–2160 Ma). Early mineralization has an Eoeburnean age (2164 ± 22 Ma, Re–Os on pyrite) and is characterized by quartz veins, by a carbonate alteration of the host rocks, and by deformed gold-bearing pyrite. Remobilization of this gold occurred during the late stages of the Eburnean Orogeny (~ 2.1 Ga) and is associated with quartz-carbonate veins with visible gold and euhedral pyrites.
- Published
- 2016
34. Crustal-scale transcurrent shearing in the Paleoproterozoic Sefwi-Sunyani-Comoé region, West Africa
- Author
-
Jérôme Ganne, Prince Ofori Amponsah, Geoffrey Loh, Daniel K. Asiedu, Mark Jessell, and Lenka Baratoux
- Subjects
Simple shear ,Shearing (physics) ,Intrusion ,Leucogranite ,Geochemistry and Petrology ,Shear stress ,Geology ,Greenstone belt ,Deformation (meteorology) ,Petrology ,Seismology ,West africa - Abstract
The Paleoproterozoic Sefwi-Sunyani-Comoe region that straddles the Ghana-Ivory Coast border in West Africa has been characterised as resulting from a combination of compression and simple shear with leucogranite intrusion either being prior to the compression or synchronous with late shearing. The analysis of regional magnetic datasets combined with field observations allows us to better define the geometry of the major lithostratigraphic packages and their structural contacts in this region. This analysis reveals a series of elongate rounded leucogranite intrusions enveloped by deformed metasediments. Recent finite element modelling of two-phase aggregates has shown that we can analyse the geometry of these systems both in terms of their finite deformation and their mechanical contrast. We interpret the geometries we see in the Sefwi-Sunyani-Comoe region as reflecting the activity of a major crustal deformation zone which was dominated by simple shear. The comparison with our modelling suggests a finite shear strain of approximately 5 gamma, which in turn implies a lateral displacement of 400 km parallel the Sefwi Greenstone Belt, which places Southern Ghana (EoGhana?) near eastern Burkina Faso prior to deformation. Our analysis also suggests that the leucogranites were already acting as more rigid bodies during the shearing, suggesting that their emplacement was predominantly pre-kinematic.
- Published
- 2012
35. Juvenile Paleoproterozoic crust evolution during the Eburnean orogeny (∼2.2–2.0Ga), western Burkina Faso
- Author
-
Lenka Baratoux, Michel Grégoire, Mark Jessell, Jérôme Ganne, Séta Naba, and Václav Metelka
- Subjects
geography ,geography.geographical_feature_category ,Volcanic arc ,Greenschist ,Geochemistry ,Metamorphism ,Geology ,Orogeny ,Oceanic plateau ,Greenstone belt ,Transpression ,Geochemistry and Petrology ,Shear zone - Abstract
We have investigated three greenstone belts (Boromo, Hounde, and Banfora) and associated granitoid terrains, which form part of the Eburnean orogen, situated in western Burkina Faso. These belts expose tholeiitic basalts (basal unit) followed by calc-alkaline intermediate predominantly effusive volcanic and sedimentary suites geochemically reminiscent of present-day volcanic island arc environments. The basal mafic unit probably corresponds to a juvenile arc crust or oceanic plateau. It contains unusual megacrystic tholeiitic basalts, allowing us to correlate the western margin of the Boromo belt with the eastern margin of the Hounde belt. These two N–S trending belt-parallel tholeiitic units are interpreted as limbs of a crustal scale anticline, intruded and partially obliterated by tonalite–trondhjemite–granodiorite (TTG) and granite intrusions. Three deformation events (D1–D3) can be distinguished in western Burkina Faso. The first deformation phase (D1) operated under an E–W to WNW-oriented compression. Regional greenschist to lower amphibolite facies metamorphism and intense folding characterize early-Eburnean deformation phases, during which time the crust was thickened by lateral shortening of volcanic island arcs and concomitant magma input. The crustal-scale antiform between the Boromo and Hounde belts is attributed to the D1 event. Shallow water detrital Tarkwaian-type sediments were deposited during the late D1 event within the Hounde belt, in a belt-parallel basin extending for 400 km. The subsequent D2 phase overprints the structural grain of the study area, and is best visible in airborne magnetic data. It is characterized by N to NE-trending transcurrent shear zones, which are considered preferred host structures for gold mineralization. We suggest that the newly formed and thickened crust reached the maximum thickness supportable by a weak and hot mantle during the D1 phase, and the pure shear dominated compressional regime switched to simple shear dominated transpression during the subsequent D2 phase. Granitoid diapirism played an important role at all stages of the Eburnean crustal growth processes in particular through early volume addition to the newly formed orogen and through later accommodating part of the lateral shortening. Pluton emplacement contributed to the greenstone belt structuration at local scales; however, the regional scale system geometry was controlled by coaxial shortening of the viscous volcanic units (basalts, gabbros, and andesites) of the greenstone belts, supported by coeval magma input. The last D3 deformation, which is either late-Eburnean or perhaps even Pan-African in age, is characterized by shallow N or S dipping minor thrust faults or an E-W trending steeply dipping spaced crenulation cleavage and kink folds, occurring mainly in highly anisotropic lithologies across the study region.
- Published
- 2011
36. Petrological and geochronological constraints on lower crust exhumation during Paleoproterozoic (Eburnean) orogeny, NW Ghana, West African craton
- Author
-
Sylvain Block, Mark Jessell, Jérôme Ganne, Laurent Ailleres, Armin Zeh, Lenka Baratoux, Luis A. Parra-Avila, Luc Siebenaller, Géosciences Environnement Toulouse (GET), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut Fondamental d'Afrique Noire (IFAN), Université Cheikh Anta Diop [Dakar, Sénégal] (UCAD), Institut für Geowissenschaften, Goethe-Universität Frankfurt am Main, Center for Exploration Targeting, The University of Western Australia (UWA), Monash University [Clayton], Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), and Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)
- Subjects
Blueschist ,West African ,Collision ,Metamorphic rock ,Geochemistry ,[SDU.STU.PE]Sciences of the Universe [physics]/Earth Sciences/Petrography ,Craton ,West African Craton ,Exhumation constraints ,Geochemistry and Petrology ,anatectic dome ,[SDU.STU.TE]Sciences of the Universe [physics]/Earth Sciences/Tectonics ,geography ,geography.geographical_feature_category ,Geology ,Orogeny ,Crust ,15. Life on land ,Migmatite ,Paleoproterozoic ,13. Climate action ,Anatectic dome ,Facies ,exhumation ,Shear zone ,collision - Abstract
New petrological and geochronological data are presented on high-grade ortho- and paragneisses from northwestern Ghana, forming part of the Paleoproterozoic (2.25-2.00Ga) West African Craton. The study area is located in the interference zone between N-S and NE-SW-trending craton-scale shear zones, formed during the Eburnean orogeny (2.15-2.00Ga). High-grade metamorphic domains are separated from low-grade greenstone belts by high-strain zones, including early thrusts, extensional detachments and late-stage strike-slip shear zones. Paragneisses sporadically preserve high-pressure, low-temperature (HP-LT) relicts, formed at the transition between the blueschist facies and the epidote-amphibolite sub-facies (10.0-14.0kbar, 520-600 degrees C), and represent a low (similar to 15 degrees Ckm(-1)) apparent geothermal gradient. Migmatites record metamorphic conditions at the amphibolite-granulite facies transition. They reveal a clockwise pressure-temperature-time (P-T-t) path characterized by melting at pressures over 10.0kbar, followed by decompression and heating to peak temperatures of 750 degrees C at 5.0-8.0kbar, which fit a 30 degrees Ckm(-1) apparent geotherm. A regional amphibolite facies metamorphic overprint is recorded by rocks that followed a clockwise P-T-t path, characterized by peak metamorphic conditions of 7.0-10.0kbar at 550-680 degrees C, which match a 20-25 degrees Ckm(-1) apparent geotherm. These P-T conditions were reached after prograde burial and heating for some rock units, and after decompression and heating for others. The timing of anatexis and of the amphibolite facies metamorphic overprint is constrained by in-situ U-Pb dating of monazite crystallization at 2138 +/- 7 and 2130 +/- 7Ma respectively. The new data set challenges the interpretation that metamorphic breaks in the West African Craton are due to diachronous Birimian basins' overlying a gneissic basement. It suggests that the lower crust was exhumed along reverse, normal and transcurrent shear zones and juxtaposed against shallow crustal slices during the Eburnean orogeny. The craton in NW Ghana is made of distinct fragments with contrasting tectono-metamorphic histories. The range of metamorphic conditions and the sharp lateral metamorphic gradients are inconsistent with hot orogeny' models proposed for many Precambrian provinces. These findings shed new light on the geodynamic setting of craton assembly and stabilization in the Paleoproterozoic. It is suggested that the metamorphic record of the West African Craton is characteristic of Paleoproterozoic plate tectonics and illustrates a transition between Archean and Phanerozoic orogens.
- Published
- 2015
37. RETRACTED: Structural complexity in the Curnamona Province (South Australia): Polyphase strain partitioning and reactivation
- Author
-
Matthew Peter Noble, Jérôme Ganne, Peter G Betts, and Roberto F. Weinberg
- Subjects
Strain partitioning ,Shear (geology) ,Geochemistry and Petrology ,Greenschist ,Proterozoic ,Geochemistry ,Metamorphism ,Geology ,Orogeny ,Shear zone ,Geomorphology ,Metamorphic facies - Abstract
In this paper, we examine the apparent timing relationships between the structural and metamorphic events of the amphibolite facies sequence in the Walter-Outalpa Shear Zone (WOSZ) area in the southwestern part of the Palaeo- to Mesoproterozoic Curnamona Province. The local structural geometry and style are largely due to heterogeneous, non-coaxial flow in which foliation development is related to the superposition of two main independent structural events (D2* and D3*). Strain was progressively partitioned into high-strain zones in the southern part of the study area in contrast to the low-strain areas in the north of the study area. D2* deformation developed under amphibolite facies conditions and is partitioned between zones of thrusting and flattening ( ±folding) related to nappe formation. D3* deformation developed under greenschist facies conditions and is partitioned between strike-slip faulting and folding. D3* high-strain zones form discontinuous, NW-trending anastomosing strands that contain relics of the D2* thrust-related foliation. These relicts preserve the higher grade mineral assemblages that are partially overprinted by D3* retrograde assemblages. Strike-slip movement along the WOSZ is, therefore, interpreted to have re-used the pre-existing D2* thrust such that D2*-strain partitioning influenced renewed D3* strain partitioning. The high-grade metamorphism and phase of pervasive deformation (D2*/M2) are ascribed to the D2 Mesoproterozoic Olarian Orogeny that occurred in the Curnamona Province between ca. 1600 and 1590 Ma. The tectonic context of the D3*/M3 shearing event is highly uncertain. Recent geochronological Sm–Nd isotope ages from garnet from within the WOSZ shear zone yield ca. 520–490 Ma Delamerian ages [Dutch, R.A., Hand, M., Clark, C., 2005. Cambrian reworking of the southern Australian Proterozoic Curnamona Province; constraints from regional shear zone systems. Geol. Soc. London 162; 5, 763–775]. However, the D3*M3 shear foliation are truncated by the Neoproterozoic unconformity flooring the Adelaide Rift Complex stratigraphy, suggesting pre-Delamerian Orogeny activity along the shear zone. It is, thus, likely that the D3* movement along the shear zone records a combination of late Olarian Orogenic movement with a component of reactivation during the Delamerian Orogeny. © 2005 Elsevier B.V. All rights reserved.
- Published
- 2005
38. Thermo-mechanical modeling of lower crust exhumation—Constraints from the metamorphic record of the Palaeoproterozoic Eburnean orogeny, West African Craton
- Author
-
Muriel Gerbault, Sylvain Block, Jérôme Ganne, Géosciences Environnement Toulouse (GET), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Géoazur (GEOAZUR 6526), Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,Greenschist ,Metamorphic rock ,Geochemistry ,Exhumation ,West African Craton ,010502 geochemistry & geophysics ,01 natural sciences ,Thermo-mechanical model ,Geochemistry and Petrology ,Palaeoproterozoic orogenies ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,Geomorphology ,0105 earth and related environmental sciences ,[SDU.STU.TE]Sciences of the Universe [physics]/Earth Sciences/Tectonics ,geography ,geography.geographical_feature_category ,High-pressure rocks ,Geology ,Crust ,Orogeny ,Sedimentary basin ,Craton ,Basement (geology) ,Birimian - Abstract
The aim of this paper is to explore the link between the metamorphic record of a Palaeoproterozoic orogeny and its thermo-mechanical evolution, in order to discuss the burial and exhumation processes of moderate- to high-pressure volcano-sedimentary rocks (6-8 to >10 kbar) in the Birimian Province (2.2-2.0 Ga) of the West African Craton. Metamorphic data collected in Burkina Faso, southwest Ghana and eastern Senegal suggests a Palaeoproterozoic Birimian crust dominated by moderate apparent geothermal gradients of 20-30 degrees C/km (M2a), which fit a purely conductive thermal crustal regime. This produced greenschist- to amphibolite-facies metamorphic assemblages that developed during the Eburnean orogeny (similar to 2.1 Ga), associated with regional shortening and granitoid intrusions. The M2a gradient is superimposed on an early thermal regime (M1: 6-8 kbar). At around 25 km depth, TTGs reached appropriate PT conditions to start melting. The buoyant and low-viscosity partially molten material, comprising a fraction of CaO-poor melt and residual material, then ascended through the overlying sediments. It entrained upwards lower crustal material as well as the surrounding sediments. This scenario explains the important breaks in metamorphic conditions observed in the Birimian province between the thin slivers ( 8 kbar) preserved in the thermal aureoles of granites and the adjacent synforms of greenstones, which consist of low-grade metasediments (P < 6 kbar; T < 450 degrees C). This scenario is in agreement with a significant recycling of the TTGs in the genesis of CaO-poor granitoid melts. We discuss the implications of our results for the tectono-metamorphic and mechanical evolution of Palaeoproterozoic orogenies.
- Published
- 2014
39. Tracking Late-Pan-African fluid composition evolution in the ductile crust of Madagascar : insight from phase relation modelling of retrogressed gneisses (province of Fianarantsoa)
- Author
-
V. Grégoire, Sophie Gouy, Jérôme Ganne, Anne Nédélec, and P. de Parseval
- Subjects
Diopside ,Pan-African ,biology ,Channelized fluid-flow ,Shear zone ,Metamorphic rock ,Geochemistry ,Geology ,Epidote ,Pyroxene ,Exhumation ,engineering.material ,biology.organism_classification ,P-T-MH2O-CO2-O2 phase diagram ,Actinolite ,Andradite ,visual_art ,visual_art.visual_art_medium ,engineering ,Madagascar ,Plagioclase ,Earth-Surface Processes ,Gneiss - Abstract
The basement of Madagascar has been submitted to a strong reworking during a late Pan-African (D2) shearing event. The influence of the relevant fluid transfer on phase relationships is investigated on a calc-silicate gneiss belonging to the Ikalamavony domain, deformed and retrogressed, from low-temperature amphibolite to upper-greenschist metamorphic conditions. The rock is characterized by different generations of pyroxene growing with epidote as coronitic structures around relics of garnet and magnetite. Phase diagram sections are commonly used to study phase relationships as a function of pressure and temperature in closed-systems. Here, the thermodynamic system has been considered as only open for the fluid components (i.e. H 2 O, CO 2 and O 2 ) in order to discuss the interaction between fluid flow and mineral phase evolution occurring during D2 deformation. Prediction in terms of phase composition and modal proportion of P – T – M H2O–CO2–O2 phase diagrams (using Perple-X calculations) are in good agreement with natural observations. They suggest that a large input of aqueous-carbonic fluid throughout the “paragneiss” during the exhumation of the rocks led to the destabilisation of the early Fe 3+ -rich garnet (andradite) and magnetite. Thermodynamic modelling illustrates how the replacement of such mineral assemblage by Fe 2+ -rich pyroxene (diopside), sphene, epidote and plagioclase (anorthite-rich) then amphibole (actinolite) and K-feldspar has preferentially been controlled by the amount of H 2 O and CO 2 brought through minor shear zones during the D2 reworking, rather than by change of the effective bulk rock composition.
- Published
- 2014
40. Modern-style plate subduction preserved in the Palaeoproterozoic West African craton
- Author
-
Nicolas Kagambèga, V. De Andrade, Lenka Baratoux, Benoît Dubacq, Séta Naba, Jérôme Ganne, Roberto F. Weinberg, J. Allibon, Olivier Vidal, Mark Jessell, Géosciences Environnement Toulouse (GET), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), ID21 Beamline, European Synchrotron Radiation Facility (ESRF), NSLS II, Brookhaven National Laboratory, NSLS II, Australian Crustal Research Centre, School of Geosciences, Monash University, Monash University [Clayton], Minéralogie et environnements, Institut des Sciences de la Terre (ISTerre), Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-PRES Université de Grenoble-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-PRES Université de Grenoble-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Department of Earth Sciences [Cambridge, UK], University of Cambridge [UK] (CAM), Département des Géosciences, Université Joseph Ki-Zerbo [Ouagadougou] (UJZK), Institute of Mineralogy and Geochemistry, IMG-ANTHROPOLE, Université de Lausanne (UNIL), and IRD and INSU-CNRS
- Subjects
geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Subduction ,Earth science ,Metamorphic rock ,Geochemistry ,010502 geochemistry & geophysics ,01 natural sciences ,West african ,Plate tectonics ,Craton ,General Earth and Planetary Sciences ,[SDU.STU.GM]Sciences of the Universe [physics]/Earth Sciences/Geomorphology ,Structural geology ,Geology ,0105 earth and related environmental sciences - Abstract
International audience; The timing of onset of modern-style plate tectonics is debated. The apparent lack of blueschist metamorphism1--a key indicator of modern plate subduction2--in rocks aged more than about 1 billion years calls into question the existence of plate tectonics during the Archaean and Palaeoproterozoic eras3, 4. Instead, plate tectonics and subduction could have either not occurred at that time5, or could have proceeded differently6 owing to warmer conditions in the early Earth mantle7. Here we use thermodynamic models8, 9, 10 to investigate the formation conditions of metamorphic minerals in the 2.2-2.0 Gyr old West African metamorphic province. We find a record of blueschist metamorphism in these rocks. We show that minerals such as chlorite and phengite formed at high pressures of 10-12 kbar, low temperatures of 400-450 °C and under a geothermal gradient of 10-12 °C km−1. These conditions are typical of modern subduction zones. We therefore suggest that modern-style plate tectonics existed during the Palaeoproterozoic era. We conclude that ancient blueschist metamorphism may exist in other parts of the world, but the identification of these rocks has so far been hampered by methodological problems associated with deciphering their pressure and temperature evolution.
- Published
- 2012
41. TTGs in the making: Natural evidence from Inyoni shear zone (Barberton, South Africa)
- Author
-
Jérôme Ganne, Jean-François Moyen, Magdalena Oryaëlle Chevrel, Sébastien Fabre, Anne Nédélec, Géosciences Environnement Toulouse (GET), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Department of Earth and Environmental Sciences [München], Ludwig-Maximilians-Universität München (LMU), Laboratoire Magmas et Volcans (LMV), Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet [Saint-Étienne] (UJM)-Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), and Université Toulouse III - Paul Sabatier (UT3)
- Subjects
010504 meteorology & atmospheric sciences ,Pluton ,[SDE.MCG]Environmental Sciences/Global Changes ,Geochemistry ,Cumulate rock ,engineering.material ,010502 geochemistry & geophysics ,01 natural sciences ,Almandine ,Geochemistry and Petrology ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,Cumulate ,Amphibolite ,Amphibole ,0105 earth and related environmental sciences ,Hornblende ,Fractional crystallization (geology) ,biology ,Continental crust ,Garnet ,Partial melting ,Geology ,Archaean ,Melting ,biology.organism_classification ,engineering ,TTG - Abstract
International audience; Despite the consensus that TTGs, the main constituents of the Archaean continental crust worldwide, originated by partial melting of garnet-bearing amphibolites, natural evidence is scarce. A large variety of Archaean amphibole-rich rocks, including migmatitic amphibolites and hornblende-rich cumulates, was exhumed as a tectonic melange in the Inyoni shear zone (ISZ) near Barberton (South Africa), likely at the time of emplacement of the 3.2 Ga Nelshoogte-Badplaas plutons. This unique collection provides the opportunity to investigate partial melting of garnet-amphibolites, as well as the differentiation processes occurring in the TTG magmas en route to the surface. The ISZ migmatitic amphibolites are characterized by quartz-plagioclase leucosomes in equilibrium with garnet, amphibole, titanite ± epidote. Garnet compositions are characterized by high almandine and grossular contents. Actually, the leucosomes and neosomes likely lost part of their melt component and mesosomes may have been also modified towards restite-rich compositions due to melt segregation. Restite-bearing rocks are very iron-rich according to their high contents in garnet. Besides, the Mg-rich compositions of the hornblende cumulates and their REE distribution patterns resemble those of the nearby TT (tonalite-trondhjemite) plutons. Thermobarometric estimates from the ISZ migmatitic rocks cluster in the range 720-800 °C and 1.1-1.2 GPa for the melting reaction and the derived geothermal gradient is ca 17-22 °C/km. These conditions are consistent with either water-present melting or, more likely, water-absent epidote-dehydration melting. Such a geothermal gradient is therefore assigned to the genesis of large volumes of medium-pressure TTG magmas, that will likely form at greater depth. Unmelted garnet-bearing amphibolites correspond to slightly lower conditions. The magmatic cumulates crystallized at ca 0.6 GPa. The cumulate rocks evidence that the TTG parental magmas en route to the surface experienced fractional crystallization of a large amount of amphibole before crystallizing as tonalite-trondhjemite plutons at slightly shallower depths (ca 0.5 GPa).
- Published
- 2012
42. Structural reworking and heat transfer related to the late-Panafrican Angavo shear zone of Madagascar
- Author
-
Jean-Marc Montel, Patrick Monié, Anne Nédélec, Jérôme Ganne, Bruno Ralison, Vincent Grégoire, Laboratoire des Mécanismes et Transfert en Géologie (LMTG), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Géosciences Montpellier, Université des Antilles et de la Guyane (UAG)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Département des Sciences de la Terre [Antananarivo], and Université d'Antananarivo
- Subjects
Panafrican ,010504 meteorology & atmospheric sciences ,Shear zone ,[SDE.MCG]Environmental Sciences/Global Changes ,Thermochronology ,010502 geochemistry & geophysics ,01 natural sciences ,Lineation ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,dating, monazite dating ,Madagascar ,Petrology ,Geomorphology ,Amphibole ,0105 earth and related environmental sciences ,Earth-Surface Processes ,monazite dating ,Orogeny ,Ar-Ar dating ,Granulite ,Low-Phigh-T metamorphism ,Basement ,Geophysics ,Low-P/high-T metamorphism ,Magma ,Panafrican, Ar-Ar ,Geology - Abstract
International audience; The basement of central Madagascar displays two contrasted structural patterns. The first one (D1) is characterized by north-striking foliations that are gently dipping to the west and carry W- to WSW-plunging lineations, whereas the second one (D2) is characterized by steeper foliations that are striking to the NNE and lineations that are either subhorizontal or gently plunging to the SSW. The younger pattern is related to late-Panafrican tectonics along the major Angavo shear zone that is about 1000 km in length and 40 km in width with apparently little offset. Deformation in the Angavo zone induced interference folding on both sides. The D2 event is characterized by low pressures (ca 400 MPa) and high temperatures (up to 790 degrees C) responsible for prograde granulite facies conditions, that resulted from heat transfer due to magma and fluid advection in the Angavo shear zone. The D2 event is pinned at 550 +/- 11 Ma by a new monazite age from a reoriented Andringitrean granite near Ankaramena. A new suite of amphibole and biotite Ar-Ar geochronological data enables to retrace the thermochronogical evolution inside and outside the Angavo shear zone. Combined with new structural results from the western interference zone. these ages yield a better understanding of the late-Panafrican history of central Madagascar. No diachronism is observed along the strike of the Angavo shear zone. Conversely, amphibole and especially biotite ages decrease from West to East, i.e. towards the shear zone. These new ages range from 511 to 469 Ma. A 1-D conductive model constrains the thermal effect in relation with the Angavo shear zone to be restricted to a lateral distance of ca 60 km (in map view) for a maximum heating duration of 20 Myr. This is in agreement with the Ar-Ar data and with the width of the observed interference zone. Following this episode of deformation and heat transfer, the estimated cooling rates of the Angavo shear zone range from to 15 to 6 degrees C/Myr, respectively before and after 515 Ma. A post-collision intracontinental setting is suggested for the Angavo shear zone, which is regarded as a remote effect of the Kuunga Orogeny between India and Antarctica.
- Published
- 2009
43. Structural and metamorphic evolution of the Ambin massif (western Alps) : toward a new alternative exhumation model for the Briançonnais domain
- Author
-
Didier Marquer, Jean-Michel Bertrand, Serge Fudral, Olivier Vidal, Jérôme Ganne, Laboratoire de Géodynamique des Chaines Alpines (LGCA), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Environnements, Dynamiques et Territoires de la Montagne (EDYTEM), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire Chrono-environnement - CNRS - UBFC (UMR 6249) (LCE), Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut des Sciences de la Terre (ISTerre), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut national des sciences de l'Univers (INSU - CNRS)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR), Laboratoire Chrono-environnement - UFC (UMR 6249) (LCE), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Laboratoire de Géodynamique des Chaines Alpines ( LGCA ), Observatoire des Sciences de l'Univers de Grenoble ( OSUG ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ) -Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ) -Institut des Sciences de la Terre ( ISTerre ), Université Grenoble Alpes ( UGA ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Savoie Mont Blanc ( USMB [Université de Savoie] [Université de Chambéry] ) -PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut national des sciences de l'Univers ( INSU - CNRS ) -Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux ( IFSTTAR ) -Université Joseph Fourier - Grenoble 1 ( UJF ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Savoie Mont Blanc ( USMB [Université de Savoie] [Université de Chambéry] ) -PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux ( IFSTTAR ), Environnements, Dynamiques et Territoires de la Montagne ( EDYTEM ), Université Savoie Mont Blanc ( USMB [Université de Savoie] [Université de Chambéry] ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire Chrono-environnement ( LCE ), and Université Bourgogne Franche-Comté ( UBFC ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Franche-Comté ( UFC )
- Subjects
Metamorphic zone ,geography ,Rift ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Greenschist ,Metamorphic rock ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,[ SDU.STU ] Sciences of the Universe [physics]/Earth Sciences ,Geology ,Massif ,010502 geochemistry & geophysics ,01 natural sciences ,Dome (geology) ,Basement (geology) ,Shear zone ,Petrology ,Seismology ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
The basement domes of the central part of western Alps may result either from a multistage tectonic evolution with a dominant horizontal shortening component, an extensional behaviour, or both. The Ambin massif belongs to the “Briançonnais” domain and is located within the HP metamorphic zone. It was chosen for a reappraisal of the tectonic evolution of the Internal Alps in its western segment. Structural investigations have shown that Alpine HP rocks were exhumed in three successive stages. The D1 stage was roughly coeval with the observed peak metamorphic conditions and corresponds to a non-coaxial regime with dominant horizontal shortening and north movement direction. Petrological observations and P-T estimates show that the exhumation process was initiated during D1, the corresponding mechanism being still poorly understood. The D2 stage took place under low-blueschist facies conditions and culminated under greenschist facies conditions. It developed a retrogressive foliation and pervasive shear-zones at all scales that locally define major tectonic contacts. D2 shear zones show a top-to-east movement direction and correspond actually to large-scale detachment faults responsible for the juxtaposition of less metamorphic units above the Ambin basement and thus to a large part of the exhumation of HP rocks toward the surface. D2 shear zones were subsequently deformed by D3 open folds, large antiforms (e.g. the Ambin dome) and associated brittle-ductile D3 shear-bands. The D1 to D3 P-T conditions and P-T path of the blueschists occurring in the deepest part of the Ambin dome, was estimated by using the multi-equilibrium thermobarometric method of the Tweeq and Thermocalc softwares. Peak pressure conditions, estimated at about 14–16 Kb, 500oC, are followed by a nearly-isothermal decompression that occurred concurrently with the major D1–D2 change in the ductile deformation regime. Eastwards, the Schistes Lustrés units exhibit a similar geometry on top of the Gran Paradiso dome but exhibit opposite D2 movement direction. Lower-grade units are lying above higher-grade units, the shear zones occurring in between being similar to Ambin’s D2 detachments. Thus at regional scale, the D2 detachments seem to form together with the Ambin shear-zones, a network of conjugate detachments. Such a pattern suggests that the exhumation history is mostly controlled by a D2+D3 crustal-scale vertical shortening resulting in the thinning of the previous tectonic pile formed during D1. The slab-break off hypothesis may explain such an extensional behaviour within the western Pennine domain. It is suggested that the thermo-mechanical rebound of the residual European slab initiated between 35 and 32 Ma the fast exhumation of the previously thickened orogenic wedge (stack of D1 HP slices). It was immediately followed by a collapse of the wedge that may correspond to the E-W Oligocene extensional event responsible for the opening of rifts in the West European platform.
- Published
- 2007
44. Partitioning of deformation within a subduction channel during exhumation of high-pressure rocks : a case study from the Western Alps
- Author
-
Jérôme Ganne, Serge Fudral, Gideon Rosenbaum, Didier Marquer, Jean-Michel Bertrand, Département des Géosciences, Université de Franche-Comté (UFC), School of Earth Sciences, University of Queensland [Brisbane], Laboratoire de Géodynamique des Chaines Alpines (LGCA), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut des Sciences de la Terre (ISTerre), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut national des sciences de l'Univers (INSU - CNRS)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR), Environnements, Dynamiques et Territoires de la Montagne (EDYTEM), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Département de Géosciences, Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), and Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Thrusts ,Lower grade ,010504 meteorology & atmospheric sciences ,Subduction ,Metamorphic rock ,[SDE.MCG]Environmental Sciences/Global Changes ,Geology ,Exhumation ,High-pressure metamorphism ,010502 geochemistry & geophysics ,01 natural sciences ,Detachments ,Flattening ,Strain partitioning ,Lithosphere ,High pressure ,Shear zone ,Petrology ,[SDU.STU.AG]Sciences of the Universe [physics]/Earth Sciences/Applied geology ,Seismology ,0105 earth and related environmental sciences - Abstract
International audience; The metamorphic belt of the Western Alps was subjected to widespread extensional tectonism at the end of the Eocene (ca. 45–35 Ma). Extension was accommodated by hinterland-directed movements along gently inclined extensional shear zones, which facilitated rapid exhumation of high-pressure and ultra-high-pressure rocks. This deformation resulted in a normal metamorphic sequence. Extension in the inner parts of the Western Alps was coeval with shortening at the front of the belt (foreland-directed thrusts), which took place during decompression, and emplaced higher grade metamorphic units over lower grade metamorphic rocks, thus forming an inverse metamorphic sequence. Two mechanisms for this extensional episode are discussed: (1) collapse of an overthickened lithosphere, and (2) internal readjustments within the orogenic wedge due to subduction channel dynamics. We favour the latter mechanism because it can account for the development of the observed inverse and normal metamorphic sequences along foreland-directed thrusts and hinterland-directed detachments, respectively. This hypothesis is supported by published structural, metamorphic and geochronological data from four geological transects through the Western Alps. This study also emphasizes the importance of post-shearing deformation (e.g. horizontal buckling versus vertical flattening), which can modify the distribution of hinterland- and foreland-directed shear zones in orogenic belts.
- Published
- 2006
45. Fold interference pattern at the top of basement domes and apparent vertical extrusion of HP rocks (Ambin and South Vanoise massifs, Western Alps)
- Author
-
Jérôme Ganne, Jean-Michel Bertrand, Serge Fudral, Laboratoire de Géodynamique des Chaines Alpines (LGCA), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut des Sciences de la Terre (ISTerre), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut national des sciences de l'Univers (INSU - CNRS)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR), Environnements, Dynamiques et Territoires de la Montagne (EDYTEM), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Observatoire des Sciences de l'Univers de Grenoble [1985-2015] (OSUG [1985-2015]), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut des Sciences de la Terre [2011-2015] (ISTerre [2011-2015]), and Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-PRES Université de Grenoble-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut de recherche pour le développement [IRD] : UR219-PRES Université de Grenoble-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Metamorphic zone ,010504 meteorology & atmospheric sciences ,Greenschist ,Partitioning of deformation ,[SDE.MCG]Environmental Sciences/Global Changes ,Penninic domain ,010502 geochemistry & geophysics ,01 natural sciences ,Nappe ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,Penninic ,Petrology ,0105 earth and related environmental sciences ,[SDU.STU.TE]Sciences of the Universe [physics]/Earth Sciences/Tectonics ,geography ,geography.geographical_feature_category ,Subduction ,Western Alps ,Geology ,Massif ,Fold (geology) ,High-grade rock exhumation ,Fold interference pattern ,Facies ,Seismology - Abstract
International audience; The Ambin and South Vanoise Briançonnais basement domes, located within the HP metamorphic zone, were chosen for a reappraisal of the early tectonic evolution of the Internal Alps in their western segment. Finite strain analyses have shown that HP rocks were exhumed in two main successive stages, more or less expressed according to their structural position in the massifs. A partitioning of deformation, from core to rim of the domes, is thus evidenced. The D1 stage was roughly coeval with the observed peak metamorphic conditions and corresponds in the core of the Ambin dome, to a non-coaxial regime with dominant horizontal shortening and N to NW movement direction. The D2 stage, well-expressed in the upper part of the domes, took place under low-blueschist facies conditions and culminated under greenschist facies conditions. It developed a retrogressive foliation and pervasive E-verging shear-zones at all scales that locally define major Φ2 tectonic contacts. The D2 shearing is responsible for the development of spectacular F1–F2 fold interference structures recognised in the western part of the South Vanoise dome. In this area, we interpret the steeply-dipping HP-fabric (S1) defining the axial planes of the first generation of now-upright folds (F1) as linked to an early flat-lying nappe edifice (Φ1) subsequently steepened by the D2 shearing. Geometry and kinematic characteristics for the early D1 nappe-forming event are strongly consistent with most evolutionary models assuming that oceanic to European and Apulian crust-derived nappes were initially exhumed during N to NW-verging overthrusting events, synthetic to the subduction. They tend also to suggest that the Penninic HP-units may have suffered an early exhumation by low-angle thrusting, rather than by vertical extrusion.
- Published
- 2005
46. Geometry and kinematics of early Alpine nappes in a Briançonnais basement (Ambin Massif, Western Alps)
- Author
-
Jean-Michel Bertrand, Jérôme Ganne, Serge Fudral, Laboratoire de Géodynamique des Chaines Alpines (LGCA), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Environnements, Dynamiques et Territoires de la Montagne (EDYTEM), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut des Sciences de la Terre (ISTerre), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut national des sciences de l'Univers (INSU - CNRS)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), and Chkouki, Isabelle
- Subjects
geometry ,010504 meteorology & atmospheric sciences ,Greenschist ,Metamorphic rock ,[SDE.MCG]Environmental Sciences/Global Changes ,Geochemistry ,010502 geochemistry & geophysics ,01 natural sciences ,Nappe ,Abmin massif ,Alpine nappes ,geodynamics ,Geomorphology ,[SDU.STU.AG]Sciences of the Universe [physics]/Earth Sciences/Applied geology ,0105 earth and related environmental sciences ,Global and Planetary Change ,geography ,geography.geographical_feature_category ,Western Alps ,Massif ,15. Life on land ,[SDE.MCG] Environmental Sciences/Global Changes ,[SDU.STU.AG] Sciences of the Universe [physics]/Earth Sciences/Applied geology ,kinematics ,Facies ,Briançonnais ,General Earth and Planetary Sciences ,Shearing deformation ,Geology - Abstract
Petrological and structural observations from the Ambin pre-alpine basement dome and from its Brianconnais and Piedmont covers show an early D1 nappe-forming event overprinted by a major D2 (+ D3) ductile shearing deformation. The D1 event is characterised by garnet-blueschist facies metamorphic assemblages retrogressed to greenschist facies conditions during D2 then D3 stages near the top of the dome. North-verging D1 structures preserved in the core of the dome are consistent with alpine evolutionary models, in which exhumation of HP–LT metamorphic alpine rocks occurs initially in a north–south direction. To cite this article: J. Ganne et al., C. R. Geoscience 336 (2004).
- Published
- 2004
47. Retrieving past geodynamic events by unlocking rock archives with μ-XRF and μ-spectroscopy
- Author
-
Jérôme Ganne, G Falkenberg, V. De Andrade, Franck Bourdelle, Jürgen Thieme, Alexis Plunder, Benoît Dubacq, C G Ryan, Advanced Photon Source, Argonne National Laboratory [Lemont] (ANL), Photon Science, Brookhaven National Laboratory [Upton, NY] (BNL), UT-Battelle, LLC-Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY)-U.S. Department of Energy [Washington] (DOE)-UT-Battelle, LLC-Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY)-U.S. Department of Energy [Washington] (DOE), Géosciences Environnement Toulouse (GET), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut des Sciences de la Terre de Paris (iSTeP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de géologie de l'ENS (LGENS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Deutsches Elektronen-Synchrotron DESY-HASYLAB, U.S. Department of Energy [Washington] (DOE)-UT-Battelle, LLC-Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris)
- Subjects
Chemical imaging ,History ,geography ,geography.geographical_feature_category ,Metamorphic rock ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Metamorphism ,Mineralogy ,Synchrotron ,Computer Science Applications ,Education ,law.invention ,Diagenesis ,Craton ,Plate tectonics ,Beamline ,law ,ddc:530 ,Geology - Abstract
Journal of physics / Conference Series 499, 012012 (2014). doi:10.1088/1742-6596/499/1/012012, Rocks are commonly polycrystalline systems presenting multi-scale chemical and structural heterogeneities inherited from crystallization processes or successive metamorphic events. This work illustrates how spatially resolved analytical techniques coupled with thermodynamic approaches allow rock compositional variations to be related to large-scale geodynamic processes. Emphasis is placed on the contribution of quantitative chemical imaging to the study of 2.2-2.0 Gy old metamorphic rocks from the West African Craton. A thorough analysis of elemental chemical maps acquired on rock thin sections enabled high pressure relic minerals to be located and re-analyzed later with precise point analyses. The pressure-temperature conditions of crystallization calculated from these analyses are typical of modern subduction zones. These results push back the onset of modern-style plate tectonics to 2.15 Gy, i.e. more than one billion years earlier than was consensually accepted. The second part of the paper describes the imaging capabilities offered by the new ultra-bright diffraction limited synchrotron sources. Experimental data acquired with the Maia detector at beamline P06 at Petra III as well as simulations of μ-XRF spectra that will be generated at the SRX beamline at NSLS-II are presented. These results demonstrate that cm2 large chemical maps can be acquired with submicron spatial resolution and a precision suitable for thermobarometric estimates, with dwell time smaller than 1 millisecond. The last part of the paper discusses the relevance of utilizing recent X-ray fluorescence nanoprobes for diagenetic to low grade metamorphism applications., Published by IOP Publ., Bristol
- Published
- 2014
48. Response to: Commentary: 'Is the Neoproterozoic oxygen burst a supercontinent legacy?'
- Author
-
Melina Macouin, Sonia Rousse, Jerome Ganne, Yoann Denèle, Damien Roques, and Ricardo IF Trindade
- Subjects
rock magnetism ,Rodinia ,Socotra ,Subductions ,Neoproterozoic Oxygenation Event ,hematite-magnetite buffer ,Science - Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.